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We develop methods for estimating price sensitivities by simulation for Lévy-
driven models. The methods combine pathwise derivatives and likelihood ratio
method estimators with alternative approaches to approximating and simulating
Lévy processes. We develop estimators based on exact sampling of increments,
time-change representations of Lévy processes, saddlepoint approximations to
the score functions of the increments, compound Poisson approximations and
compound Poisson approximations with Brownian approximations to small jumps.
We discuss the relative merits of these various alternatives, both in theory and in
practice, and we illustrate their use through examples.

1 INTRODUCTION

Jump processes have been widely proposed and analyzed as models of asset prices,
exchange rates, interest rates, commodities and other financial variables. Compared
with pure-diffusion processes, models with jumps are often found to provide a bet-
ter fit to option prices, to return distributions (producing distributions with higher
kurtosis) and to time-series properties. Lévy processes and, more generally, models
driven by Lévy processes provide the natural framework for building continuous-time
models with jumps (see Cont and Tankov (2004) and Schoutens (2003) for extensive
overviews of Lévy-driven models in finance).

Option prices in Lévy models can sometimes be calculated through numerical
transform inversion, and sometimes through the numerical solution of partial integro-
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differential equations; but some combinations of payouts and models require Monte
Carlo simulation. In applying Monte Carlo simulation, generating paths of the under-
lying Lévy process can present a challenge, particularly for infinite activity processes,
which jump infinitely many times in a finite time interval. Various exact and approxi-
mate methods have been proposed for simulating specific cases and broad categories
of Lévy processes.

This paper focuses on the problem of estimating price sensitivities, that is, Greeks,
in simulating Lévy-driven models. Price sensitivities are fundamental to hedging
option positions against changes in underlying assets. In a model with jumps, exact
replication of an option through delta hedging is typically impossible in theory as
well as in practice; nevertheless, Greeks remain important. Various criteria have been
proposed to gauge hedge effectiveness and define optimal hedging in this context; the
optimal hedge is often a combination of the traditional delta and a separate jump term
(see Chapter 10 of Cont and Tankov (2004)). Sensitivities to model parameters provide
a mechanism for hedging model risk and changes in parameter values unrelated to
changes in underlying prices; these types of sensitivities are as relevant to jump models
as they are to diffusion models. Price sensitivities are also potentially useful in model
calibration, which involves minimizing over model parameters to bring model prices
as close as possible to market prices.

There are two broad approaches to estimating price sensitivities by Monte Carlo:
methods that differentiate paths and methods that differentiate probabilities. In the
first category, the pathwise method estimates derivatives by calculating the derivative
of an option payout with respect to the underlying asset, and multiplying this by
the derivative of the underlying path with respect to the parameter of interest. In
the second category, the likelihood ratio method (LRM) works by differentiating the
density of the underlying model. Depending on the application, each method has
potential advantages (see Chapter 7 of Glasserman (2004) for general background on
these methods).

In this paper we develop pathwise and LRM estimators for Lévy-driven models.
Although these general approaches to estimating Greeks by Monte Carlo are well
established, the Lévy context introduces challenges and solutions that merit special
consideration.Any method for approximate simulation of Lévy processes gives rise to
methods for approximate simulation of Greeks. However, derivatives from an approx-
imation are not well defined until we specify how the approximation changes with
the parameters of interest. This flexibility can have a significant impact on the quality
of the sensitivity estimates. We will also see that the choice of approximation method
is often more important for the quality of sensitivity estimates than for the prices
themselves.

We summarize the methods considered in this paper as follows.

The Journal of Computational Finance Volume 14/Number 2, Winter 2010/11



Estimating Greeks in simulating Lévy-driven models 5

� Section 3 considers cases in which exact (unbiased) derivative estimates are
available. This includes delta estimates using the pathwise method, and LRM
estimators when the density of the Lévy increments is known. Many Lévy
models of interest can be represented as time-changed Brownian motions in
which the time change is given by an increasing Lévy process; we show how
this representation leads to pathwise and LRM estimators.

� Section 4 derives LRM estimators based on saddlepoint approximations. Often,
the densities of Lévy increments needed for LRM are known only through their
characteristic functions; saddlepoint methods provide a way of approximating
the necessary densities and their derivatives from the characteristic function.

� Section 5 derives pathwise and LRM estimators from compound Poisson
approximations to infinite activity Lévy processes. A compound Poisson
approximation truncates the arrival of jumps to a finite rate and is thus easy
to simulate; a second-order Brownian approximation to the truncated small
jumps can reduce the truncation error (Asmussen and Rosinski (2001); Cont
and Tankov (2004); Signahl (2003)). In its most straightforward form, the path-
wise method is inapplicable with these approximations because of discontinu-
ities in the Poisson process, but we show how to circumvent this difficulty to
obtain consistent estimators. We will see that different truncation rules (and
different correction terms) lead to alternative estimators. For both pathwise
and LRM estimators, second-order corrections to the truncation error dramat-
ically improve the accuracy (reduce the bias) of sensitivity estimates; indeed,
in our numerical examples, these corrections are even more important for the
sensitivity estimates than for the price estimates.

To provide the necessary background for these techniques, Section 2 reviews some
general properties of Lévy processes and some specific examples. Section 6 summa-
rizes our observations on the methods we study.

2 BACKGROUND ON LÉVY PROCESSES AND DERIVATIVE
ESTIMATION

2.1 Lévy processes

A stochastic process X , X.0/ D 0, is a Lévy process if it has stationary, independent
increments and is continuous in probability; the last condition means that the process
has no fixed jump times. Loosely speaking, a Lévy process is the sum of a deterministic
drift, a Brownian motion and jump terms. This is made precise through the Lévy–Itô
decomposition (see, for example, Sato (1999)).
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If the total arrival rate of jumps in X is finite, X can be decomposed as:

X.t/ D bt C
p
AW.t/C

N.t/X
kD1

Yk (1)

whereA and b are constants, Yk are independent and identically distributed (iid) jump
sizes,N is a Poisson process,W is a standard Brownian motion, andN ,W and fYkg
are independent of each other. In the generalization to an infinite arrival rate of jumps,
the jumps can no longer be described through a compound Poisson process and must
instead be described through a Lévy measure.

We will suppose that the Lévy measure has a density q on R. The integral of q over
some set C � R may be interpreted as the arrival rate of jumps of size in C . If the
integral of q over all of R is some finite value m, then the jump component of X is
compound Poisson with arrival rate m, and the jump sizes have probability density
q.�/=m. But our focus is on infinite activity processes for which the total mass of q
is infinite. The Lévy density is required to satisfy:Z

.y2 ^ 1/q.y/ dy <1

If: Z
jyjq.y/ dy <1

then X has finite variation; the case of infinite variation is called the compensated
case. Let:

Q.x/ D

Z
y6x

q.y/ dy and NQ.x/ D

Z
y>x

q.y/ dy

We assume throughout that q > 0 on all R, and this condition makes Q strictly
increasing.

A Lévy process X is characterized by the transform:

˚t .s/ D EŒexp.sX.t//�

D exp

�
t

�
bs C 1

2
As2 C

Z
R

.esy � 1 � sy1jyj61/q.y/ dy

��
(2)

with b and A interpreted as in (1) and q the Lévy density. (The integrand in the
exponent is truncated to cover the compensated case; truncation is unnecessary if X
has finite variation.) For some processes,˚t .s/ is infinite unless s is purely imaginary,
but we will assume throughout that the region of convergence (see Widder (1941)) of
˚t .s/ contains an interval .�s�; sC/, where s� > 0 and sC > 0. We let˚.s/ D ˚1.s/
and then ˚t .s/ D .˚.s//t . We say X has the Lévy triplet .b; A; q/. We focus on the
case A D 0 in which X has no Brownian component.
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2.2 Examples

We now turn to some examples. A standard construction of an asset price process S
sets:

St D S0 exp.at CX.t// (3)

in the same way that geometric Brownian motion is constructed from ordinary Brown-
ian motion. In (3), the constant a is chosen to make the discounted expectation of St
equal to S0, ie, EŒe�rtSt � D S0, where r is the risk-free interest rate.

Example 2.1 (Variance gamma model) The variance gamma (VG) model (see
Madan et al (1998)) uses (3) withX the VG process, which can be defined by setting:

X.t/ D X.t I �; �; �/ D �� .t I 1; �/C �W.� .t I 1; �// (4)

whereW is a standard Brownian motion and� .t I 1; �/ is a gamma process with mean
rate 1 and variance rate �. The gamma process is an increasing Lévy process whose
increments are gamma distributed; in particular, � .t I 1; �/ has a gamma distribution
with shape parameter t=� and scale parameter �. The VG process has finite variation.

Example 2.2 (Normal inverse Gaussian model) The normal inverse Gaussian
(NIG) model (Barndorff-Nielsen (1998)) uses (3) with X the NIG process, which
can be defined by setting:

X.t/ D X.t I˛; ˇ; �; ı/ D �t C ˇIG.t I ı; �/CW.IG.t I ı; �// (5)

where IG.t I ı; �/ is an inverse Gaussian process, an increasing Lévy process
whose increments have inverse Gaussian distributions with parameters ı and � and
� D

p
˛2 � ˇ2. The NIG process belongs to the compensated case having infinite

variation.

Example 2.3 (CGMY model) This is similar to the previous two examples, but
withX now taken to be the CGMY process, defined in Carr et al (2002). The CGMY
process has finite variation for 0 < Y < 1 and infinite variation for 1 6 Y < 2.

