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Abstract Portfolio credit derivatives are contracts that are tied to an underlying port-
folio of defaultable reference assets and have payoffs that depend on the default times
of these assets. The hedging of credit derivatives involves the calculation of the sen-
sitivity of the contract value with respect to changes in the credit spreads of the un-
derlying assets, or, more generally, with respect to parameters of the default-time
distributions. We derive and analyze Monte Carlo estimators of these sensitivities.
The payoff of a credit derivative is often discontinuous in the underlying default
times, and this complicates the accurate estimation of sensitivities. Discontinuities
introduced by changes in one default time can be smoothed by taking conditional ex-
pectations given all other default times. We use this to derive estimators and to give
conditions under which they are unbiased. We also give conditions under which an
alternative likelihood ratio method estimator is unbiased. We illustrate the applica-
tion and verification of these conditions and estimators in the particular case of the
multifactor Gaussian copula model, but the methods are more generally applicable.
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1 Introduction

Portfolio credit derivatives are contracts that are tied to an underlying portfolio of
defaultable assets and have payoffs that depend on the default times of these assets.
These types of derivatives facilitate the buying and selling of protection against the
credit risk in a portfolio. Examples of portfolio (or multi-name) credit derivatives
include basket default swaps and collateralized debt obligations (CDOs); see, e.g.,
Bruyère et al. [3] and Schönbucher [17] for general background on these types of
contracts.

The payoff of a portfolio credit derivative may be viewed, abstractly, as a function
of the default times of the underlying assets. Valuing the derivative entails calculating
the expectation of the discounted payoff over the joint distribution of the default
times. The marginal distribution of each default time (under a pricing measure) is
typically inferred from the market prices of assets linked to an individual obligor,
such as a bond or a credit default swap (see, e.g., Duffie and Singleton [7]); the joint
distribution may then be specified through a copula function, as in Li [16]. Simple
cases of this approach lead to pricing through transform inversion and numerical
integration techniques, or other numerical methods, as in Andersen et al. [1], Hull
and White [13], and Laurent and Gregory [15]. But more general cases require Monte
Carlo simulation.

The hedging of portfolio credit derivatives requires the calculation of sensitivities
of the contract value to parameters of the underlying default-time distributions. More
specifically, default-time distributions are usually specified through their hazard rates,
and hedging focuses on the effect of changes in these hazard rates—that is, on the
delta with respect to hazard rates or parameters of hazard rates.

Estimating these deltas accurately and efficiently by Monte Carlo presents a chal-
lenge. Estimating price sensitivities by Monte Carlo is typically more difficult than
estimating the prices themselves, and this is particularly true for payoffs with dis-
continuities. In the context of credit derivatives, discontinuities arise because small
changes in default times can produce large changes in a contract’s payoff. For ex-
ample, in a first-to-default swap, a small change in a default time may introduce or
eliminate a default within the life of the swap, or it may change the identity of the
first name that defaults. Either of these changes can produce a jump in the swap’s
cashflows. In the case of a CDO, a discontinuity in cashflows arises when a small
change in a default time causes the default to cross a coupon date.

Finite difference approximation is the most straightforward approach to estimating
sensitivities by Monte Carlo. In the credit context, this means perturbing a hazard
rate and resimulating to compute the change in price. But finite difference estimates
are particularly poor in the presence of discontinuities; see, e.g., the discussion in
Sect. 7.1.2 of Glasserman [10]. The main alternatives are the pathwise method and
the likelihood ratio method, as discussed in Broadie and Glasserman [4] and Chap. 7
of Glasserman [10].

Joshi and Kainth [14] apply these techniques to the hedging of nth-to-default
swaps in the Gaussian copula model. The likelihood ratio method is unaffected by
payoff discontinuities and its application in this context is relatively straightforward.
We provide rigorous support for its application by giving conditions under which it
produces unbiased estimators.
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In its simplest form, the pathwise method is inapplicable to discontinuous
payoffs—the interchange of derivative and expectation required to make the method
unbiased typically fails to hold in the presence of discontinuities. Methods for
smoothing discontinuities that result from changes in the order of events have been
studied in the literature on the simulation of queuing networks and other discrete-
event systems; see, in particular, Suri and Zazanis [18], Gong and Ho [11], Chap. 7
of Glasserman [9], and Fu and Hu [8]. These methods use conditional expectations to
smooth the effect of changes in the order of events (e.g., arrivals to or departures from
a queue). Joshi and Kainth [14] arrive at similarly smoothed estimators independently
and by a rather different route, using somewhat informal calculations with delta func-
tions and stopping short of providing rigorous support for their methods. Here, we
avoid the use of delta functions and instead derive smoothed pathwise estimators as
limits of conditional expectations. We give conditions—for the most part, modest
regularity conditions—under which these estimators are unbiased. As a byproduct
of our analysis, we identify a term missing in Joshi and Kainth [14]: In the setting
of nth-to-default swaps, they combine their estimators with a method that forces at
least n defaults to occur on every path; we show that for the calculation of deltas, it
is necessary to consider paths on which n − 1 defaults occur as well.

The rest of this paper is organized as follows. Section 2 provides background on
portfolio credit derivatives and the Gaussian copula model. Sections 3 and 4 derive
the sensitivity estimators. For purposes of illustration, Section 5 presents the partic-
ular cases of basket default swaps and CDOs. In Section 6, we improve the perfor-
mance of the sensitivity estimators using a variance reduction technique. Section 7
concludes the paper. Most proofs are contained in Appendix A.

2 Problem description and background

This section describes the class of credit derivatives we consider in this paper, and it
reviews the popular Gaussian copula model which we use for illustration.

2.1 Portfolio credit derivatives

We consider credit derivatives tied to a basket (or portfolio) of N underlying names,
such as bonds, loans, or credit default swaps. The number of underlying names typi-
cally ranges from 5 to 200. We use T to denote the life of the contract.

We denote by τi the default time of the ith asset, i = 1, . . . ,N , taking
τi = ∞ if the ith asset never defaults. The default times τ1, . . . , τN are positive
random variables with a joint density function f (t1, . . . , tN ). We denote by fi(ti) the
marginal density of τi , and we denote by fi(ti |τ1, . . . , τi−1, τi+1, . . . , τN ) the con-
ditional density function of τi given the times of the other defaults. The marginal
distribution of each τi is typically extracted from the market prices of credit default
swaps or bonds; these market prices are used to construct a hazard rate function λi

from which we get the distribution
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Fi(t) = P(τi ≤ t) = 1 − exp

(
−

∫ t

0
λi(s) ds

)
,

fi(t) = λi(t) exp

(
−

∫ t

0
λi(s) ds

)
.

We consider credit derivatives with discounted payoff V (τ1, . . . , τN), a function of
the default times. We focus on sensitivities of prices with respect to the hazard rates
of underlying names. The numbering of the underlying names is arbitrary, so there is
no loss of generality in considering sensitivities associated with the first asset. Thus,
suppose the hazard rate function λ1 depends on a parameter h (as well as on time t),
i.e., λ1 = λ1(t, h). We consider sensitivities with respect to the parameter h as it
varies over an open interval H. In the simplest case, λ1(t, h) = λ1(t) + h for all t ,
so that changes in h correspond to parallel shifts in the hazard rate function, but we
consider more general parameterizations. The sensitivity (called delta) with respect
to h is given by

∂E(V )

∂h
= lim

ε→0

E(V (τ1(h + ε), . . . , τN)) − E(V (τ1(h − ε), . . . , τN ))

2ε
,

where we have attached h ± ε to τ1 to indicate the parameter values. We include h as
an argument whenever we need to emphasize a change in the value of this parameter.

We use the conditions below in our analysis. After listing the conditions, we dis-
cuss their interpretation and scope. In conditions (A3), (A5) and elsewhere, when
we refer to a property holding almost everywhere (a.e.), we mean with respect to
Lebesgue measure on � or �N . Also, in stating the conditions, we use τ1, τ2, . . .

to denote the random variables representing default times, and we use t1, t2, . . .

as real variables representing possible outcomes of the default times. Thus, in
(A4), f (t1, . . . , tN ) is the joint density of the default times τ1, . . . , τN evaluated at
t1, . . . , tN .

(A1) The discounted payoff V = V (τ1, . . . , τN ) is a bounded function of the default
times.

(A2) Fix any positive t2, . . . , tN and let tN+1 = T . For any i ≥ 2, we define
j = argmink≥2{tk − ti : tk > ti}. Then V is Lipschitz with respect to t1 in
the interval (ti , tj ); i.e., for any t1 and t1 + �t in (ti , tj ), there exists a
K1(t2, . . . , tN ) < ∞ such that

∣∣V (t1 + �t, t2, . . . , tN ) − V (t1, t2, . . . , tN )
∣∣ ≤ |�t |K1(t2, . . . , tN ).

(A3) The first derivative ∂λ1/∂h exists and is nonnegative almost everywhere in H.
(A4) The default times τ1, . . . , τN admit a density f (t1, . . . , tN ) and a conditional

density f (t1|τ2, . . . , τN) given τ2, . . . , τN , a.s.
(A5) For every h ∈ H and almost every t1, . . . , tN ∈ (0,∞), the partial derivative

∂f (t1, . . . , tN ;h)/∂h exists. Furthermore, there exists a nonnegative function g

such that for any h ∈ H and all sufficiently small |ε|,
∣∣f (t1, . . . , tN ;h + ε) − f (t1, . . . , tN ;h)

∣∣ ≤ |ε|g(t1, . . . , tN ), a.e.,
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with ∫ ∞

0
· · ·

∫ ∞

0
g(t1, t2, . . . , tN ) dt1 · · ·dtN < ∞.