Example 2.4 (Ornstein–Uhlenbeck processes) The specification in (3) is a standard
way to construct asset price processes from Lévy processes, but it is by no means the
only construction.A Lévy-driven Ornstein–Uhlenbeck processY is defined by setting:

dY.t/ D ��Y.t/ dt C dX.t/ (6)

with X a Lévy process. The resulting process Y can then be used to model volatility,
for example.
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In simulatingY , we may apply an Euler approximation to discretize the evolutionY
with a step size 	t D T=m. This gives the approximation:

YT D

mX
kD1

.1 � �	t/k�1X�t;k (7)

where X�t;k are iid and have the same distribution as X.	t/.

2.3 Derivative estimation

To discuss the problem of estimating price sensitivities, we first need to formulate
the pricing problem. We let V denote the (discounted) payout of some derivative
security. The payout is a function of .St1 ; : : : ; Stm/, the level of an underlying
asset S at fixed dates t1 < � � � < tm, and we sometimes write V D V.S/ D

V.St1 ; : : : ; Stm/, depending on context. We let 	1 D t1 and 	i D ti � ti�1,
i D 2; : : : ; m, and we suppose that S is a function of the independent increments
.X.t1/; X.t2/ � X.t1/; : : : ; X.tm/ � X.tm�1//; each X.ti / � X.ti�1/ has the same
distribution as X.	i /. In a slight abuse of notation, we will write .X1; : : : ; Xm/ for
a vector of independent random variables in which Xi has the distribution of X.	i /.
In estimating EŒV.S/�, we simulate .X1; : : : ; Xm/, map these to S , and then evalu-
ate V.S/.

We use � to denote a generic parameter with respect to which we want to estimate
sensitivities. The parameter � could be S0 in (3) or any of the parameters appearing
in the examples above. More generally, � may be a parameter of q and b, in which
case we write q� and b� to stress this dependence. A dot over a variable, as in Pb�
and Pq� .x/, indicates a derivative with respect to the parameter; a prime indicates a
derivative with respect to another variable, such as the argument of a density or a
payout function. We sometimes subscript the expectation operator by � , as in writing
E� ŒV .S/� to stress dependence on � . Our objective is to estimate:

d

d�
E� ŒV .S/�

As noted in the Introduction, pathwise estimates of derivatives are based on differ-
entiating the dependence on a parameter along each path, and LRM estimators are
based on differentiating probability densities. Thus, to derive pathwise estimators,
we need to give S D S� a functional dependence on the parameter; the pathwise
estimator is then:

mX
iD1

@V

@S� .ti /

@S� .ti /

@�

This requires some smoothness in the payout (Lipschitz continuity, for example) and
differentiability of the underlying asset with respect to the parameter. Recall that S
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is constructed from X and � may be a parameter of X , in which case we would
differentiate S with respect to X and X with respect to � . Thus, the key issue for
the applicability of the pathwise method in the Lévy context is the interpretation and
calculation of expressions of the form dX� .t/=d� .

The likelihood ratio method proceeds by putting the dependence on � in the density
of X (or S ), rather than in the path itself. We let ft;� denote the density of X.t/;
Theorem 27.4 of Sato (1999) ensures that a density exists if q has infinite mass. The
joint density of the vector X D .X1; : : : ; Xm/ of independent increments is then:

f� .X/ D f�1;� .X1/ � � �f�m;� .Xm/ � f1;� .X1/ � � �fm;� .Xm/

and we may write the expected payout as:

E� ŒV .S/� D

Z
V.s/f� .x/ dx

where x D .x1; : : : ; xm/ and s D .s1; : : : ; sm/. This moves all the � -dependence of
X into the density. After differentiating the density, the LRM estimator eventually
takes the form:

V.S/S� .X/

where S� .�/ is called the score function. The score function and the derivation of the
LRM estimator are reviewed in the next section. The key issue for the applicability
of LRM in the Lévy context is the calculation of the score function.

3 EXACT METHODS

The main focus of this paper is on the derivation and analysis of approximation
techniques for intractable derivative estimation problems in the Lévy context. Before
proceeding to more difficult cases, we briefly discuss settings in which no approxi-
mations are needed.

3.1 Pathwise derivative for delta

Delta is the derivative of the price with respect to S0. In the case of (3), the pathwise
derivative:

@

@S0
V.ST / D V

0.ST / exp.aT CX.T // D V 0.ST /
ST

S0

generalizes a familiar expression for delta estimates based on geometric Brownian
motion.
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For the multidimensional case, writing S D .S1; : : : ; Sm/, we have a natural exten-
sion:

@

@S0
V.S/ D

mX
iD1

@V.S/

@Si

Si

S0
D .S0/

�1

mX
iD1

@V.S/

@Si
Si

3.2 Parametric derivatives of random variables

We briefly review the construction of Suri (1983) leading to an expression for dX�=d�
for a random variable X whose distribution depends on a parameter � .

Suppose that the dependence on � is given through a density f� and distribution
function F� . If, say, f� is positive almost everywhere, we may set:

X� D F
�1
� .U /; U � UnifŒ0; 1�

to giveX D X� a functional dependence on � while preserving the correct distribution
F� at each � . Then F� .X� / D F� .F �1� .U // D U . Taking the derivative with respect
to � , we have:

@

@�
F� .X� /C f� .X� /

@

@�
X� D 0

and therefore:
@

@�
X� D �.f� .X� //

�1 @

@�
F� .X� / (8)

This solves the key step in computing the pathwise estimator if we can evaluate f�
and PF� .

3.3 The likelihood ratio method with known densities

To derive the LRM estimator, we begin with a one-dimensional example in which the
underlying asset is given by (3) and the payout V is a function only of ST for some
fixed time T :

E� ŒV .S/� D

Z
R

V.S0 exp.a�T C x//f� .x/ dx

D

Z
R

V.S0 exp.x//f� .x � a�T / dx (9)

We have written the constant a in (3) as a� because this coefficient will indeed
typically change with the distribution of X . The rightmost expression in (9) moves
all dependence on � out of the payout V and into the density, as required for LRM.
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Differentiating with respect to � , bringing the derivative inside the integral, and
writing f 0.x/ for the derivative with respect to x, we get:

d

d�
E� ŒV .S/� D

Z
R

V.S0 exp.x//
@

@�
f� .x � a�T / dx

D

Z
R

V.S0 exp.x//. Pf� .x � a�T / � Pa�Tf
0
� .x � a�T // dx

D

Z
R

V.S0 exp.a�T C x//
Pf� .x/ � Pa�Tf

0
�
.x/

f� .x/
f� .x/ dx

D E�

�
V.S/

Pf� .X/ � Pa�Tf
0
�
.X/

f� .X/

�
(10)

Conditions ensuring the validity of this derivation are given in Proposition 7.3.5
of Asmussen and Glynn (2007), for example. When the interchange of derivative
and integral holds, the expression inside the expectation on the right in (10) provides
an unbiased estimator of the sensitivity on the left. We will write this estimator as
V.S/S� .X/, using the score function:

S� .x/ D
Pf� .x/ � Pa�Tf

0
�
.x/

f� .x/
(11)

In the multidimensional case, we have:

StiC1 D Sti exp.a�	iC1 CXiC1/

and theXi are independent. The LRM estimator of the derivative ofE� ŒV .S/� is then:

V.S/S� .X/; S� .x/ D

mX
iD1

Pfi;� .xi / � Pa�	if
0
i;�
.xi /

fi;� .xi /

An especially important case is delta, for which � D S0; however, S0 is not
a parameter of the Lévy process X . In this case, by changing the variable x1 to
x1 � logS0, we get:

E� ŒV .S/� D

Z
V.exp.a� t1 C x1/; s2; : : : ; sm/

� f1;� .x � logS0/f2;� .x2/ � � �fm;� .xm/ dx1 dx2 � � � dxm

So the score function is S� .x/ D �f 01;� .x1/=S0.
These calculations produce the LRM estimators of interest in substantial generality,

at least in principle. For Lévy processes, the relevant densities and derivatives are
often unknown or given by cumbersome expressions. In some cases, they are known
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only through their characteristic functions. In Glasserman and Liu (2008), we use
the numerical transform inversion to calculate ft;� .x/, Pft;� .x/ and f 0

t;�
.x/ numer-

ically from their transforms, and we analyze the convergence order. Kienitz (2008)
approximates the derivative of the density with a finite-difference approximation.

3.4 Using a time-change representation

Several important classes of Lévy processes can be represented as subordinated
Brownian motions, ie, as a Brownian motion evaluated under a random time change
in which the time change is an increasing Lévy process independent of the Brownian
motion. See Carr and Wu (2004) for applications of this idea in option pricing. The
VG, NIG and CGMY processes all admit such a representation.

Suppose, then, that we can write the Lévy process X as:

X.t/ D �Y.t/C 
W.Y.t// (12)

where W is a standard Brownian motion and Y is an increasing Lévy process (a
subordinator) independent of W . Such a representation is potentially useful in simu-
latingX , particularly if it is easier to generate the increments of Y than to generate the
increments ofX directly. We will investigate the implications of such a representation
for derivative estimation when �, 
 and Y.t/may depend on a parameter � . To stress
the dependence on the parameter, we subscript the variables by � and write, eg,X� .t/
for X.t/.