(A6) For every h ∈ H and almost every t1 ∈ (0,∞), the partial derivative
∂f1(t1;h|τ2, . . . , τN)/∂h exists, a.s. Furthermore, there exists a nonnegative
function g1 such that for all sufficiently small |ε| and almost every t1,

∣∣f1(t1;h + ε|τ2, . . . , τN) − f1(t1;h|τ2, . . . , τN )
∣∣ ≤ |ε|g1(t1|τ2, . . . , τN ), a.s.,

with ∫ ∞

0
g1(t1|τ2, . . . , τN ) dt1 < ∞, a.s.

(A7) A family of random variables {τ1(h), h ∈ H} having densities
{f1(t1;h), h ∈H} can be realized as an almost surely strictly decreasing differ-
entiable function of h.

(A8) For all sufficiently small |ε|, there exists a random variable Kτ such that
E(Kτ ) < ∞ and for any h,h + ε ∈H, |τ1(h + ε) − τ1(h)| ≤ Kτ |ε|, a.s.

The boundedness assumption in (A1) is widely applicable to portfolio credit deriv-
atives, because the maximum gain or loss on each underlying asset in this context is
usually bounded. Condition (A2) makes precise the idea that the payoff is continu-
ous (in fact Lipschitz) so long as the changes in default times are sufficiently small
to leave the order of the default times unchanged. Condition (A3) applies, for ex-
ample, when the parameter h linearly shifts the entire hazard function λ1, which
would be the most typical sensitivity considered in practice. The requirement in (A4)
that the default times admit a joint density holds in essentially any nondegener-
ate setting—for example, in the Gaussian copula model, provided no two obligors
are perfectly correlated. Conditions (A5) and (A6) impose some modest regular-
ity conditions on the joint density and conditional density of the default times; in
both cases, the condition imposed is similar to requiring the existence of an inte-
grable derivative. Condition (A7) can often be satisfied by letting U be uniformly
distributed on the unit interval and setting τ1(h) = F−1

1 (U ;h), where F1(t1;h) is
the cumulative distribution function obtained from the density f1(t1;h), and F−1

1
denotes the inverse with respect to the first argument. For example, in the case of
a constant hazard rate λ1(t, h) ≡ λ1(h), each τ1(h) is exponentially distributed and
τ1(h) = − log(1 − U)/λ1(h). In this case, we get

τ ′
1(h) = − τ1(h)

λ1(h)
λ′

1(h), (2.1)

and Kτ in (A8) can be taken as the supremum of |τ ′
1(h)| for h ∈ H. The monotonicity

and smoothness properties required of τ1 in (A7) follow from corresponding condi-
tions in λ1(h). The assumption of strict monotonicity in (A7) ensures that the map-
ping from h to τ1(h) is invertible, a.s.
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2.2 The Gaussian copula model

The joint distribution of the default times, f (t1, . . . , tN ), has not yet been specified.
The Gaussian copula (as in Li [16], Gupton et al. [12]) is a widely used mechanism for
specifying a joint distribution for the default times consistent with given marginals,
and will provide a useful and illustrative example. The dependence among τ1, . . . , τN

is determined by underlying jointly normal random variables W1, . . . ,WN . Each Wi

has a standard normal distribution �, so �(Wi) is uniformly distributed on (0,1) and
τi = F−1

i (�(Wi)) has distribution Fi . However, W1, . . . ,WN are correlated, with co-
variance matrix �, and this introduces (and, indeed, completely characterizes) depen-
dence among the default times τ1, . . . , τN . We will make the simplifying assumption
that � has full rank so that no asset has its default time completely determined by
those of the other assets.

More generally, saying that τ1, . . . , τN have copula function C means that

P(τ1 ≤ t1, . . . , τN ≤ tN ) = C
(
F1(t1), . . . ,FN(tN )

)
,

for any t1, . . . , tN . The joint density function of τ1, . . . , τN is then given by

f (t1, . . . , tN ) = ∂C(u1, . . . , uN ;�)

∂u1 . . . ∂uN

∂u1

∂t1
· · · ∂uN

∂tN

= c(u1, . . . , uN ;�)

N∏
i=1

fi(ti), (2.2)

where ui = 1 − exp(− ∫ ti
0 λi(s) ds).

For the Gaussian copula,

c(u1, . . . , uN ;�) = 1

|�|1/2
exp

[
−1

2

(
�−1(u)

)
(
�−1 − I

)
�−1(u)

]
, (2.3)

where I is the identity matrix and u is an N × 1 vector with ui = ui .

3 Estimating sensitivities: likelihood ratio method

There are three primary methods for estimating sensitivities by Monte Carlo: the fi-
nite difference method, the likelihood ratio method, and the pathwise method. The
finite difference method is superficially easier to understand and implement; but it
produces biased estimates and its efficient use requires a difficult balance between
bias and variance in the selection of the perturbation ε. The method is particularly
problematic with discontinuous payoffs. The likelihood ratio method avoids diffi-
culties resulting from discontinuities by differentiating a probability density rather
than the payoff. In contrast, the pathwise method differentiates each simulated out-
come with respect to the parameter of interest and (in its simplest form) is limited to
payoffs without discontinuities. The application of the likelihood ratio method and
the pathwise method requires interchange in the order of differentiation and integra-
tion, an interchange that requires verification. For an introduction to these methods
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and issues, see Asmussen and Glynn [2], Broadie and Glasserman [4] or Chap. 7 of
Glasserman [10].

In the setting of portfolio credit derivatives, the likelihood ratio method (which we
address in this section) is relatively straightforward. The pathwise method (which we
take up in the next section) requires a more extensive analysis.

The likelihood ratio method estimates sensitivities through the derivative of a
probability density—in our setting, the density of the default times. It does not require
any smoothness in the discounted payoff. It is therefore widely applied to different
models and credit products. The next result confirms its applicability in our context.

Theorem 3.1 Under conditions (A1) and (A5), the estimator of the delta given by
the likelihood ratio method,

V (τ1, . . . , τN)
∂ lnf (τ1, . . . , τN ;h)

∂h
, (3.1)

is unbiased, i.e.,

∂E(V )

∂h
= E

(
V (τ1, . . . , τN )

∂ lnf (τ1, . . . , τN ;h)

∂h

)
.

In the particular case of the Gaussian copula model, by (2.2) and (2.3), we have

lnf (τ1, . . . , τN ) = ln c(u1, . . . , uN ;�) +
N∑

i=1

lnfi(τi)

= −1

2
ln |�| − 1

2

(
�−1(u)

)
(
�−1 − I

)
�−1(u)

+
N∑

i=1

(
lnλi −

∫ τi

0
λi(s) ds

)
,

and

∂ lnf (τ1, . . . , τN)

∂h
= −

N∑
j=1

(
�−1 − I

)
1j

�−1(uj )
∂�−1(u1)

∂u1

∂u1

∂h
+ 1

λ1

∂λ1

∂h
− τ1

∂λ1

∂h
,

where

λ1 = λ1(τ1, h),
∂u1

∂h
= ∂λ1

∂h
τ1(1 − u1),

∂�−1(ui)

∂ui

= √
2πe�−1(ui )

2/2.

All these expressions can be computed easily. For the case of constant hazard rates,
this estimator appears in Joshi and Kainth [14].
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4 The pathwise method

4.1 Discontinuities and jump terms

Before undertaking a detailed derivation of the pathwise estimator, we motivate our
analysis with a discussion of the problem of discontinuities and how this problem can
be circumvented.

In its usual form, the pathwise estimator of the sensitivity of the expected payoff
E(V (τ1, . . . , τN)) to a parameter h of τ1 would be

∂V (τ1, . . . , τN)

∂h
= ∂V (τ1, . . . , τN)

∂τ1

dτ1(h)

dh
,

with the derivative of τ1 as in (A8) and (2.1). This estimator captures the effect of
local changes in the default time τ1 resulting from small changes in the hazard rate λ1.
For example, it captures the effect of the timing of cashflows that might result from a
small change in τ1. However, it does not capture the effect of any discontinuity in V

introduced by a change in the order of defaults.
To stress this point, consider a simple (if artificial) payoff of the form

V (τ1, τ2) = c11(τ1 < τ2) + c21(τ2 ≤ τ1),

for some constants c1 and c2 �= c1. If τ1 �= τ2, then a sufficiently small change in h

will not change the order of events, so the pathwise derivative is zero with probabil-
ity 1. If τ1 is decreasing in h and τ1 is initially greater than τ2, then an increase in h

may eventually cause an interchange in the order of defaults, at which point V will
jump by c1 − c2. This jump is not reflected in the pathwise estimator.

To capture the effect of the discontinuity, we condition on all default times other
than τ1, which in this example means conditioning on τ2:

E(V |τ2) = c1P(τ1 < τ2|τ2) + c2
(
1 − P(τ1 < τ2|τ2)

)
.

Differentiating the conditional expectation yields

∂E(V |τ2)

∂h
= −f1(τ2|τ2)τ

′
1 · (c1 − c2),

where f1(·|τ2) is the conditional density of τ1 given τ2, introduced in (A4), and τ ′
1 is

evaluated at τ1 = τ2. Anticipating the general form we derive in (4.2), we can write
this estimator as

∂V

∂h
− f1(τ2|τ2)τ

′
1 · (c1 − c2),

though the first (local) term is identically zero in this case.
The second term—the jump term—contains the essential features of the general

cases we derive. First, we have the conditional density f1(·|τ2) evaluated at τ2 itself,
giving the “probability” (in the sense of a density) that τ1 occurs just at the same time
as τ2. This density is multiplied by −τ ′

1 (to be evaluated at τ1 = τ2), and the product
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gives the rate at which τ1 crosses τ2 (from the right), given τ2. Finally, this jump rate
is multiplied by c1 − c2, the size of the jump in V when τ1 crosses τ2.

The rest of this section is devoted to generalizing and justifying this idea. The
final estimator (4.2) includes a jump term for each possible discontinuity; each of
these results from τ1 crossing some τi , i �= 1, or crossing the end of the contract
T ≡ τN+1. Each jump term is the product of a jump rate and a jump magnitude.
To make these ideas precise, we first need to justify differentiating the conditional
expectation, which we do in Proposition 4.1. We then need to show that the jump rate
has the asserted form and that we can ignore terms resulting from τ1 crossing more
than one other default time; this we do in Lemma 4.2. We assemble the estimator in
the steps leading to (4.2) and then verify unbiasedness in Theorem 4.3.

4.2 Derivation of the estimator

Our first step is to reduce the problem to one of estimating the sensitivity of the con-
ditional expectation given τ2, . . . , τN . Recall (see Condition (A7)) that the parameter
h affects only τ1. The following result is proved in Appendix A.2.

Proposition 4.1 Under conditions (A1) and (A3)–(A6),

(a) ∂E(V )/∂h and ∂E(V |τ2, . . . , τN)/∂h exist
(b) ∂E(V )/∂h = E(∂E(V |τ2, . . . , τN)/∂h).

Because the joint distribution of τ1, . . . , τN admits a density, τi �= τj and τi �= T

with probability 1, for any i �= j , i, j = 2, . . . ,N . Therefore,

E
(

∂E(V |τ2, . . . , τN)

∂h

)

= E
(

∂E(V |τ2, . . . , τN , τi �= τj , τi �= T , i �= j, i, j = 2, . . . ,N)

∂h

)
.

In the following discussion, we consider only the case that τi �= τj , τi �= T , i �= j ,
i, j = 2, . . . ,N . So, our problem is reduced to finding an estimator of

∂E(V |τ2, . . . , τN , τi �= τj , τi �= T , i �= j, i, j = 2, . . . ,N)

∂h
. (4.1)

We restrict attention to the almost-sure event

{τi �= τj , τi �= T , i �= j, i, j = 2, . . . ,N}
without making this restriction explicit in the following discussion.

The essential idea of the pathwise method is to interchange the order of differenti-
ation and expectation. This requires that the expectation in (4.1) be taken in a measure
that is independent of h. As in Condition (A7), we assume that the dependence on
h enters through τ1 = τ1(h), a random function of h. This makes V dependent on h

through its dependence on τ1.
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Since ∂E(V |τ2, . . . , τN)/∂h exists, we have

∂E(V |τ2, . . . , τN)

∂h
= lim

ε↓0

E(V (+ε)|τ2, . . . , τN) − E(V (−ε)|τ2, . . . , τN)

2ε

= lim
ε↓0

E(�V (ε)|τ2, . . . , τN)

2ε
,

where ε is positive and sufficiently small, we set τ
(±ε)
1 = τ1(h ± ε),

V (±ε) ≡ V (τ
(±ε)
1 , . . . , τN ), and �V (ε) ≡ V (+ε) − V (−ε). With the assumption of

a.s. continuity of τ1 as a function of h,

lim
ε↓0

τ
(−ε)
1 = lim

ε↓0
τ

(+ε)
1 = τ1.

Therefore, the left and right limits of V exist, a.s.; denote them by
V ± = limε↓0 V (±ε). Let �V denote limε↓0 �V (ε). On the event {τ1 = t1}, for fixed
t1, we write �Vt1 for the value of �V to stress the dependence on τ1.

We set τN+1 ≡ T and sort {τ2, . . . , τN+1} as

τ(2) ≤ · · · ≤ τ(N+1).

Let Ii denote the open interval (τ(i), τ(i+1)), for i = 2, . . . ,N , and set
I1 = (0, τ(2)) and IN+1 = (τ(N+1),∞). For convenience, we use τ(1) and τ(N+2)

to denote 0 and ∞, so that Ii = (τ(i), τ(i+1)) for i = 1, . . . ,N + 1. For any ε > 0, the

possible positions of τ
(+ε)
1 and τ

(−ε)
1 fall into four cases:

– They are in the same interval Ii .
– They are in two successive intervals, i.e., τ

(+ε)
1 ∈ Ii and τ

(−ε)
1 ∈ Ii+1.

– They are in two intervals which are not successive, i.e., τ
(+ε)
1 ∈ Ii and τ

(−ε)
1 ∈ Ij ,

where j > i + 1.
– At least one of them coincides with a point in τ(2), . . . , τ(N+1).

The fourth case happens with probability 0. By omitting the fourth case, we have

E
(
�V (ε)

∣∣τ2, . . . , τN

)

=
N+1∑
i=1

E
(
�V (ε)

∣∣τ (+ε)
1 , τ

(−ε)
1 ∈ Ii, τ2, . . . , τN

)
P
(
τ

(+ε)
1 , τ

(−ε)
1 ∈ Ii

∣∣τ2, . . . , τN

)

+
N∑

i=1

(
E

(
�V (ε)

∣∣τ (+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ii+1, τ2, . . . , τN

)

× P
(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ii+1

∣∣τ2, . . . , τN

))

+
N+1∑

j>i+1
i,j=1

(
E

(
�V (ε)

∣∣τ (+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij , τ2, . . . , τN

)

× P
(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij

∣∣τ2, . . . , τN

))
.
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Then,

lim
ε↓0

E(�V (ε)|τ2, . . . , τN)

2ε

=
N+1∑
i=1

lim
ε↓0

E(�V (ε)|τ (+ε)
1 , τ

(−ε)
1 ∈ Ii, τ2, . . . , τN)P(τ

(+ε)
1 , τ

(−ε)
1 ∈ Ii |τ2, . . . , τN)

2ε

+
N∑

i=1

lim
ε↓0

1

2ε

(
E

(
�V (ε)

∣∣τ (+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ii+1, τ2, . . . , τN

)

× P
(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ii+1

∣∣τ2, . . . , τN

))

+
N+1∑

j>i+1
i,j=1

lim
ε↓0

1

2ε

(
E

(
�V (ε)

∣∣τ (+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij , τ2, . . . , τN

)

× P
(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij

∣∣τ2, . . . , τN

))
.

We verify these limits and analyze the three sums on the right in turn.
In the first sum, inside any Ii , conditions (A2), (A7) and (A8) together allow us to

apply the dominated convergence theorem to interchange expectation and the limit as
ε ↓ 0 to get

lim
ε↓0

E(�V (ε)|τ (+ε)
1 , τ

(−ε)
1 ∈ Ii, τ2, . . . , τN )P(τ

(+ε)
1 , τ

(−ε)
1 ∈ Ii |τ2, . . . , τN )

2ε

= lim
ε↓0

E(�V (ε)1(τ
(+ε)
1 , τ

(−ε)
1 ∈ Ii)|τ2, . . . , τN)

2ε

= E
(

lim
ε↓0

�V (ε)

2ε
1
(
τ

(+ε)
1 , τ

(−ε)
1 ∈ Ii

)∣∣∣∣τ2, . . . , τN

)

= E
(

∂V

∂h
1(τ1 ∈ Ii)

∣∣∣∣τ2, . . . , τN

)
= E

(
∂V

∂τ1
τ ′

1(h)1(τ1 ∈ Ii)

∣∣∣∣τ2, . . . , τN

)
,

where 1 is the indicator function. Because V is Lipschitz in Ii , it follows that, with
probability 1, the derivative ∂V/∂τ1 exists almost everywhere in Ii . For the second
and third sums, we need the following lemma.

Lemma 4.2 Under conditions (A7) and (A8),

(a) P(τ
(+ε)
1 ∈ Ii, τ

(−ε)
1 /∈ Ii |τ2, . . . , τN ) → 0, a.s., when ε ↓ 0

(b) P(τ
(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij , j > i + 1|τ2, . . . , τN )/ε → 0, a.s., when ε ↓ 0

(c) P(τ
(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ii+1|τ2, . . . , τN)/(2ε) → −τ ′

1(h(i))f1(τ(i);h|τ2, . . . , τN),
a.s., when ε ↓ 0, where h(i) satisfies τ(h(i)) = τ(i).

This lemma is proved in Appendix A.3.
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Note that �V (ε) is bounded since V is bounded, so the limit �V is bounded. By
the lemma,

lim
ε↓0

1

2ε

(
E

(
�V (ε)

∣∣τ (+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ii+1, τ2, . . . , τN

)

× P
(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ii+1

∣∣τ2, . . . , τN

))

= −�Vτ(i)

∂τ1

∂h

∣∣∣∣
h=h(i)

f1(τ(i);h|τ2, . . . , τN)

= −�Vτ(i)
τ ′

1(h(i))f1(τ(i);h|τ2, . . . , τN),

and for j > i + 1,

lim
ε↓0

1

2ε

(
E

(
�V (ε)

∣∣τ (+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij , τ2, . . . , τN

)

× P
(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij

∣∣τ2, . . . , τN

)) = 0.