3.4.1 Pathwise derivative estimation

If the parameter � affects � or 
 but not Y , then the paths fX� .t/; 0 6 t 6 T g are
differentiable in � and we have:

@

@�
X� .t/ D P��Y.t/C P
�W.Y.t//

IfY does depend on � , then an attempt to differentiateX� pathwise in (12) would seem
to require differentiating the Brownian motion W with respect to its time parameter,
which is clearly impossible. However, we may write the increments ofX� in the form:

X� .tiC1/ �X� .ti / D �� ŒY� .tiC1/ � Y� .ti /�C 
�
p
ŒY� .tiC1/ � Y� .ti /�ZiC1 (13)

where Z1; Z2; : : : are independent, standard normal random variables. It is now evi-
dent that we can differentiate both sides of this equation with respect to � , provided
we can differentiate Y� with respect to � . Thus, somewhat paradoxically, the time-
change representation allows us to differentiate X� pathwise at any discrete set of
dates but breaks down in the continuous-time limit.

We illustrate these ideas with examples.
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Example 3.1 (VG process) In the time-change representation (4), the subordinator
is a gamma process Y.t/ D � .t I 1; �/. The parameter � has a specific meaning in
(4), which leads to:

@

@�
X.t I �; �; �/ D � .t I 1; �/

For the parameter �, we get:

@

@�
X.t I �; �; �/ D W.� .t I 1; �//

The parameter � is more interesting because it affects the gamma process.A gamma
random variable � .˛; ˇ/ has the same distribution as ˇ� .˛; 1/; so, for any fixed t ,
� .t=�; �/ has the same distribution as �� .t=�; 1/. If we make this substitution in our
representation of X.t I �; �; �/, then differentiating (4) with respect to � yields:

@

@�
X.t I �; �; �/ D �

@

@�
.�� .t=�; 1//C �Z

@

@�

p
�� .t=�; 1/

D �� .t=�; 1/C �Z

p
� .t=�; 1/

2
p
�

�

�
�� C �Z

p
�

2
p
� .t=�; 1/

�
@� .t=�; 1/

@�

with Z a standard normal random variable. In this expression, the derivative
@� .t=�; 1/=@� of a gamma random variable is obtained from (8) and is equal to:

@� .t=�; 1/

@�
D

t

�2
F� .t=v�1;1/.� .t=�; 1// �  .t=�/F� .t=v;1/.� .t=�; 1//

f� .t=v;1/.� .t=�; 1//

where F� .˛;ˇ/ and f� .˛;ˇ/ are the cumulative distribution function (CDF) and prob-
ability density function (PDF) of a gamma distribution with parameters ˛ and ˇ, and
 .x/ is the digamma function,  .x/ D � 0.x/=� .x/.

The VG process admits an alternative representation as the difference of two inde-
pendent gamma processes:

X.t I �; �; �/ D ˇC�C

�
t

�
; 1

�
� ˇ���

�
t

�
; 1

�

with ˇ˙ functions of �; � and � (see Madan et al (1998) for details). This represen-
tation leads to alternative pathwise derivatives.

Example 3.2 (NIG process) In the time-change representation (5) of the NIG pro-
cess, the subordinator is an inverse Gaussian process, Y.t/ D IG.t I ı; �/. The param-
eter � in (5) is straightforward. For parameters ˛, ˇ and ı, we need to employ (13) to
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get the derivatives ofX.t I˛; ˇ; �; ı/ and employ (8) to get the derivative of IG.t I ı; �/.
The density of IG.t I ı; �/ is (see Barndorff-Nielsen (1998)):

.2�/�1=2tıetı�x�3=2 exp.�1
2
.t2ı2x�1 C �2x//

In the case of parameter ı, for example, the derivative of the CDF of IG.t I ı; �/ with
respect to ı is:

@FIG.t Iı;�/.x/

@ı
D 2t�e2tı�FN.0;1/

�
��
p
x �

tı
p
x

�
�

t
p
x
fN.0;1/

�
�
p
x �

tı
p
x

�

�
t
p
x

e2tı�fN.0;1/

�
��
p
x �

tı
p
x

�

where FN.0;1/ and fN.0;1/ are the standard normal CDF and PDF.

Madan and Yor (2005) show how to express the CGMY process as a time-changed
Brownian motion. However, in this case the law of the subordinator Y is known
only through its characteristic function: a case considered in Glasserman and Liu
(2008). The Ornstein–Uhlenbeck example (6) does not fit the random time-change
framework; however, we may directly differentiate both sides of (7) to get:

@YT

@�
D

mX
kD1

.1 � �	t/k�1
@X�t;k

@�

The case � D � can also be handled explicitly.

3.4.2 LRM

A time-change representation is potentially very useful for LRM estimation, partic-
ularly when the density of Y.t/ is known but that of X.t/ is not. Expression (13)
represents the increments of X as a mixture of normal random variables, and this in
turn leads to a “mixed” score function using Y as well as X .

To illustrate, we begin with the case in which the payout V is a function only of ST .
Write fY.t/ for the density of Y.t/. Then we have:

E� ŒV .ST /� D

Z 1
�1

Z 1
0

V.S0 exp.a�T C x//fN.�y;�py/.x/fY.T /.y/ dy dx

where fN.�y;�py/.x/ is the density function of N.�y; 

p
y/. The joint density of

X.T / and Y.T / is f� .x; y/ D fN.�y;�py/.x/fY.T /.y/, and the density of X.T / is:

f� .x/ D

Z 1
0

fN.�y;�
p
y/.x/fY.T /.y/ dy (14)
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To calculate the score function, we first write:

E� ŒV .ST /� D

Z 1
�1

Z 1
0

V.S0 exp.x//fN.�y;�py/.x � a�T /fY.T /.y/ dy dx

Now we differentiate with respect to � to get:

d

d�
E� ŒV .ST /�

D
d

d�

Z 1
�1

Z 1
0

V.S0 exp.x//fN.�y;�py/.x � a�T /fY.T /.y/ dy dx

D

Z 1
�1

Z 1
0

V.S0 exp.x//.fY.T /.y/. PfN.�y;�py/.x � a�T /

� Pa�Tf
0
N.�y;�

p
y/.x � a�T //C fN.�y;�

p
y/.x � a�T / PfY.T /.y// dy dx

D

Z 1
�1

Z 1
0

V.S0 exp.a�T C x//.fY.T /.y/. PfN.�y;�py/.x/

� Pa�Tf
0
N.�y;�

p
y/.x//C fN.�y;�

p
y/.x/ PfY.T /.y// dy dx

The score function therefore is:

S� .x; y/ D

PfN.�y;�
p
y/.x/ � Pa�Tf

0
N.�y;�

p
y/
.x/

fN.�y;�
p
y/.x/

C
PfY.T /.y/

fY.T /.y/

� S� .x j y/C S� .y/

The multidimensional case is similar. By applying (14), and following the same
reasoning as in Section 3.3, we have for vectors of increments x D .x1; : : : ; xm/ and
y D .y1; : : : ; ym/:

S� .x; y/ D

mX
iD1

PfN.�yi ;�
p
yi /.xi / � Pa�	if

0
N.�yi ;�

p
yi /
.xi /

fN.�yi ;�
p
yi /.xi /

C
PfY.�i /.yi /

fY.�i /.yi /

�

mX
iD1

.S� .xi j yi /C S� .yi //

Although the time-change representation significantly expands the scope of models
for which exact LRM is feasible (ie, models for which we know the density of Y but
not of X ), this generality comes at the price of increasing variance. The following
proposition indicates that using the score function of X results in lower variance.

Proposition 3.3 With the notation above:

var.V .X/S� .X; Y // > var.V .X/S� .X//

Research Paper www.journalofcomputationalfinance.com



16 P. Glasserman and Z. Liu

Proof Note that:

f 0� .x/ D

Z 1
0

f 0N.�y;�
p
y/.x/fY.t/.y/ dy

and:

Pf� .x/ D

Z 1
0

. PfN.�y;�
p
y/.x/fY.t/.y/C fN.�y;�

p
y/.x/ PfY.t/.y// dy

so, denoting Y.T / by Y , we have:

EŒS� .X; Y / j X D x� D

Z 1
0

S� .x; y/
f� .x; y/

f� .x/
dy

D
Pf� .x/ � Pa�Tf

0
�
.x/

f� .x/

D S� .x/

by (11). Thus:

varŒV .X/S� .X; Y /� D varŒEŒV .X/S� .X; Y / j X��CEŒvarŒV .X/S� .X; Y /� j X�

D varŒV .X/S� .X/�CEŒvarŒV .X/S� .X; Y /� j X�

> varŒV .X/S� .X/�

A similar argument applies in the multidimensional case. �

We now illustrate these points with examples. To apply LRM directly (without the
time-change representation), we use numerical transform inversion, as in Glasserman
and Liu (2008). We compare this with pathwise and LRM estimates using the time-
change representation.

We use the VG and NIG models as test cases, pricing European call options with:

V.x/ D exp.�rT /maxfS0 exp.aT C x/ �K; 0g

where K is the strike price, T is the maturity and r is the risk-free discount rate.
For parameters in the VG model, we use S0 D 100, K D 100, r D 0:05, T D 1,

� D 0:2, � D 1 and � D �0:15. For the NIG model, we take values from Këllezi
and Webber (2004): S0 D 100, K D 100, r D 0:1, T D 1, ˛ D 28:42141,
ˇ D �15:08623, � D 0:31694 and� D 0:05851. We also test a discretely monitored
Asian call option using the NIG model. With monthly averaging over a one-year
horizon, we get 12 steps in the average. We used this example with transform inver-
sion in Glasserman and Liu (2008), which allows comparison with the time-change
representation.
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TABLE 1 Standard deviations for sensitivity estimation methods and computing times (in
seconds) in parentheses.