Therefore,

∂E(V |τ2, . . . , τN)

∂h
= lim

ε↓0

E(�V (ε)|τ2, . . . , τN)

2ε

=
N+1∑
i=1

E
(

∂V

∂τ1

∂τ1

∂h
1(τ1 ∈ Ii)

∣∣∣∣τ2, . . . , τN

)

−
N+1∑
i=2

�Vτ(i)
τ ′

1(h(i))f1(τ(i);h|τ2, . . . , τN )

= E
(

∂V

∂h

∣∣∣∣τ2, . . . , τN

)
−

N +1∑
i=2

�Vτ(i)
τ ′

1(h(i))f1(τ(i);h|τ2, . . . , τN).

Now we conclude that

∂E(V )

∂h
= E

(
∂E(V |τ2, . . . , τN)

∂h

)

= E

(
E

(
∂V

∂h

∣∣∣∣τ2, . . . , τN

)
−

N+1∑
i=2

�Vτ(i)
τ ′

1(h(i))f1(τ(i);h|τ2, . . . , τN )

)

= E

(
∂V

∂h
−

N+1∑
i=2

�Vτ(i)
τ ′

1(h(i))f1(τ(i);h|τ2, . . . , τN)

)
.

We therefore obtain from the (smoothed) pathwise method the unbiased estimator

∂V

∂h
−

N+1∑
i=2

�Vτ(i)
τ ′

1(h(i))f1(τ(i);h|τ2, . . . , τN ). (4.2)
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We have thus proved the following:

Theorem 4.3 Under conditions (A1)–(A8), the estimator (4.2) of delta given by the
(smoothed) pathwise method is unbiased.

This estimator may be interpreted as follows. The first term is the (unsmoothed)
pathwise derivative; it captures the effect of local changes in τ1 (through changes
in h) that do not introduce changes in the order of the defaults (or changes in which
defaults occur before T ). The sum captures the effect of possible order changes. Term
i is the product of the rate at which τ1 and τ(i) change order, and �Vτ(i)

is the size of
the jump when the order change occurs. The rate of the order change is the product
of the probability (density) that τ1 falls exactly on τ(i), multiplied by the derivative
of τ1 with respect to h when τ1 = τ(i). The particular form of the jump �V depends
on the payoff; in this sense, the pathwise method requires more information about a
particular derivative contract than does the likelihood ratio method. We illustrate the
estimators with an example in the next section.

5 Application to portfolio credit derivatives

This section discusses the sensitivities with respect to hazard rates in the cases of
basket default swaps and collateralized debt obligations (CDOs). It illustrates the
application of the general estimators and the verification of the conditions used in
establishing unbiasedness.

In the following discussion, we denote by D(t) the discount factor for the interval
from 0 to t and take this to be deterministic; in the simplest case, D(t) = exp(−rt)

for some fixed rate r . We assume D(t) to be Lipschitz in t . We suppose the default
times τ1, . . . , τN are correlated through a Gaussian copula function as described be-
fore. The hazard function of the first asset is λ1(t, h); we let h vary over an open
set H = {h : h > h∗}. It is natural to require that inft,h λ1(t, h) > 0; this ensures that
E(τ1(h)) < ∞, for all h. We also assume that λ1(t, h) is a strictly increasing dif-
ferentiable function of h, and λ1(t, h)/∂h is bounded for all h and t . Under these
conditions, we verify in Appendix A.4 that the conditions listed in Sect. 2 are satis-
fied for basket default swaps and CDOs.

5.1 Basket default swaps

Basket default swaps are derivative securities tied to an underlying portfolio of corpo-
rate bonds or other assets subject to credit risk. A basket default swap provides pro-
tection against the nth default in the basket, with n smaller than N and typically much
smaller. This type of nth-to-default swap is less expensive than insuring each asset
separately and may provide adequate protection if multiple defaults are unlikely. Its
cashflows are as follows. At dates 0 < T1 < T2 < · · · < Tm ≤ T , the protection buyer
is scheduled to make fixed payments of s1, . . . , sm to the protection seller. However,
if the nth default occurs before T , these payments cease and the protection seller
makes a payment to the protection buyer. This payment is determined by the identity
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of the nth asset to default, but is otherwise fixed. If the ith asset is the nth to default,
the payment is 1 − ri , where ri is the recovery rate and 1 is the (normalized) asset
value. (Differences in asset values can be absorbed into differences in recovery rates.)
We denote by R the recovery rate for the nth asset to default.

As in Chen and Glasserman [5], or in Joshi and Kainth [14] with signs reversed,
we write the discounted payoff of the swap as the difference between the discounted
payoffs of the payments made between the parties, called the protection leg and the
value leg:

V̂ (τ1, . . . , τN) = Vvalue(τ1, . . . , τN) − Vprot(τ1, . . . , τN).

Let τ denote the time of the nth default. Then

Vvalue(τ1, . . . , τN ) = (1 − R)D(τ)1(τ ≤ T ),

with 1(τ ≤ T ) the indicator of the event that the nth default occurs before T ; and

Vprot(τ1, . . . , τN) =
{∑j

i=1 siD(Ti) + sj+1D(τ)
τ−Tj

Tj+1−Tj
, if Tj ≤ τ ≤ Tj+1,∑m

i=1 siD(Ti), if τ > T .

The first term indicates that upon the nth default, the protection buyer makes an
accrued payment to the protection seller; these payments accrue linearly between the
dates Tj .

We can subtract the deterministic component of the swap and define

V (τ1, . . . , τN) = V̂ (τ1, . . . , τN ) +
m∑

i=1

siD(Ti),

so it suffices to compute E(V (τ1, . . . , τN)) for pricing.

5.1.1 The likelihood ratio method estimator

The likelihood ratio estimate is straightforward and has the same form as in the
generic case (3.1), where

∂ lnf (τ1, . . . , τN)

∂h

= −
N∑

j=1

(
�−1 − I

)
1j

�−1(uj )
√

2πe�−1(u1)
2/2 ∂λ1

∂h
τ1(1 − u1) + 1

λ1

∂λ1

∂h
− τ1

∂λ1

∂h
.

Joshi and Kainth [14] derived the same formula in the case of constant hazard rates.
In that case, the likelihood ratio estimator is

V (τ1, . . . , τN)

[
1

λ1
− τ1 − √

2πe�−1(u1)
2/2τ1(1 − u1)

N∑
j=1

(
�−1 − I

)
1j

�−1(uj )

]
.
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5.1.2 The pathwise estimator

Next, we consider the pathwise estimator for an nth-to-default swap. In this setting, if
τ1 is not the nth default time, a small change in τ1 does not change V , so ∂V/∂τ1 = 0.
If τ1 is the nth default time but τ1 > T , then V = 0 and again ∂V/∂τ1 = 0. Thus,

∂V

∂h
= ∂V

∂h
1(τ1 = τ ≤ T ),

where, as before, τ is the time of the nth default.
To make the second part of the estimator more explicit, we write

hT = τ−1
1 (T ) and h(i) = τ−1

1 (τ(i)). Then

N+1∑
i=2

�Vτ(i)
τ ′

1(h(i))f1(τ(i);h|τ2, . . . , τN+1)

= �Vτ(n−1)
1(τ(n−1) < T )τ ′

1(h(n−1))f1(τ(n−1);h|τ2, . . . , τN)

+ �Vτ(n)
1(τ(n) < T )τ ′

1(h(n))f1(τ(n);h|τ2, . . . , τN)

+ �VT 1(τ(n−1) ≤ T ≤ τ(n))τ
′
1(hT )f1(T ;h|τ2, . . . , τN).

The jump terms are as follows:

�Vτ(n−1)
1(τ(n−1) < T ) = D(τ(n−1))(r1 − r(n−1))1(τ(n−1) < T ),

�Vτ(n)
1(τ(n) < T ) = D(τ(n))(r(n) − r1)1(τ(n) < T ),

�VT 1(τ(n−1) ≤ T ≤ τ(n)) = D(T )(1 − r1)1(τ(n−1) ≤ T ≤ τ(n)).

In the first case, τ1 and τ(n−1) change order, changing the identity of the nth default;
in the second case, τ1 and τ(n) change order, changing the identity of the nth default;
and in the third case, τ1 crosses T , causing the time of the nth default to cross the end
of the life of the swap.

Combining these terms, we get the estimator

∂V

∂h
1(τ1 = τ < T )

− D(τ(n−1))(r1 − r(n−1))1(τ(n−1) < T )τ ′
1(h(n−1))f1(τ(n−1);h|τ2, . . . , τN)

− D(τ(n))(r(n) − r1)1(τ(n) < T )τ ′
1(h(n))f1(τ(n);h|τ2, . . . , τN)

− D(T )(1 − r1)1(τ(n−1) ≤ T ≤ τ(n))τ
′
1(hT )f1(T ;h|τ2, . . . , τN). (5.1)

Joshi and Kainth [14] arrived at essentially the same estimator using delta functions.
The sign of the first two terms in (8.2) of Joshi and Kainth [14] appears to be incor-
rect. In their jump terms (8.4) and (8.5), it appears that the swap lifetime T should be
replaced by the default time τj .
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5.1.3 Numerical examples

We illustrate the likelihood ratio method and the pathwise method discussed so far, as
well as the finite difference method, with some numerical results. In these examples,
we take an interest rate of r = 5%. For simplicity, we assume just a single protec-
tion payment (i.e., m = 1) of s = .10, paid at maturity if fewer than n defaults have
occurred. In the finite difference method, we use ε = 0.001 as the increment. These
parameters will be used in subsequent sections as well, and all numerical results are
based on 2 × 105 replications.

Basket I–Swap A1

As a first illustration, we consider a basket of N = 10 independent assets, with con-
stant hazard rates (0.1, 0.02, 0.015, 0.025, 0.1, 0.3, 0.01, 0.25, 0.15, 0.03). The re-
covery rates are (0.3, 0.1, 0.2, 0.1, 0.3, 0.1, 0.2, 0.2, 0.1, 0.3). Swap A1 is a fourth-
to-default swap in Basket I.

Basket II–Swap A2

Basket II contains N = 10 assets with (the same) constant hazard rates
(0.1,0.02,0.015,0.025,0.1,0.3,0.01,0.25,0.15,0.03). The recovery rates are also
the same as above, namely (0.3, 0.1, 0.2, 0.1, 0.3, 0.1, 0.2, 0.2, 0.1, 0.3). They are
correlated and the correlation matrix �, has a three-factor structure. To generate such
a correlation matrix, one can first randomly generate a 10 × 3 matrix A, compute the

supplementary vector B such that Bi =
√

1 − ∑3
j=1 a2

ij , then let � = AA′ + BB′.
The matrix A we use is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0815 −0.4105 −0.4589
−0.5187 −0.4044 −0.1367
0.0449 −0.4735 −0.6456
0.5795 0.5493 0.3349

−0.4976 −0.3295 −0.3440
−0.4963 0.3291 −0.1737
0.2841 0.2423 0.3518
0.5203 −0.4565 −0.3577
0.5943 −0.0715 −0.5576

−0.4050 −0.0124 0.3809

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Swap A2 is a fourth-to-default swap in Basket II.
The results are displayed in Figs. 1 and 2, which plot the estimated delta and vari-

ance against maturity for swaps A1 and A2. In the right panel, the dashed line shows
the variance of the finite difference estimator. The dotted line shows the variance of
the likelihood ratio method estimator, and the solid line shows the variance of the
pathwise estimator.

Figures 1 and 2 show that the finite difference method is very inefficient and un-
stable. The likelihood ratio method and the pathwise method perform much better
than the finite difference method. Although the pathwise method takes slightly longer
(about 1.1–1.2 times) than the likelihood ratio method, it has much smaller variance.
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Fig. 1 The estimated delta (left panel) and its variance (right panel) of Swap A1

Fig. 2 The estimated delta (left panel) and its variance (right panel) of Swap A2

5.2 Collateralized debt obligations

Another popular type of security backed by a pool of defaultable assets is collater-
alized debt obligations (CDOs). In a CDO, credit loss on the pool is tranched and
passed to different investors. Lower seniority tranches act as cushions against the
loss in higher seniority tranches. When the ith asset defaults, it causes a normal-
ized constant loss of li = 1 − ri in the portfolio, which is called the loss given de-
fault (LGD) of the ith asset. A tranche of a CDO absorbs losses from an attachment
point S	 to a detachment point Su. The cashflows of this tranche are as follows. At
dates 0 < T1 < · · · < Tm ≤ T , the tranche holder receives payment proportional to
the notional principal left in the tranche. If there are default losses in the portfolio,
the tranche covers the cumulative portfolio loss in excess of S	 and up to Su. For
simplicity, we assume that the net default payments occur only at the coupon dates
T1, . . . , Tm.

Let L(t) be the cumulative loss on the collateral portfolio at time t ≤ T , i.e.,

L(t) = ∑N
i=1 li1(τi ≤ t). The cumulative loss on the tranche at time t is

M(t) = (
L(t) − S	

)+ − (
L(t) − Su

)+
.
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As shown in Cherubini et al. [6], the discounted payoff of a CDO tranche could be
written as the difference between the default payment leg and the premium payment
leg,

V (τ1, . . . , τN ) = Vdef(τ1, . . . , τN) − Vpre(τ1, . . . , τN).

Using the cumulative loss on the tranche, the payoff of the default payment leg can
be expressed as

Vdef(τ1, . . . , τN ) =
m∑

i=1

D(Ti)
(
M(Ti) − M(Ti−1)

)
,

where T0 = 0. If we ignore the accrual factor for payment days, the discounted payoff
of the premium payment leg is

Vpre(τ1, . . . , τN) = c

m∑
i=1

D(Ti)
(
Su − S	 − M(Ti)

)
,

where the constant c is the spread or the coupon rate of this tranche. Thus, the payoff
of the CDO tranche can be written as

V (τ1, . . . , τN ) = (1 + c)

m∑
i=1

D(Ti)M(Ti) −
m−1∑
i=1

D(Ti+1)M(Ti)

− c(Su − S	)

m∑
i=1

D(Ti).

We observe that V (τ1, . . . , τN) is a linear combination of the cumulative loss on the
tranche M(t) for t = T1, . . . , Tm. So for the sensitivity

∂E(V )

∂h
= (1 + c)

m∑
i=1

D(Ti)
∂E(M(Ti))

∂h
−

m−1∑
i=1

D(Ti+1)
∂E(M(Ti))

∂h
,

it is sufficient to compute

∂E(M(t))

∂h
, for t = T1, . . . , Tm.

5.2.1 Sensitivity estimators

The likelihood ratio estimator is straightforward and has the same form as in the
generic case (3.1) and in the basket default swap case, but with a different expression
for V (τ1, . . . , τN ).

Next, we consider the pathwise method for a CDO tranche with attachment point
S	 and detachment point Su. As pointed out in the previous section, the sensitivity
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of the tranche payoff with respect to h is a linear combination of the sensitivities of
M(t) for t = T1, . . . , Tm, with

M(t) =
(

N∑
i=1

li1(τi ≤ t) − S	

)+
−

(
N∑

i=1

li1(τi ≤ t) − Su

)+
.

A change in τ1 that is sufficiently small to leave the number of defaults in [0, t]
unchanged does not change M(t). Therefore, the continuous part of the sensitivity
estimate is

∂M(t)

∂h
= ∂M(t)

∂τ1

∂τ1

∂h
= 0.

To affect M(t), a change in τ1 must cause τ1 to cross t . Moreover, if we have∑m
i=2 li1(τi ≤ t) ≤ S	 − l1 or

∑m
i=2 li1(τi ≤ t) ≥ Su, then M(t) = 0 or M(t) = Su,

accordingly, regardless of whether τ1 is before or after t . Let ht = τ−1
1 (t); then we

can write the jump terms of the pathwise estimator as

N+1∑
i=2

�Mτ(i)
τ ′

1(h(i))f1(τ(i);h|τ2, . . . , τN+1) = �Mtτ
′
1(ht )f1(t;h|τ2, . . . , τN+1),

where

�Mt = [
l1 + Lm

2 (t) − S	 − (
l1 + Lm

2 (t) − Su

)+ − (
Lm

2 (t) − S	

)+]
× 1

(
S	 − l1 < Lm

2 (t) < Su

)
,

and

Lm
2 (t) =

m∑
i=2

(
li1(τi ≤ t)

)
.

This term describes the case that the cumulative portfolio loss jumps into or out of the
tranche when τ1 crosses t . Combining both parts, we obtain the pathwise estimator
for the sensitivity of E(M(t)) as

−�Mtτ
′
1(ht )f1(t;h|τ2, . . . , τN+1).

The pathwise estimator for the tranche value E(V (τ1, . . . , τN)) is

−(1 + c)

m∑
i=1

D(Ti)�MTi
τ ′

1(hTi
)f1(Ti;h|τ2, . . . , τN+1)

+
m−1∑
i=1

D(Ti+1)�MTi
τ ′

1(hTi
)f1(Ti;h|τ2, . . . , τN+1).
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5.2.2 Numerical examples

We consider two CDOs, C1 and C2, with tranches 0%–3%, 3%–7%, 7%–10%, 10%–
15%, 15%–30%, and 30%–100%. Each CDO has a pool of N = 200 underlying
assets and a maturity of 5 years. The coupon rate of each tranche is 3% and is paid
quarterly. We use a risk-free rate of r = 5%. All Monte Carlo simulation results are
based on 106 replications.

CDO C1

CDO C1 is on a portfolio of 200 independent assets, which are divided into four
groups. The assets in group 1, 2, 3, and 4 have constant hazard rates of 0.5, 0.1, 0.12,
and 0.2 respectively, and have LGDs of 0.9, 0.6, 0.5 and 0.1.

CDO C2

The underlying portfolio of CDO C2 also contains 200 assets. The assets are divided
into four groups with constant hazard rate of 0.5, 0.1, 0.12, 0.2, and LGDs of 0.9,
0.6, 0.5, 0.1, respectively. They are correlated and the correlation matrix � has a
three-factor structure. The factor loading matrix for the four groups is given by

⎛
⎜⎜⎝

0.0815 −0.4105 −0.4589
−0.5187 −0.4044 −0.1367
0.0449 −0.4735 −0.6456
0.5795 0.5493 0.3349

⎞
⎟⎟⎠

We first estimate sensitivities of E(M(t)) for super-senior tranches (30%–100%)
at t = T1, . . . , Tm. The results are displayed in Figs. 3 and 4, which plot the estimated
delta and variance against coupon dates for CDOs C1 and C2. We compare finite
differences, pathwise estimates and likelihood ratio method estimates. In the right
panel, the dashed line shows the variance of the finite difference estimator. The dotted
line shows the variance of the likelihood ratio method estimator, and the solid line
shows the variance of the pathwise estimator.