Numerical Time-
transform Time- changed

Number of inversion changed pathwise
simulations LRM LRM method

VG-EU 1�105 0.338 (2.75) 0.363 (1.26) 0.118 (1.12)
NIG-EU 1�106 0.066 (5.03) 0.186 (1.39) 0.016 (9.67)
NIG-AS 1�106 0.073 (56.61) 0.172 (18.09) 0.010 (116.21)

VG-EU D VG European call option example, NIG-EU D NIG European call option example, NIG-AS D NIG Asian
call option example. The second column gives the number of replications used.

For the VG model, we consider sensitivities to � and run 500,000 simulation trials
for all three methods. For the NIG model, we consider sensitivities to ı and run
1 million simulation trials for all three methods and for both the European call option
example and the Asian call option example. In Table 1, we report the standard errors
(and computing times) for the three methods and three examples. In all cases, the
time-change pathwise method provides the lowest standard deviations, followed by
numerical transform inversion LRM. As expected from Proposition 3.3, the time-
changed LRM has higher variance than direct LRM, but the time-change score func-
tion is easier to calculate because it involves simpler probability densities. Our results
are calculated using Matlab running on a laptop computer with a 1.6 GHz Pentium
M processor and 1 Gb of RAM. We have not attempted to optimize computing times
in our Matlab implementations, and relative speeds could change if the methods are
implemented in a lower-level programming language.

4 SADDLEPOINT APPROXIMATION TO THE SCORE FUNCTIONS

4.1 The method

In this section we propose and test a method for approximating the score function. The
method is relevant to models for which the underlying density is unknown or difficult
to work with but for which the Laplace transform is available. In this setting, numerical
transform inversion could be used, as in Glasserman and Liu (2008); saddlepoint
approximation provides a somewhat simpler, if less accurate, alternative.

Saddlepoint approximations are typically used to approximate probability densities
or distribution functions (see Jensen (1995) for an overview). We will use them to
approximate score functions. Suppose that a random variable X has density f� and
cumulant generating function (CGF):

K� .s/ D logE� Œexp.sX/�
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18 P. Glasserman and Z. Liu

assumed finite in a neighborhood of the origin. A saddlepoint expansion of f� .x/
takes the form:

f� .x/ D
1

p
2�K 00

�
.Os/

expfK� .Os/ � Osxgf1C .
1
8
�4;� .Os/ �

5
24
�23;� .Os//C � � � g (15)

(Jensen (1995, p. 27)), where Os is called the saddlepoint and satisfiesK 0
�
.Os/ D x. The

CGF is strictly convex (unless X is a constant), so there is at most one root to this
equation; the value of Os depends on � . The higher-order terms are defined by:

�n;� .s/ D
K
.n/

�
.s/

ŒK 00
�
.s/�n=2

To approximate the score, we will differentiate an approximation to f� . To stress
the dependence of Os on x and � , we write it as Os D Os� .x/. The derivative of Os� .x/
with respect to � is:

@Os� .x/

@�
D �.K 00� .Os//

�1 PK 0� .Os/ (16)

(see Appendix A for details). In approximating f� based on (15), we can use:

1
p
2�K 00

�
.Os/

expfK� .Os/ � Osxg (17)

or:
1

p
2�K 00

�
.Os/

expfK� .Os/ � Osxgf1C .
1
8
�4;� .Os/ �

5
24
�23;� .Os//g (18)

or even include more terms. These are all saddlepoint approximations to the densities.
By taking the logarithm of both sides of (15) and differentiating with respect to � ,

we get the score function S� .x/ (see Appendix A for details):

S� .x/ D
1

2ŒK 00
�
.Os/�2

.K 000� .Os/
PK 0� .Os/ �K

00
� .Os/

PK 00� .Os//C
PK� .Os/C T� (19)

where T� is the derivative of logf1 C .1
8
�4;� .Os/ �

5
24
�2
3;�
.Os// C � � � g with respect

to � . If we drop T� , we obtain a first-order saddlepoint approximation to the score
function:

S� .x/ � OS� .x/ D
1

2ŒK 00
�
.Os/�2

.K 000� .Os/
PK 0� .Os/ �K

00
� .Os/

PK 00� .Os//C
PK� .Os/ (20)

The same approximation to the score results from first approximating f� .x/ by (17)
and then taking the logarithmic derivative with respect to � . But, by starting from the
saddlepoint expansion, we have a more precise derivation and more flexibility to
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get a higher-order approximation by including more terms from T� . For example,
corresponding to (18), we can approximate T� by:

T� �

1
8
P�4;� .Os/ �

5
12
�3;� .Os/ P�3;� .Os/

1C .1
8
�4;� .Os/ �

5
24
�2
3;�
.Os//

�
@Os� .x/

@�
(21)

to obtain a second-order approximation. Higher-order approximations are obtained
by approximating T� with more terms.

A basic property of any score function is that it has mean zero. However, this
property need not be shared by the saddlepoint approximation OS� .X/. We would
therefore like to center the approximation by replacing it with:

OS� .x/ �EŒ OS� .X/� (22)

In practice, we are unlikely to know the expected value of the approximate score, but
we can estimate it using the sample mean, and subtract the sample mean to center the
approximation.

4.2 Numerical examples

We now illustrate the saddlepoint approximation to the score function with examples.

Example 4.1 (Normal distribution) The CGF ofN.�; 
2/ isK.s/ D �sC 1
2

2s2.

For any x, the saddlepoint is Os D .x � �/=
 . In this case, the first-order saddlepoint
approximation is exact for both parameters � and 
 , as is easily verified by direct
calculation.

Example 4.2 (Gamma distribution) The CGF of the gamma distribution with shape
parameter˛ and scale parameterˇ isK.s/ D ˛ logˇ�˛ log.ˇ�s/. For the parameter
ˇ, the first-order saddlepoint approximation gives the exact score function Sˇ .x/ D
˛=ˇ � x. For the parameter ˛, the first-order saddlepoint approximation is OS˛.x/ D
log.ˇx/� log˛C1=.2˛/, while the true score function isS˛.x/ D log.ˇx/�� 0.˛/.
The difference is:

OS˛.x/ � S˛.x/ D �
0.˛/ � log˛ C

1

2˛
D O.˛�2/

and is thus small for large ˛.

Example 4.3 (VG process) The CGF of a VG process with the parameter set
.�; �; �/ at time T is KT .s/ D �T log.1 � ��s C �2� 1

2
s2/=�. The saddlepoint

is thus given by the root of a quadratic equation and is easy to compute. The VG
density is available as an infinite integral (see formula 6 in Madan et al (1998)):

fvg.x/ D

Z 1
0

1

�
p
2�y

exp

�
�
.x � �y/2

2�2y

�
yT=��1 exp.�y=�/

�T=�� .T=�/
dy
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FIGURE 1 Comparison of the true score function, the first-order saddlepoint approximation
and the approximation through numerical transform inversion for parameter � in the VG
model.
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The right panel shows the errors in the first-order and second-order saddlepoint approximations to the score function.

TABLE 2 Estimates of the expected value of the approximate score function for each
parameter using first-order and second-order saddlepoint approximations.

First order Second order

� �0.799 (0.005) �0.143 (0.005)
� �0.192 (0.004) �0.034 (0.004)
� �0.039 (0.0002) �0.001 (0.0003)

The numbers in parentheses are standard errors.

The derivative of the density with respect to any of the parameters �, � or � is also
an infinite integral. This makes the saddlepoint approximation to the score function
potentially attractive.

In the left panel of Figure 1, we consider the parameter � and compare the true
score function, the first-order saddlepoint approximation and the approximation from
numerical transform inversion (using the method in Glasserman and Liu (2008)). The
parameter values are the same as in Section 3.4.2. The true score function is evaluated
by truncating the infinite integrals in the density and its derivative to Œ0; 20� and
applying the “quadl” function in Matlab with a tolerance 1 � 10�8. The transform
inversion calculations use the method in Glasserman and Liu (2008) with parameters
as given there in the third row of Table 2. In the right panel of Figure 1, we graph
the errors in the first-order and second-order saddlepoint approximations. In this
example, including more terms in (A.6) to approximate T� produces a more accurate
approximation.
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FIGURE 2 Comparison of the true score function and the first-order saddlepoint approx-
imation for parameter � in the VG model.
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The right panel shows the errors in the first-order and second-order saddlepoint approximations to the score function.

In Figure 2 and Figure 3 on the next page, we consider the parameters � and �.
The true score functions are obtained following the same steps as used for �. Overall,
the approximations are excellent for � but less accurate for �; in both cases, keeping
more terms improves accuracy.

Next, we test the accuracy of the saddlepoint approximations in sensitivity estima-
tion problems, applying LRM with an approximate score function. We use the same
parameter values as in the example of Section 3.4.2. We estimate the expected value
of the approximate score function; recall that the true score function has mean zero.
The expected score is the derivative of the constant 1 with respect to the parameter.
The results are reported in Table 2 on the facing page, based on 1 million replications
for each case. The results show a clear bias away from zero.