Fig. 3 The estimated delta of M(t) (left panel) and its variance (right panel) of CDO C1
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Fig. 4 The estimated delta of M(t) (left panel) and its variance (right panel) of CDO C2

Table 1 Numerical results of CDO C1

The FD method The LR method The pathwise method

0%–3% 0.0025 (0.0002) −0.0212 (0.0182) 0.0024 (0.0361e−4)

3%–7% 0.0147 (0.0005) 0.0060 (0.0236) 0.0151 (0.0774e−4)

7%–10% 0.0189 (0.0006) 0.0265 (0.0170) 0.0188 (0.0987e−4)

10%–15% 0.0446 (0.0009) 0.0377 (0.0273) 0.0462 (0.1601e−4)

15%–30% 0.2390 (0.0022) 0.2365 (0.0688) 0.2385 (0.4787e−4)

30%–100% 0.3475 (0.0103) 0.3260 (0.0138) 0.3520 (0.5052e−4)

Table 2 Numerical results of CDO C2

The FD method The LR method The pathwise method

0%–3% 0.0069 (0.0003) −0.0046 (0.0221) 0.0072 (0.0081e−4)

3%–7% 0.0267 (0.0007) −0.0078 (0.0279) 0.0273 (0.0276e−4)

7%–10% 0.0338 (0.00011) 0.0264 (0.0200) 0.0317 (0.0436e−4)

10%–15% 0.0763 (0.0022) 0.0536 (0.0314) 0.0759 (0.1132e−4)

15%–30% 0.4044 (0.0087) 0.3309 (0.0735) 0.3893 (0.3343e−4)

30%–100% 0.1439 (0.0060) 0.0972 (0.0331) 0.1415 (0.1437e−4)

Tables 1 and 2 show the performance of the three methods in estimating the
tranche sensitivities. We give the estimated value and standard error for each delta
estimate.

Figures 3 and 4 and Tables 1 and 2 show that the pathwise method produces
much more precise estimates than the finite difference method and the likelihood
ratio method. In fact, for the case of dependent assets, the likelihood ratio method is
less precise than the finite difference method. The pathwise method takes about 2/3
of the computing time required for the finite difference method in the independent as-
sets case, and about 2.5 times as much as in the dependent assets case. The likelihood
ratio method takes roughly 3/5 of the computing time of the finite difference method
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in both cases. Considering both variance reduction and computing time, the pathwise
method is much more effective than the other two methods. We should stress that the
pathwise method would not be applicable to this problem without the inclusion of the
jump terms.

6 Applying importance sampling methods

In calculating price sensitivities for credit derivatives, we encounter a difficulty that
is also present in the estimation of the prices themselves: in baskets of high-quality
credits, defaults are rare, making ordinary Monte Carlo inefficient.

Joshi and Kainth [14] and Chen and Glasserman [5] developed importance sam-
pling techniques for basket default swaps that force at least n defaults to occur on
every path. They accomplish this by sequentially increasing the default probabilities
for the names in the basket. The methods differ in how they accomplish this.

Forcing n defaults means that the original probability measure is not absolutely
continuous with respect to the new (importance sampling) probability. While this
could lead to biased estimates in general, it introduces no bias in the pricing of nth-
to-default swaps because V = 0 in the event that fewer than n defaults occur before
time T .

Combining this approach to importance sampling with pathwise sensitivity esti-
mation, however, requires care; indeed, a straightforward combination produces in-
correct results, a phenomenon apparently overlooked in Joshi and Kainth [14]. The
issue may be understood as follows. One of the jump terms in the pathwise method
arises from the possibility that a small change in h may cause the number of defaults
to increase from n − 1 to n. An importance sampling technique that forces n defaults
to occur on every path fails to capture this term. We correct this by modifying the
importance sampling scheme to force at least n − 1 defaults, rather than just n or
more defaults.

We refer to the importance sampling method of Joshi and Kainth [14] as the JK
method. Chen and Glasserman [5] call their version the Conditional Probability (CP)
method. The JK method uses somewhat arbitrary default probabilities for importance
sampling; in the CP method, the default probability for each name is set equal to
its conditional probability of default, given that at least n names default. Chen and
Glasserman [5] show that these importance sampling probabilities are, in a sense,
optimal and guarantee variance reduction.

6.1 Importance sampling in the likelihood ratio method

Recall the likelihood ratio method estimator of delta in (3.1). Also,
V (τ1, . . . , τN) = 0 when τ > T , and ∂ lnf (τ1, . . . , τN )/∂h exists almost everywhere
in H, almost surely. Thus

V (τ1, . . . , τN)
∂ lnf (τ1, . . . , τN )

∂h
= 0 when τ > T .

Therefore, the CP method (and the JK method) can be applied with the likelihood ra-
tio method estimator by taking V (τ1, . . . , τN)∂ lnf (τ1, . . . , τN)/∂h as the new “pay-
off.”
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6.2 Importance sampling in the pathwise method

The pathwise estimator in (5.1) is zero whenever fewer than n − 1 of τ2, . . . , τN are
less than T . However, we cannot ignore the event that exactly n − 1 of these defaults
occur before T , as we could in pricing the swap; doing so would fail to capture the
second term and the last term in (5.1). Thus, we apply the CP method forcing n − 1
defaults on every path, rather than n defaults on every path.

6.3 Numerical examples

We compare the likelihood ratio method and the pathwise method with and with-
out importance sampling numerically using the test cases Swaps A1 and A2, using
2 × 105 replications.

Figure 5 illustrates the error that results from a straightforward combination of the
JK method with the pathwise estimator. In that figure, the solid line shows the correct
value (produced by the pathwise estimator), the dashed line with circles is produced
by the pathwise method combined with a direct application of the JK method, and the
solid line with circles shows the sum of the left out value and the (biased) estimates
produced by a direct application of the JK method with the pathwise estimator.

Figures 6 and 7 show substantial variance reduction achieved by applying the im-
portance sampling method proposed by Chen and Glasserman [5]. Both the likelihood
ratio method estimator and the pathwise estimator benefit substantially from the use
of importance sampling; the pathwise exhibits lower variance than the likelihood ratio
method estimator, both with and without importance sampling.

7 Concluding remarks

In this article, we have derived and analyzed estimators of delta—the sensitivity of
the price with respect to the hazard rate of an underlying asset—for a general class of
portfolio credit derivatives. These estimators build on work of Joshi and Kainth [14].

Fig. 5 The direct application of the JK method in the pathwise method provides incorrect estimates (left
panel: Swap A1, right panel: Swap A2)
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Fig. 6 The estimated delta (left panel) and its variance (right panel) of Swap A1

Fig. 7 The estimated delta (left panel) and its variance (right panel) of Swap A2

We have provided broadly applicable conditions for the application of likelihood ratio
method and pathwise estimators. An important feature of the pathwise estimators
derived and analyzed here is that they use conditional expectations to smooth the
effect of changes in the order of defaults.

Combining the estimators with importance sampling produces substantial vari-
ance reduction. However, the combination of the pathwise estimator with importance
sampling requires care: We show that in the case of an nth-to-default swap forcing
n defaults on every path—which is effective in pricing—introduces an error in delta
estimates. This error is eliminated by forcing just n − 1 defaults instead. This adjust-
ment is closely connected to the smoothing of jumps.

In addition to basket default swaps and CDOs, the methods can be applied to more
complicated products, including virtually any portfolio credit derivative for which
the payoff V is a function of the underlying default times. In our examples, we have
focused on sensitivities of individual contracts; however, the methods can be applied
easily to sensitivities calculated at the book level, provided the various deals in the
book are valued and hedged in a consistent model of the joint distribution of default
times. In deriving and implementing sensitivity estimators, the only distinction is that



Sensitivity estimates for credit derivatives

V should now be interpreted as the payoff of a portfolio of contracts, rather than the
payoff of a single contract.
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Appendix A: Proofs

A.1 Proof of Theorem 3.1

A fairly generic result on the unbiasedness of the likelihood ratio method is given
in Asmussen and Glynn [2], Proposition 7.3.5. However, in specific cases, one still
needs to verify conditions for interchanging derivative and expectation.

The delta, if it exists, is given by

∂E(V )

∂h
= lim

ε→0

E(V (τ1(h + ε), . . . , τN)) − E(V (τ1(h − ε), . . . , τN))

2ε

= lim
ε→0

1

2ε

∫ ∞

0
· · ·

∫ ∞

0

[
V (t1, . . . , tN )

× (
f (t1, . . . , tN ;h + ε) − f (t1, . . . , tN ;h − ε)

)]
dt1 · · ·dtN .

The last equality holds because the payoff function V does not depend on h explicitly.
Because V is bounded and

∣∣(f (τ1, . . . , τN ;h + ε) − f (τ1, . . . , τN ;h − ε)
)/

(2ε)
∣∣

is bounded by an integrable function, we can apply the dominated convergence theo-
rem to interchange the integral and the limit as ε → 0 and conclude that ∂E(V )/∂h

indeed exists and is given by

∂E(V )

∂h
= lim

ε→0

E(V (τ1(h + ε), . . . , τN )) − E(V (τ1(h − ε), . . . , τN))

2ε

=
∫ ∞

0
· · ·

∫ ∞

0
lim
ε→0

[
(f (t1, . . . , tN ;h + ε) − f (t1, . . . , tN ;h − ε))

2ε

× V (t1, . . . , tN )

]
dt1 · · ·dtN

=
∫ ∞

0
· · ·

∫ ∞

0
V (t1, . . . , tN )

∂f (t1, . . . , tN )

∂h
dt1 · · ·dtN .

We can obtain an unbiased estimator in the likelihood ratio method by observing that
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∂E(V )

∂h
=

∫ ∞

0
· · ·

∫ ∞

0
V (t1, . . . , tN )

∂f (t1, . . . , tN )

∂h
dt1 · · ·dtN

=
∫ ∞

0
· · ·

∫ ∞

0
V (t1, . . . , tN )

∂ lnf (t1, . . . , tN )

∂h
f (t1, . . . , tN ) dt1 · · ·dtN

= E
(

V (τ1, . . . , τN)
∂ lnf (τ1, . . . , τN)

∂h

)
.

A.2 Proof of Proposition 4.1

(a) We have shown in Appendix A.1 that ∂E(V )/∂h exists. Similarly, by conditions
(A1) and (A5), we can apply the dominated convergence theorem to interchange ex-
pectation and the limit as ε → 0 to conclude that

∂E(V |τ2, . . . , τN )

∂h
=

∫ ∞

0
V (t1, τ2, . . . , τN)

∂f1(t1|τ2, . . . , τN )

∂h
dt1.

Therefore, ∂E(V )/∂h and ∂E(V |τ2, . . . , τN)/∂h exist.
(b) We have

∂E(V )

∂h
=

∫ ∞

0
· · ·

∫ ∞

0
V (t1, . . . , tN )

∂f (t1, . . . , tN )

∂h
dt1 · · ·dtN

=
∫ ∞

0
· · ·

∫ ∞

0
V (t1, . . . , tN )

∂(f1(t1|t2, . . . , tN )f (t2, . . . , tN ))

∂h
dt1 · · ·dtN

=
∫ ∞

0
· · ·

∫ ∞

0
V (t1, . . . , tN )

∂f1(t1|t2, . . . , tN )

∂h
f (t2, . . . , tN ) dt1 · · ·dtN

=
∫ ∞

0
· · ·

∫ ∞

0

∂E(V |t2, . . . , tN )

∂h
f (t2, . . . , tN ) dt2 · · ·dtN

= E
(

∂E(V |τ2, . . . , τN )

∂h

)
,

where the third equality holds because f (t2, . . . , tN ) is independent of h.

A.3 Proof of Lemma 4.2

(a) This part is a direct application of parts (b) and (c).
(b) With the assumption of the almost sure differentiability of τ1 and the mean-

value theorem, there exist 0 ≤ ε1, ε2 ≤ ε such that

τ
(+ε)
1 = τ1(h+ ε) = τ1(h)+ ετ ′

1(h + ε1), τ
(−ε)
1 = τ1(h− ε) = τ1 − ετ ′

1(h − ε2).

Thus, ∣∣τ (+ε)
1 − τ

(−ε)
1

∣∣ = ε
∣∣τ ′

1(h + ε1) + τ ′
1(h − ε2)

∣∣.
By condition (A8), there is a Kτ such that |τ ′

1(h)| ≤ Kτ , and then

∣∣τ (+ε)
1 − τ

(−ε)
1

∣∣ = ε
∣∣τ ′

1(h + ε1) + τ ′
1(h − ε2)

∣∣ ≤ 2εKτ .
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Suppose that to improve look 	 is the length of the smallest of the intervals Ik , i.e.,
	 = mink=2,...,N+1(τ(k) − τ(k−1)). Then,

P
(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij , j > i + 1

∣∣τ2, . . . , τN

)
= P

(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij , j > i + 1,

∣∣τ (+ε)
1 − τ

(−ε)
1

∣∣ ≥ 	
∣∣τ2, . . . , τN

)
≤ P

(∣∣τ (+ε)
1 − τ

(−ε)
1

∣∣ ≥ 	
∣∣τ2, . . . , τN

)

≤ P(2εKτ ≥ 	|τ2, . . . , τN) = P
(

Kτ ≥ 	

2ε

∣∣∣∣τ2, . . . , τN

)
.

Because E(Kτ ) < ∞, then as ε ↓ 0, we have, almost surely,

	

2ε
P
(

Kτ ≥ 	

2ε

∣∣∣∣τ2, . . . , τN

)
→ 0,

or

1

ε
P
(

Kτ ≥ 	

2ε

∣∣∣∣τ2, . . . , τN

)
→ 0.

Along with P(τ
(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij , j > i + 1|τ2, . . . , τN) ≥ 0, we conclude

P(τ
(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ij , j > i + 1|τ2, . . . , τN)/ε → 0, when ε ↓ 0.

(c) With the assumption of the continuity of τ1, τ
(±ε)
1 → τ1. Since τ

(+ε)
1 ∈ Ii and

τ
(−ε)
1 ∈ Ii+1 for all ε > 0, then τ1 = τ(i) with probability 1. Suppose h(i) is the value

that gives τ(h(i)) = τ(i), then

lim
ε↓0

1

2ε
P
(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ii+1

∣∣τ2, . . . , τN

)

= lim
ε↓0

1

2ε
P
(
τ

(+ε)
1 ∈ Ii, τ

(−ε)
1 ∈ Ii+1, τ

(+ε)
1 ≤ τ(i) ≤ τ

(−ε)
1

∣∣τ2, . . . , τN

)

= −τ ′
1(h(i))f1(τ(i)|τ2, . . . , τN ).

A.4 Verifying the conditions

In this section, we verify that the assumptions made for our main results hold for
basket default swaps and CDOs in the Gaussian copula model.

(A1): For any given t1, . . . , tN and tN+1 = T let t(1) ≤ · · · ≤ t(N+1) denote their
sorted values. Then in the case of basket default swaps, the discounted payoff function
V can be expressed as a function of t(n):

V (t1, . . . , tN )

=
{∑m

i=j+1 siD(Ti) + (1 − R)D(t(n)) − sj+1D(t(n))
t(n)−Tj

Tj+1−Tj
, Tj < t(n) ≤ Tj+1;

0, t(n) > T .

This V has no explicit dependence on h.
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If t(n) ≥ T , V = 0; otherwise, V is continuous with respect to t(n) ∈ (0, T ). Also
note that

lim
t(n)→0

|V | = (1 − R) +
m∑

i=1

siD(Ti) < ∞,

lim
t(n)→T

|V | = (1 − R)D(T ) < ∞.

Therefore, V (t1, . . . , tN ) is bounded.
In the case of CDOs, the discounted payoff function V can be expressed as a linear

combination of M(t; t1, . . . , tN ), where

M(t; t1, . . . , tN ) =
(

N∑
i=1

li1(ti ≤ t) − S	

)+
−

(
N∑

i=1

li1(ti ≤ t) − Su

)+
,

for t = T1, . . . , Tm. Since 0 ≤ M(t; t1, . . . , tN ) ≤ Su − S	, V is then bounded.
(A2): We first consider the case of basket default swaps. Since ti < t1 and

t1 + �t < tj , t1 + �t is in the same position as t1 when these times are sorted in
the ascending order t(1) ≤ · · · ≤ t(N+1). If t1 �= t(n), the change in t1 does not affect
the value of V , i.e.,

V (t1, t2, . . . , tN ) = V (t1 + �t, t2, . . . , tN ),

and V is obviously Lipschitz with respect to t1. If t1 = t(n), suppose
Tp ≤ t1 ≤ Tp+1, Tk ≤ t1 + �t ≤ Tk+1; then,

V (t1, t2, . . . , tN ) =
m∑

i=p+1

siD(Ti) + (1 − R)D(t1) − sp+1D(t1)
t1 − Tp

Tp+1 − Tp

,

V (t1 + �t, t2, . . . , tN )

=
m∑

i=k+1

siD(Ti) + (1 − R)D(t1 + �t) − sk+1D(t1 + �t1)
t1 + �t − Tk

Tk+1 − Tk

.

Because D(t) is assumed Lipschitz, there exists a constant C1 such that
|D(t + �t) − D(t)| ≤ C1|�t |. If p = k,

∣∣V (t1 + �t, t2, . . . , tN ) − V (t1, t2, . . . , tN )
∣∣

=
∣∣∣∣− sp+1

Tp+1 − Tp

(
(t1 + �t − Tp)D(t1 + �t) − (t1 − Tp)D(t1)

)

+ (1 − R)
(
D(t1 + �t) − D(t1)

)∣∣∣∣
≤ sp+1

Tp+1 − Tp

∣∣(t1 + �t − Tp)D(t1 + �t) − (t1 − Tp)D(t1)
∣∣

+ (1 − R)
∣∣D(t1 + �t) − D(t1)

∣∣
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≤
(

sp+1

Tp+1 − Tp

(t1 − Tp) + (1 − R)

)∣∣D(t1 + �t) − D(t1)
∣∣

+ sp+1

Tp+1 − Tp

|�t |D(t1 + �t)

≤
(

(sp+1 + 1 − R)C1 + sp+1D(Tp)

Tp+1 − Tp

)
|�t |.

If |k − p| = 1, without loss of generality, suppose k = p + 1, i.e., �t > 0 and
Tp ≤ t1 ≤ Tp+1(= Tk) ≤ t1 + �t ≤ Tk+1. Then

∣∣V (t1 + �t, t2, . . . , tN ) − V (t1, t2, . . . , tN )
∣∣

=
∣∣∣∣− t1 + �t − Tk

Tk+1 − Tk

sk+1D(t1 + �t) + t1 − Tp

Tk − Tp

skD(t1) − skD(Tk)

+ (1 − R)
(
D(t1 + �t) − D(t1)

)∣∣∣∣
≤ sk+1

Tk+1 − Tk

|t1 + �t − Tk|D(t1 + �t) + (1 − R)
∣∣D(t1 + �t) − D(t1)

∣∣

+ sk

Tk − Tp

∣∣(D(t1) − D(Tk)
)
(t1 − Tp) − D(Tk)(Tk − t1)

∣∣

≤ sk+1D(Tk)

Tk+1 − Tk

|�t | + sk
∣∣D(t1) − D(Tk)

∣∣ + D(Tk)|�t |

+ (1 − R)
∣∣D(t1 + �t) − D(t1)

∣∣
≤

((
sk+1

Tk+1 − Tk

+ 1

)
D(Tk) + (sk + 1 − R)C1

)
|�t |.