To correct for this bias, we can center each approximate score function by subtract-
ing its sample mean across all replications and then use the centered approximated
score in the LRM estimator (see the discussion surrounding (22)). We test this idea
with the European option example specified in Section 3.4.2. The results are sum-
marized in Table 3 on the next page. The table estimates the bias in LRM estimates
using saddlepoint approximations and centered saddlepoint approximations, relative
to the reference values. The reference values are obtained through a finite-difference
approximation to numerically calculated option prices. The simulation results in the
table are based on 1 million replications. In all cases, the second-order approxima-
tion performs better than the first-order approximation. But the results also indicate
the importance of centering the approximate score; indeed, centering appears to be
even more important to improving accuracy than including additional terms in the
approximation.
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FIGURE 3 Comparison of the true score function and the first-order saddlepoint approx-
imation for parameter � in the VG model.
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The right panel shows the errors in the first-order and second-order saddlepoint approximations to the score function.

TABLE 3 Estimated bias in LRM estimates in the VG model using first-order and second-
order saddlepoint approximations to the score function.

Error in sensitivity Centered
Reference ‚ …„ ƒ ‚ …„ ƒ

values 1st order 2nd order 1st order 2nd order

� 23.04 �10.95 (0.26) �3.44 (0.26) �1.95 (0.27) �1.83 (0.27)
� �17.33 �2.48 (0.13) �0.67 (0.13) �0.32 (0.14) �0.29 (0.14)
� 0.55 �1.24 (0.003) �0.08 (0.005) �0.80 (0.01) �0.07 (0.01)

The estimates in the last two columns center the approximate score by its sample mean.The numbers in parentheses
are standard errors.

Example 4.4 (NIG process) The CGF of an NIG process with parameters
.˛; ˇ; �; ı/ at time 1 is:

K˛;ˇ;�;ı.s/ D ı
�p
˛2 � ˇ2 �

p
˛2 � .ˇ C s/2

�
C �s

For the parameter ˇ, the first-order saddlepoint approximation (20) gives the exact
score function; for parameters˛,� and ı, the accuracy of the first-order approximation
varies. Explicit expressions are given in Appendix B. Figure 4 on the facing page
compares the true score function and the first-order saddlepoint approximation for
parameters ı and ˛. In the case of ˛, the approximation is virtually exact.

As in the VG example, we estimate the expected approximate score and use the
approximate score to estimate option price sensitivities, with and without centering.
In this example, we use only the first-order approximation. We use the parameters
and European option specified in the example of Section 3.4.2. The option price is
insensitive to �, so we consider only ˛ and ı.
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FIGURE 4 Comparison of the true score function and the first-order saddlepoint approx-
imation for parameters ı (left panel) and ˛ (right panel) in the NIG model.
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For parameter ˛, the approximation is virtually exact, so the two curves cannot be distinguished in the figure.

TABLE 4 Estimated mean of the approximate score, reference values for option price
sensitivities to each parameter, and biases in LRM estimators for these sensitivities using
the approximated score and the centered approximate score in the NIG model.

Approximate Reference
score value Sensitivity Centered

ı 1.658 (0.005) 5.81 19.03 (0.04) 0.19 (0.05)
˛ 0.001 (0.00007) �0.15 0.01 (0.0006) 0.01 (0.0006)

Results based on 1 million replications are reported in Table 4. The table shows
the estimated mean of the approximate score, a reference value for each sensitivity,
the estimated bias in LRM estimates using the approximate score, and the estimated
bias when the approximate score is centered. As in the VG example, centering has a
big impact.

5 COMPOUND POISSON AND NORMAL APPROXIMATIONS

In this section we take a fundamentally different approach to approximating Lévy
processes and developing sensitivity estimates associated with these approximations.
Section 3 worked with exact representations of the Lévy process or the distribution
of its increments, and Section 4 used approximations to the density of the Lévy incre-
ments, and in Glasserman and Liu (2008) we started from the Laplace transform
of the density. Now we approximate the dynamics of the Lévy process directly. By
truncating small jumps, we arrive at a compound Poisson approximation for the jump
component. Building on the work of Asmussen and Rosinski (2001) and others, we
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then refine the compound Poisson approximation by making a normal (or, more gen-
erally, second-order) approximation to the truncated jump. We then develop derivative
estimates associated with these approximations.

An approximation to the Lévy process does not automatically determine the deriva-
tive of an approximation option price, much less an associated estimator. The deriva-
tive is not defined until we specify how the approximation changes with the parameter
of interest. Indeed, we have considerable flexibility in how we specify this parametric
dependence, and this flexibility is key to the development of pathwise estimators, in
particular.

In the rest of this section, we first detail the approximations, and then derive two
types of pathwise estimators: a combined pathwise–LRM estimator and a pure LRM
estimator. Along the way, we discuss the relative advantages of the various methods.

5.1 Truncating small jumps

Our first step is to approximate the Lévy processX by a process in which all jumps of
a size smaller than " have been removed. The arrival of jumps of magnitude greater
than or equal to " defines a Poisson process N with rate:

� D

Z
jyj>"

q� .y/ dy

These jumps are iid with density q� .y/=� for jyj > " and 0 otherwise. The approxi-
mation takes the form:

X1.t/ D c� t C

N.t/X
kD1

Yk (23)

where Y1; Y2; : : : are the iid jumps. In order to keep the overall mean of the process
unchanged and have EŒX1.t/� D EŒX.t/� for all t , we need to choose c� so that:

c� C

Z
jyj>"

yq� .y/ dy D b� C
Z
jyj>1

yq� .y/ dy

the expression on the left is the drift in (23), and the expression on the right is what
we get for the original process through (2). Thus:

c� D b� �

Z
"6jyj61

yq� .y/ dy

A different truncation level in (2) would produce a different value of b� but would
leave c� unchanged.

Set X".t/ D X.t/ �X1.t/, which at t D 1 has CGF:

K";� .s/ D

Z "

�"

.esy � 1 � sy/q� .y/ dy
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and moment generating function (MGF) ˚";� .s/ D exp.K";� .s//. By construction,
the mean of this process is EŒX".t/� D K 0";� .0/ D 0. The variance rate is:


2� ."/ � var.X".1// D K
00
";� .0/ D

Z "

�"

y2q� .y/ dy

This measures how much variance we have removed from X by removing the small
jumps. To compensate, we might consider an approximation of the form:

X2.t/ D X1.t/C 
� ."/W.t/ (24)

with W being a standard Brownian motion. Here, the small jumps of the original
process have been approximated by a Brownian motion with the same variance.
Asmussen and Rosinski (2001), Chapter 12 of Cont and Tankov (2004) and Signahl
(2003) give conditions and criteria under which X2 is indeed a better approximation
than X1. An alternative to (23) (pointed out by Cont) would be to choose the mean
to preserve the martingale property of the asset price (3). This adjustment is more
complicated, so we focus on the simpler case of matching the mean of the Lévy
process.

Our goal is to use these approximations to the Lévy processes to approximate the
sensitivities. We use pathwise and LRM estimators and combinations of the two.

5.2 Pathwise method: truncated jumps

5.2.1 The method

We now turn to the derivation of sensitivity estimates. We will subscript variables by
� where we want to stress the dependence on the parameter.

In attempting to apply the pathwise method to X1;� or X2;� , we immediately
confront two obstacles. First, the Poisson random variable N.t/ is inevitably dis-
continuous in �, so if � varies with � then changes in the parameter will introduce
discontinuities in X1;� and X2;� . Second, the jump-size random variables Yk;� are
potentially discontinuous in � , as a result of the jump truncation. Suppose, in partic-
ular, that we set:

Y� D
Q�1
�;"
.U /

��

with Q�;"=�� the CDF of jumps of magnitude greater than ". The density of Y� is
zero on .�"; "/, so the CDF is flat on this interval and its inverse has a discontinuity. If
the point of discontinuity of the inverse varies with � , it will introduce a discontinuity
in Y� . The discontinuity in Y� occurs when a change in � causes the jump size to
move from .�1;�"� to Œ";1/, or vice versa. There is no way to move smoothly
from one of these intervals to the other. (For examples of other contexts of sensitivity
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estimation with discontinuities, see, for example, Fu and Hu (1997) and Hong and
Liu (2007).)

To address both issues, we separate positive and negative jumps and write the
original compound Poisson process in (23) as the difference of two compound Poisson
processes with positive jumps. In other words, we rewrite X1.t/ as:

X1.t/ D c� t C

NC.t/X
kD1

Y C
k
�

N�.t/X
kD1

Y �k (25)

where NC.t/ and N�.t/ are independent with arrival rates:

�C D

Z
y>"

q� .y/ dy and �� D

Z
y>"

q� .�y/ dy

The positive jumps Y C
k

have density q� .y/=�C, y > ", the negative jumps Y �
k

have
density q� .�y/=��, y > ". With this separation, we can have each Y C

k;�
and Y �

k;�

vary smoothly with � .
Even if the sizes of the jumps change smoothly, we still have to address potential

discontinuities in the number of jumps in a fixed interval. To prevent this possibility,
we would like to keep �C

�
and ��

�
constant as � varies. For this, we can use the

flexibility we have in specifying how small jumps are truncated. In particular, we
can let " vary with � , and we can use different truncation points "˙

�
for positive and

negative jumps as we move � from its initial value. By requiring that d�C
�
=d� D 0

and d��
�
=d� D 0, we obtain the derivatives of "C

�
and "�

�
with respect to � at ":

d"C
�

d�

ˇ̌̌
ˇ
"
C

�
D"

D

R1
"
Pq� .y/ dy

q� ."/
and

d"�
�

d�

ˇ̌̌
ˇ
"�
�
D"

D

R1
"
Pq� .�y/ dy

q� .�"/
(26)

This construction is illustrated in Figure 5 on the facing page. As we vary � , we
move the truncation thresholds so that the area under the Lévy density on each side
remains fixed. This ensures that the number of positive jumps and the number of
negative jumps remain fixed, so we do not introduce a discontinuity in NC

�
or N�

�
,

nor do we have a jump flip from one side to the other. We have, in effect, defined a
direction along which the compound Poisson approximation changes smoothly in � .