If |k − p| > 1, |�t | ≥ |Tk − Tp|. Then, recalling that V is bounded,

∣∣V (t1 + �t, t2, . . . , tN ) − V (t1, t2, . . . , tN )
∣∣ ≤ |maxV − minV |

≤ |maxV − minV |
|Tk − Tp| |�t |.

Thus, V is Lipschitz in the interval (ti , tj ).
For CDOs, it is sufficient to prove that M(t; t1, . . . , tN ) is Lipschitz with respect

to t1. Since a small change �t in t1 does not change the order of t1, . . . , tN+1, it does
not affect the value of M(t; t1, . . . , tN ), i.e.,

M(t; t1 + �t, . . . , tN ) − M(t; t1, . . . , tN ) = 0.

The Lipschitz continuity follows directly.
(A3): As in the cases of basket default swaps and CDOs, this is a condition on

how the intensity λ is parameterized by h.
(A4): In the Gaussian copula model, τ1, . . . , τN have joint density
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f (t1, . . . , tN ) = ∂C(u1, . . . , uN ;�)

∂u1 . . . ∂uN

∂u1

∂t1
· · · ∂uN

∂tN
= c(u1, . . . , uN ;�)

N∏
i=1

fi(ti).

Suppose �̄ is the correlation matrix of τ2, . . . , τN in the Gaussian copula model;
the joint density function of τ2, . . . , τN is then

f (t2, . . . , tN ) = ∂C(u2, . . . , uN ; �̄)

∂u2 . . . ∂uN

∂u2

∂t2
· · · ∂uN

∂tN
= c(u2, . . . , uN ; �̄)

N∏
i=2

fi(ti),

with

c(u2, . . . , uN ; �̄) = 1

|�̄|1/2
exp

[
−1

2

(
�−1(ū)

)
(
�̄

−1 − I
)
�−1(ū)

]
,

where ū is an (N −1)×1 vector with ūi−1 = ui = 1−e− ∫ ti
0 λi(s) ds , for i = 2, . . . ,N .

Then we have

f1(t1|τ2, . . . , τN ) = f (t1, τ2, . . . , τN )

f (τ2, . . . , τN )

= |�̄|1/2

|�|1/2
exp

{
− (�−1)11 − 1

2

(
�−1(u1)

)2

−
N∑

i=2

(
�−1)

1j
�−1(uj )�

−1(u1)

}
λ1e

− ∫ t1
0 λ1(s,h) ds,

where u1 = 1 − e− ∫ t1
0 λ1(s,h) ds and ui = 1 − e− ∫ τi

0 λi(s) ds , for i > 1.
(A5): With the assumption of the existence of ∂λ1/∂h, in the Gaussian copula

model,

∂f (t1, t2, . . . , tN )

∂h

= 1

|�|1/2
exp

[
−1

2

(
�−1(u)

)
(
�−1 − I

)
�−1(u)

]

×
(

−√
2π

N∑
j=1

(
�−1 − I

)
1j

�−1(uj )e
�−1(u1)

2/2(1 − u1)t1 + 1

λ1
− t1

)

× ∂λ1

∂h

N∏
i=1

fi(ti).

In Lemma A.1 in Appendix A.5, we show that for ti > 0, i = 1, . . . ,N , and h ∈H,

– exp[− 1
2 (�−1(u))
(�−1 − I)�−1(u)] is bounded.

– �−1(u1)e
�−1(u1)

2/2(1 − u1) and e�−1(u1)
2/2(1 − u1) are bounded.
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Along with the assumption that ∂λ1/∂h is bounded, there exist M1 and M2 such
that almost everywhere in H,

∣∣∣∣∂f (t1, t2, . . . , tN )

∂h

∣∣∣∣ ≤
(

M1t1 + M2

λ1

) N∏
i=1

fi(ti).

Define the positive function

g(t1, . . . , tN ) =
(

M1t1 + M2

λ1

) N∏
i=1

fi(ti).

Then∫ ∞

0
· · ·

∫ ∞

0
g(t1, t2, . . . , tN ) dt1 · · ·dtN

= M1

∫ ∞

0
· · ·

∫ ∞

0
t1

N∏
i=1

fi(ti) dt1 · · ·dtN +
∫ ∞

0
· · ·

∫ ∞

0

M2

λ1

N∏
i=1

fi(ti) dt1 · · ·dtN

≤ M1E(τ1) + M2

inft,h λ1(t, h)
< ∞.

(A6): Because

f1(t1|τ2, . . . , τN) = f (t1, τ2, . . . , τN )

f (τ2, . . . , τN )
,

∂f (t1, τ2, . . . , τN)/∂h exists, and f (τ2, . . . , τN) does not depend on h,

∂f1(t1|τ2, . . . , τN)

∂h
= ∂f (t1, τ2, . . . , τN)

∂h

1

f (τ2, . . . , τN)
.

Define

g1(t1|τ1, . . . , τN) = g(t1, τ2, . . . , τN)

f (τ2, . . . , τN )
.

Then ∣∣∣∣∂f1(t1|τ2, . . . , τN)

∂h

∣∣∣∣ ≤ g1(t1|τ1, . . . , τN ),

and ∫ ∞

0
g1(t1|τ1, . . . , τN) dt1

=
∏N

i=2 fi(τi)

f (τ2, . . . , τN)

∫ ∞

0

(
M1t1 + M2

λ1

)
f1(t1) dt1

≤
∏N

i=2 fi(τi)

f (τ2, . . . , τN )

(
M1E(τ1) + M2

inft,h λ1(t, h)

)
< ∞, a.s.
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(A7): To realize the required construction let U be uniformly distributed in
(0,1). Take the inverse of F1(t) and set τ1(h) = F−1

1 (U ;h); then τ1(h) has density
f1(τ1;h). Since λ1 is a strictly increasing differentiable function of h, λ1(t, h) > 0,

and F1(τ1;h) = 1 − e− ∫ τ1
0 λ1(s,h) ds , it is easy to see that τ1(h) = F−1(U ;h) is a.s. a

strictly decreasing differentiable function of h.
(A8): We have shown that τ1(h) is a strictly decreasing function. To verify the

Lipschitz property of τ1(h), it is sufficient to show for a sufficiently small ε > 0 that
there exists Kτ such that E(Kτ ) < ∞ and, a.s.,

τ1(U ;h) − τ1(U ;h + ε) ≤ εKτ .

For any given U , let τ
(0)
1 = τ1(U ;h) and τ

(+)
1 = τ1(U ;h + ε). Since

U = F1(τ
(0)
1 ;h) = F1(τ

(+)
1 ;h + ε),

∫ τ
(0)
1

0
λ1(s, h) ds =

∫ τ
(+)
1

0
λ1(s, h + ε) ds,

so
∫ τ

(0)
1

τ
(+)
1

λ1(s, h) ds =
∫ τ

(+)
1

0

(
λ1(s, h + ε) − λ1(s, h)

)
ds.

Let ν = inft,h λ1(t, h), and τ ∗
1 = τ1(U ;h∗), where h∗ is the lower bound of H as

defined before. Then

τ
(0)
1 − τ

(+)
1 ≤ 1

ν

∫ τ
(+)
1

0

(
λ1(s, h + ε) − λ1(s, h)

)
ds

≤ 1

ν

∫ τ∗
1

0

(
λ1(s, h + ε) − λ1(s, h)

)
ds.

Because ∂λ1(t, h)/∂h exists and is bounded for all h and t , there exists a constant M

such that

λ1(t, h + ε) − λ1(t, h) ≤ Mε.

Therefore,

τ1(U ;h) − τ1(U ;h + ε) = τ
(0)
1 − τ

(+)
1 ≤ Mετ ∗

1 /ν,

and

E(Mετ ∗
1 /ν) < ∞.

A.5 Lemma A.1 and its proof

Lemma A.1 Suppose � is an N ×N matrix and u is an N ×1 vector. If � is positive
semidefinite with diagonal elements equal to 1 and 0 < u1 < 1,
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1. exp[− 1
2 (�−1(u))
(�−1 − I)�−1(u)] is bounded.

2. �−1(u1)e
�−1(u1)

2/2(1 − u1) and e�−1(u1)
2/2(1 − u1) are bounded.

Proof 1. It is enough to show that (�−1 − I) is positive semidefinite. Since � is
positive semidefinite with diagonal elements equal to 1, its eigenvalues are all non-
negative and less than or equal to 1. This means the eigenvalues of (�−1 − I) are then
nonnegative. Therefore (�−1 − I) is positive semidefinite, and

exp

[
−1

2

(
�−1(u)

)
(
�−1 − I

)
�−1(u)

]
≤ 1.

2. Let y = �−1(u1). We have

�−1(u1)(1 − u1)e
�−1(u1)

2 = (
1 − �(y)

)
ye

y2

2 (1 − u1)e
�−1(u1)

2

= (
1 − �(y)

)
e

y2

2 .

When y → ±∞, i.e., u → 0 or 1,

(
1 − �(y)

)
ye

y2

2 ∼ φ(y)

y
yey2/2 = 1√

2π
, where φ(y) = 1√

2π
e−y2/2,

hence

lim
y→±∞

(
1 − �(y)

)
e

y2

2 = 0. �
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