We can define a pathwise estimator by differentiating along this direction. The
resulting derivative of X1;� .t/ is:

@

@�
X1;� .t/ D Pc� t C

NC.t/X
kD1

@

@�
Y C
k;�
�

N�.t/X
kD1

@

@�
Y �k;� (27)
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FIGURE 5 Variation of "˙ with � , keeping �C
�

and ��
�

independent of � .

q θ

–ε + ∆ε– –ε ε ε + ∆ε+

qθ+∆ θ

y

where:

Pc� D Pb� �

Z
"6jyj61

y Pq� .y/ dy C "q� ."/
d"C
�

d�

ˇ̌̌
ˇ
"
C

�
D"

� "q� .�"/
d"�
�

d�

ˇ̌̌
ˇ
"�
�
D"

D Pb� �

Z
"6jyj61

y Pq� .y/ dy C "

�Z 1
"

Pq� .y/ dy �
Z 1
"

Pq� .�y/ dy

�
The derivatives of Y ˙

k;�
are calculated using (8).

If we start from X2;� .t/, we need the derivative of 
2
�
."/, given as follows:

P
2� ."/ D "
2q� ."/

d"C
�

d�

ˇ̌̌
ˇ
"
C

�
D"

C

Z "

0

y2 Pq� .y/ dy

C "2q� .�"/
d"�
�

d�

ˇ̌̌
ˇ
"�
�
D"

C

Z 0

�"

y2 Pq� .y/ dy

D

Z "

�"

y2 Pq� .y/ dy C "2
Z
jyj>"

Pq� .y/ dy (28)

The derivative of X2;� .t/ with respect to � is then:

@

@�
X2;� .t/ D P
� ."/W.t/C

@

@�
X1;� .t/ (29)

An alternative approach to approximating and simulating Lévy processes uses a
series representation, as in Rosinski (2001). For finite variation Lévy processes, the
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compound Poisson approximation (25) is equivalent to a particular truncation of the
series representation ofX.t/.As shown in Liu (2008), the pathwise derivative obtained
by differentiating the truncated series is the same as (27). So we do not separately
pursue the idea of derivative estimation through the series representation.

5.2.2 Convergence rates of the bias

In this section we discuss our general approach to the convergence of the estimators
(27) and (29) as the truncation level " becomes small. A detailed analysis is contained
in the technical appendix at the end of the paper. Asmussen and Rosinski (2001), Cont
and Tankov (2004) and Signahl (2003) analyze the convergence of the approximations
X1 and X2 themselves. Our analysis builds on Signahl (2003), in particular.

For simplicity, we just consider t D 1 and omit the argument t from the notation,
writing, eg, X� .t/ as X� . If we could apply the pathwise method directly to X� , we
would be estimating:

d

d�
EŒV .X";� CX1;� /� D E

�
V 0.X";� CX1;� /

�
@

@�
X";� C

@

@�
X1;�

��

If X1;� is used as the approximation, then we estimate:

d

d�
EŒV .X1;� /� D E

�
V 0.X1;� /

@

@�
X1;�

�

The bias therefore is:

d

d�
.EŒV .X";� CX1;� /� �EŒV.X1;� /�/ (30)

Signahl (2003) analyzes differences in expectations of the type in (30), without
derivatives, both for X1 and X2. He applies a Taylor approximation to V and thus
reduces the question of convergence of the expectation of V to the convergence of the
moments of the residual X";� . Under appropriate conditions, he finds that the error
usingX1 isO."2/whereas the error usingX2 isO."3/. In our setting, we will weaken
the conditions on V (Signahl (2003) and Cont and Tankov (2004) assume that V has
bounded derivatives) and we will need to include new terms arising from pathwise
differentiation, in addition to the moments of the residual.

We let:

V1;� .x/ D EŒV.x CX1;� /�

so (30) equals:
d

d�
EŒV1;� .X";� / � V1;� .0/�
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The analysis proceeds by differentiating in� and then applying a Taylor approximation
to the function V1;� to get:

d

d�
.EŒV1;� .X";� / � V1;� .0/�/ D E

�
PV1;� .X";� /C V

0
1;� .X";� /

@

@�
X";� � PV1;� .0/

�
D 1

2
EŒ PV 001;� .�1.X";� //X

2
";� �

C 1
2
E

�
V 001;� .�2.X";� //X";�

@

@�
X";�

�
(31)

where �i .X";� /, i D 1; 2; lie between 0 and X";� . Once these steps are justified, the
key is then to determine the order of the two terms in (31).

This analysis requires several conditions, starting with the following conditions
on V .

Assumption 5.1 We assume that V.x/ is four times differentiable. For x > 0,
0 6 jV .n/.x/j 6 Cv evCx , and for x < 0, 0 6 jV .n/.x/j 6 Cvev�jxj for some
constants Cv > 0, vC 2 .0; sC/ and v� 2 .0; s�/, n D 0; : : : ; 4.

The differentiability assumed here is not directly applicable to option payouts.
We can always find a series of differentiable functions approximating a less smooth
payout, and we can replace a payout with its conditional expectation shortly before
maturity. However, our analysis does not address these additional sources of approx-
imation error. In practice, the key distinction is generally between payouts that are
Lipschitz continuous in the underlying asset price (such as standard calls and puts)
and payouts with discontinuities. The pathwise method is generally inapplicable with
discontinuities. The condition at n D 0 ensures that EŒV.X� /� exists and is finite.

Our analysis also imposes conditions on the Lévy density q� and the MGF.As these
are quite involved even to state, we omit them and refer the reader to the technical
appendix or Liu (2008). The conditions are verified in our applications to the VG and
NIG models.

We stress that all our results on convergence hold in the big-O sense and are
thus upper bounds. The exact convergence rate in each case is potentially faster than
indicated by our results.

5.2.3 Examples

We now illustrate the ideas of the previous two subsections with examples.

Example 5.2 (VG model) For the VG model with parameters .�; �; �/, the Lévy
measure is:

qvg.y/ D

8<
:C exp.�My/y�1; y > 0

C exp.Gy/jyj�1; y < 0
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where C D 1=�, and M and G are functions of .�; �; �/ (see Madan et al (1998)
for details). The VG process has finite variation and the first component of the Lévy
triplet is b D

R 1
�1
yqvg.y/ dy. The region of convergence is:�
��� �

p
�2�2 C 2�2�

�2�
;
��� C

p
�2�2 C 2�2�

�2�

�
We consider the sensitivity to � and write M� and G� for emphasis. Applying (8),

we obtain that the derivatives of Y C� and Y �� with respect to � are equal to:

@

@�
Y C� D �

PM�

Y C�

M�

and
@

@�
Y �� D

PG�
Y ��

G�

The derivative of qvg;� with respect to � is:

Pqvg;�.y/ D

(
� PM� exp.�M�y/=M�; y > 0

PG� exp.G�y/=G�; y < 0

Proposition 5.3 Suppose that Assumption 5.1 holds and T > 3�=4. Then, in the
VG model, the bias in the pathwise derivative estimate for � is O."2/ using X1.T /,
and O."3/ using X2.T /.

We test these methods with the European call option example defined in Sec-
tion 3.4.2. In Table 5 on the facing page, we run 5 million simulation trials and report
the estimated biases using the compound Poisson (CP) approximationX1 and the cor-
rected (CP-N) approximation X2 for prices and sensitivities (and the corresponding
standard errors for each case). The CP results in the last column illustrate the conver-
gence rate of the bias; the next three estimates (not included in the table) at " D 1=32,
1=64 and 1=128 are �0:77, �0:22 and �0:05, each with an estimated standard error
of 0:03. The errors roughly decrease like O."2/ when " becomes small. This is in
line with our analysis, though the smoothness required on the payout function in our
analysis does not hold in this example.

Table 5 on the facing page also compares the CP approximation X1 and the CP-N
approximation X2. The normal approximation dramatically improves accuracy, and
it has an even bigger impact on the sensitivity estimates than on the price estimates.
The bias becomes so small that it is difficult to estimate accurately for small ", so we
only take " as small as 1/16.

Example 5.4 (NIG model) The Lévy measure of the NIG process is:

qnig.y/ D �
�1ı˛jyj�1K1.˛jyj/e

ˇy

where K1.�/ is the modified Bessel function of the third kind with index 1. The NIG
process is a compensated Lévy process, and the first component of the Lévy triplet is
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TABLE 5 Comparison of estimated biases for prices and sensitivities to � using the VG
model.

" Approximation Price �-sensitivity

1/2 CP �6.55 (0.01) �32.75 (0.01)
1/2 CP-N 0.26 (0.01) 4.85 (0.03)

1/4 CP �2.67 (0.01) �18.27 (0.02)
1/4 CP-N �0.09 (0.01) 1.84 (0.03)

1/8 CP �0.91 (0.01) �6.24 (0.03)
1/8 CP-N �0.04 (0.01) 0.11 (0.03)

1/16 CP �0.31 (0.01) �2.52 (0.03)
1/16 CP-N �0.01 (0.01) 0.02 (0.03)

“CP” indicates the compound Poisson approximationX1 and CP-N includes the normal correction,X2.The reference
values for the price and sensitivity are 11.27 and 23.04.

(see Barndorff-Nielsen (1997)):

b D 2��1ı˛

Z 1

0

sinh.ˇy/K1.˛y/ dy

The region of convergence includes .�˛�ˇ; ˛�ˇ/. We consider sensitivities to the
parameter ı. It is easy to see that Pqnig;ı.y/ D qnig;ı.y/=ı. We also have:


2ı ."/ D 2�
�1ı˛

Z "

0

y cosh.ˇy/K1.˛y/ dy

Interestingly, the convergence rates in this example are slower than in the previous
one.

Proposition 5.5 Suppose that Assumption 5.1 holds. Then, in the NIG model, the
bias in the pathwise derivative estimate for ı is O."/ using X1.T /, and O."2/ using
X2.T /.

We test the approximations with the European call option example in Section 3.4.2.
To sample from qnig.y/=�, we use the acceptance–rejection method. By the properties
ofK1, we can use the densities of two shifted exponential distributions as the bounding
densities: for Y C, the bounding density is .˛ � ˇ/ exp.�.˛ � ˇ/.y � "//; for Y �,
the bounding density is .˛ C ˇ/ exp.�.˛ C ˇ/.y � "//.

Simulating the compound Poisson approximation for the NIG model is more com-
putationally demanding than for the VG model. In the NIG model, the jump rate �
increases very quickly as " approaches 0. Also, with:

@

@ı
Y C
ı
D .ıqnig.Y

C
ı
//�1

Z 1
Y
C

ı

qnig.y/ dy
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TABLE 6 Comparison of simulation errors for prices and sensitivities to ı using the NIG
model.

Standard option Asian option‚ …„ ƒ ‚ …„ ƒ
" Approximation Price ı-sensitivity Price ı-sensitivity

1/2 CP �2.72 (0.01) �8.61 (0.01) �1.72 (0.01) �5.18 (0.01)
1/2 CP-N �0.11 (0.01) 0.34 (0.02) �0.07 (0.02) 0.28 (0.03)

1/4 CP �2.50 (0.01) �8.39 (0.01) �1.60 (0.01) �5.07 (0.01)
1/4 CP-N �0.11 (0.01) 0.27 (0.02) �0.07 (0.02) 0.24 (0.03)

1/8 CP �1.76 (0.01) �6.47 (0.01) �1.11 (0.01) �4.19 (0.02)
1/8 CP-N �0.08 (0.01) 0.07 (0.02) �0.03 (0.02) 0.08 (0.03)

1/16 CP �1.22 (0.01) �5.24 (0.01) �0.74 (0.01) �3.12 (0.01)
1/16 CP-N �0.01 (0.01) 0.01 (0.02) �0.01 (0.02) �0.07 (0.03)

CP indicates the compound Poisson approximationX1 and CP-N includes the normal correction,X2.The reference
values for the price and sensitivity are 11.36 and 5.81 for the standard option, and 6.34 and 3.71 for the Asian option.

and:

@

@ı
Y �ı D .ıqnig.�Y

�
ı //
�1

Z 1
Y�
ı

qnig.�y/ dy

the computation of the derivatives involves the numerical integral of the modified
Bessel function. The integral could be tabulated to accelerate calculation.

The third and fourth columns of Table 6 report results based on 1 million repli-
cations. As in the VG example, the CP-N approximation substantially outperforms
the CP approximation, and the improvement is greater for the sensitivity than for
the price. However, the convergence orders in " for the two methods are difficult to
discern from the simulation results, presumably because the " values are not yet small
enough for the asymptotic regime.

Example 5.6 (Path-dependent option) We consider an Asian option example using
the NIG model. The option is based on averaging monthly values over a one-year
horizon, and the strike is equal to S0. Results based on 1 million replications are
reported in the last two columns of Table 6. It shows the same general pattern of
results as the European option.

5.3 Pathwise method: truncated density

In the previous section, we derived pathwise estimators for compound Poisson approx-
imations by separating positive and negative jumps and adjusting the truncation lev-
els to keep the arrival rates of both constant. In this section, we develop an alter-
native approximation method in which, rather than truncate all small jumps, we
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FIGURE 6 Changing " with � while keeping Q� fixed.
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Here, " and �" move in opposite directions with the same magnitude �" D "�C�� � "� .

instead truncate their density. Here, too, we will develop first-order and second-order
approximations.

5.3.1 The method

We introduce a jump-size random variable QY� , which has the same density as Y� on
.�1;�"�[ Œ";1/, but with a positive density on .�"; "/. In the most general version
of the method, we choose the density of QY� on .�"; "/ to be proportional to a positive
function g� . This will allow QY� to change continuously with � and eliminates the need
to separate positive and negative jumps.

We let:

Q� D

Z "

�"

g� .y/ dy C �

denote the total arrival rate of jumps. We now require d Q�=d� D 0 to make the pathwise
method applicable to the new compound Poisson process. To achieve this, we let "
depend on � and denote it by "� . Setting d Q�=d� D 0, we find that we must have:

P"� D

R
jyj>"� Pq� .y/ dy C

R
jyj6"� Pg� .y/ dy

q� .�"� /C q� ."� / � g� ."� / � g� .�"� /
(32)

in contrast with (26). This mechanism for varying " with � is illustrated in Figure 6.
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Let:

QX1;� .t/ D Qc� t C

QN.t/X
kD1

QYk;�

where QN.t/ is a Poisson process with arrival rate Q�� , the QYk;� are iid with the same
distribution as QY� and:

Qc� D c� �

Z "�

�"�

yg� .y/ dy

Then QX1;� .t/ provides an alternative compound Poisson approximation to X� .
The derivative of QX1;� .t/ is:

@

@�
QX1;� .t/ D

d Qc�
d�
t C

QN.t/X
kD1

@

@�
QYk;�

where:

d Qc�
d�
D P�� �

Z
"�6jyj61

y Pq� .y/ dy �
Z "�

�"�

y Pg� .y/ dy

C "� P"� .q� ."� / � q� .�"� / � g� ."� /C g� .�"� //

With the normal correction, we get:

QX2;� .t/ D Q
� ."� /W.t/C QX1;� .t/

where Q
2
�
."� / D 


2
�
."� / � 


2
g;�
."� / and:


2g;� ."/ D

Z "

�"

y2g� .y/ dy

So:
@

@�
QX2;� .t/ D

d Q
� ."� /

d�
W.t/C

@

@�
QX1;� .t/

with:

d Q
2
�
."� /

d�
D

d"�
d�
"2� .q� ."� /C q� .�"� / � g� ."� / � g� .�"� //

C

Z "�

�"�

y2. Pq� .y/ � Pg� .y// dy

D "2�

�Z
jyj>"�

Pq� .y/ dy C
Z "�

�"�

Pg� .y/ dy

�

C

Z "�

�"�

y2. Pq� .y/ � Pg� .y// dy (33)
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A simple choice of g� .y/ would be to set it equal to some constant G, which may
or may not depend on � but should satisfy the constraint that Q
2

�
."� / > 0. If G does

not depend on � , many formulas simplify. For example, P"� reduces to:

P"� D

R
jyj>"� Pq� .y/ dy

q� .�"� /C q� ."� / � 2G

Also, on .�"� ; "� /, .@=@�/ QY� becomes:

@

@�
QY� D

.G � q� ."� //P"� C @=@� NQ� ."� /

G

On the other hand, to achieve a higher order of convergence, it is better to choose
G depending on � so that Q
2

�
."� / � 0 for all � , which yields:

G� D
3
2
"�3� 


2
� ."� /

This, however, leads to more complicated expressions and additional computation.

5.3.2 Examples

Example 5.7 (VG model) We use the same VG example as before and let g�.y/ �
1
2

to make Q
2� ."�/ > 0 for the "� values we try. The derivative of QY� with respect to �
is:

@

@�
QY� D

8̂̂<
ˆ̂:
PG� QY�=G�; QY� 6 �"�
� PM�

QY�=M�; QY� > "�
.1 � 2qvg."�//P"� � 2C PM� � e�"�M�=M�; j QY�j < "�

(34)

Proposition 5.8 Suppose that Assumption 5.1 holds and T > 3�=4. Then, in the
VG model, the bias in the pathwise derivative estimate for � is O."2�/ using QX1.T /,
and O."3�/ using QX2.T /.

As we repeatedly halve ", reducing it from 1
2

to 1
128

, our estimates of the bias
using the compound Poisson approximation QX1, based on 5 million replications, are
�28:69, �26:21, �5:84, �2:52, �0:71, �0:18 and �0:01, with standard errors of
approximately 0:04 to 0:05. Thus, the error decreases roughly like O."2/, as in our
discussion of Table 5 on page 31.

As in the previous section, adding the normal correction dramatically improves
accuracy. We present numerical results for this comparison after introducing alterna-
tive estimators in the next two sections.

Example 5.9 (NIG model) We use the same NIG example as before. The bounding
density is now a truncated double exponential distribution:

qde.y/ D

(
Cde exp.�.˛ � ˇ/y/; y > "ı
Cde exp.�.˛ C ˇ/jyj/; y 6 �"ı

(35)

where the constant Cde normalizes qde.y/.
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We let gı.y/ � 0:2 to make Q
2
ı
."ı/ > 0 for the "ı values we try. The following

result is established along the same lines as the previous examples.

Proposition 5.10 Suppose that Assumption 5.1 holds. Then, in the NIG model, the
bias in the pathwise derivative estimate for ı isO."ı/ using QX1.T /, andO."2

ı
/ using

QX2.T /.

5.4 Pathwise and likelihood ratio methods combined

In Sections 5.2 and 5.3, we let " depend on � to make �� independent of � and thus
avoid introducing discontinuities. In this section, we consider an alternative approach
that keeps " fixed (and thus lets � D �� vary) but uses LRM for the dependence of �
on � and uses pathwise differentiation for the jump sizes (and the normal correction).
L’Ecuyer (1990) combines these methods in other settings.

If " is independent of � , we have:

P�� D

Z
jyj>"

Pq� .y/ dy; P�C
�
D

Z
y>"
Pq� .y/ dy and P��� D

Z
y>"
Pq� .�y/ dy

Also, we have:

P
2� ."/ D

Z "

�"

y2 Pq� .y/ dy (36)

which is different from the derivative 
2
�
."/ in Sections 5.2 and 5.3.

To derive an estimator of dE� ŒV .X1;� .t//�=d� , we use the representation in (25).
With the Poisson probabilities:

p˙n .�/ D exp.��˙� t /
.�˙
�
t /n

nŠ

we have:

d

d�
E� ŒV .X1;� .t//�

D
d

d�

1X
m;nD0

pCm.�/p
�
n .�/E

�
V

�
c� t C

mX
kD1

Y C
k;�
�

nX
jD1

Y �j;�

��

D

1X
m;nD0

�
EŒV.X1;� .t//�

�
dpCm.�/

d�
p�n .�/C p

C
m.�/

dp�n .�/

d�

�

C pCm.�/p
�
n .�/

d

d�
E

�
V

�
c� t C

mX
kD1

Y C
k;�
�

nX
jD1

Y �j;�

���
(37)

Simple algebra yields:

d

d�
p˙n .�/ D p

˙
n .�/

P�˙�

�
n

�˙
�

� t

�
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so the first term in (37) equals:

1X
m;nD0

�
EŒV.X1;� .t//�p

C
m.�/p

�
n .�/

�
P�C
�

�
m

�C
�

� t

�
C P���

�
n

��
�

� t

���

Differentiating the second term in (37), we get:
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So (37) is equal to:
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where:

p˙� .y/ D
q� .˙y/

�˙
�

NP˙� .y/ D
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�
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�

D

Z 1
y

q� .˙y/ dy

�˙
�
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Z
"6jyj61

Pq� .y/ dy

The expression inside the expectation in (38) provides an estimator of the derivative.
A similar expression applies if we include the normal correction for the variance.

Note that:
@ NPC

�
.y/=@�

pC
�
.y/

D
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�
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Since, in general, P�C
�
¤ 0, we have:

.pC.y//�1
@

@�
NPC.y/ ¤ .q.y//�1

@

@�
NQC.y/

and the corresponding conclusion for negative jumps.
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The convergence rate analysis for the bias in Section 5.2 goes through essentially
as before. Because " no longer depends on � , the MGF of Pf";� .x/ is simply:

˚";� .s/

Z "

�"

.esy � 1 � sy/ Pq� .y/ dy

and the definition of Dk;� ."/ is changed to:

Dk;� ."/ D

Z "

�"

jyk Pq� .y/j dy

With these changes, Theorem C 3 holds as before.
We postpone discussion of numerical results until the next section and merely point

out some implementation aspects of our running examples. In the VG model, the
pathwise–LRM estimator takes longer to compute than the estimators of Sections 5.2
and 5.3 because .p˙� .y//

�1.@=@�/ NP˙� .y/ involves the computation of the infinite
integral in NQ˙� .y/. In the NIG model, the pathwise–LRM estimator is much faster
to evaluate because p˙

ı
.y/�1.@=@ı/ NP˙

ı
.y/ � 0, so for NIG the estimator in (38) is

simply:�
P�C
ı

�
NC.t/

�C
ı

� t

�
C P��ı

�
N�.t/

��
ı

� t

��
V.X1;ı/C Pcı tV

0.X1;ı.t//

which does not involve computation of the integral of the modified Bessel function.

5.5 Likelihood ratio method estimator

In this section, we derive pure LRM estimators for the CP and CP-N approximations.
The score function for a compound Poisson process is:

S1;�

N.t/X
kD1

Yk D P��

�
N.t/

��
� t

�
C

N.t/X
kD1

S� .Yk/ (39)

where S� .Yk/ is the score function of Yk . If we use X1 as the approximation, then
the sensitivity estimator is:

V 0.X1/ Pc� t C V.X1/S1;�

N.t/X
kD1

Yk

Because the parameter � appears in the drift c� and not just in the density of the
compound sum, the estimator involves differentiating V . This imposes a limitation
on the applicability of the estimator, requiring, for example, that V be Lipschitz
continuous.

The Journal of Computational Finance Volume 14/Number 2, Winter 2010/11



Estimating Greeks in simulating Lévy-driven models 39

TABLE 7 Estimated errors in derivative estimates in the VG model with parameter �.

" Approx. PW1 PW2 PW-LRM LRM

1/2 CP �32.75 (0.01) �28.69 (0.02) �18.76 (0.04) �18.76 (0.04)
1/2 CP-N 4.85 (0.03) �12.55 (0.64) 2.11 (0.05) 2.14 (0.08)

1/4 CP �18.27 (0.02) �26.21 (0.05) �4.79 (0.07) �4.67 (0.08)
1/4 CP-N 1.84 (0.03) 0.45 (0.05) 1.26 (0.08) 1.44 (0.10)

1/8 CP �6.24 (0.03) �5.84 (0.04) �1.71 (0.09) �1.85 (0.11)
1/8 CP-N 0.11 (0.03) �0.15 (0.04) 0.27 (0.09) 0.15 (0.12)

1/16 CP �2.52 (0.03) �2.52 (0.04) �0.22 (0.09) �0.21 (0.12)
1/16 CP-N 0.02 (0.03) �0.02 (0.04) 0.01 (0.09) 0.04 (0.12)

The last four columns compare the estimators in Sections 5.2–5.5. The reference value for the sensitivity is 23.04.

But if we use the approximationX2, then we can make c� the drift of the Brownian
correction and thus move the dependence on � out ofV and into the normal distribution
of the correction. Because X2.t/ is the independent sum of c� t C 
� ."/W.t/ andPN.t/

kD1
Yk , the score function is now the sum of the score functions of these two

pieces:
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�
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yk
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�
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� ."/
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(40)
where P
2

�
."/ is given by (36). So, the LRM estimator is V.X2/S2;� .X2/ and it does

not require the Lipschitz condition on V . Here, the Brownian term serves not only to
correct the level of the variance, but also to “spread out” the dependence on � in the
drift.

The convergence rates follow along the same lines as in the previous sections. Here,

2
�
."/ andD2;� ."/ are the same as those in Section 5.4, and the convergence rates for

both approximations are of the same order as those in Section 5.4.
In the VG model, the score function of Yk with parameter � is:

S�.y/ D 1y<0 � y PG� � 1y>0 � y PM� �
P��

��

In the NIG model, the score function of Yk with parameter ı is simply 0. The full
dependence on the parameter is embedded in the arrival rate (and the drift). As a
consequence, the pure LRM estimator coincides with the combined pathwise–LRM
estimator in this case.
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TABLE 8 Estimated errors in derivative estimates in the NIG model with parameter ı.

" Approx. PW1 PW2 PWC LRM/LRM

1/2 CP �8.61 (0.01) �8.63 (0.01) �8.59 (0.01)
1/2 CP-N 0.34 (0.02) �3.66 (0.07) 0.36 (0.02)

1/4 CP �8.39 (0.01) �8.58 (0.01) �7.86 (0.01)
1/4 CP-N 0.27 (0.02) 0.45 (0.02) 0.32 (0.02)

1/8 CP �6.47 (0.01) �8.19 (0.01) �5.82 (0.02)
1/8 CP-N 0.07 (0.02) 0.03 (0.02) 0.14 (0.02)

1/16 CP �5.24 (0.01) �7.41 (0.01) �3.86 (0.02)
1/16 CP-N 0.01 (0.02) �0.06 (0.02) 0.03 (0.03)

The last three columns compare the estimators in Sections 5.2–5.5; the combined pathwise–LRM estimator and
pure LRM estimator coincide in this case. The reference value for the sensitivity is 5.81.

5.6 Numerical results

We now compare the estimators of Sections 5.2–5.5 on our running examples: Euro-
pean options in the VG and NIG models and an Asian option in the NIG model. In
each case, we compare estimators derived from compound Poisson approximations
with (CP-N) and without (CP) the normal correction term. In reporting results, we
refer to the pathwise estimators of Sections 5.2 and 5.3 as PW1 and PW2; we refer to
the combined method of Section 5.4 as PWC LRM; and we refer to the pure LRM
estimator of Section 5.5 as LRM.

Table 7 on the preceding page reports estimated errors in the VG model, based on
5 million replications. For ease of comparison, we have repeated the values for PW1
from Table 5 on page 31. Table 8 and Table 10 on the facing page report estimated
errors (for European and Asian options, respectively) in the NIG model, based on 1
million replications. For ease of comparison, we have repeated the values for PW1
from Table 6 on page 32. Computing times in seconds are reported in Table 9 on the
facing page. The increase in computing time as " decreases varies widely because of
differences in the dependence on " of the truncated intensity �. We have not attempted
to optimize our Matlab implementations, and relative speeds could change if the
methods are implemented in a lower-level programming language.

The most salient and consistent feature of the numerical results is the dramatic
improvement achieved through inclusion of the normal correction term. This effect
overwhelms any other difference among the estimators. At small values of ", all the
CP-N estimators have similar errors. In the VG model, the estimators that use LRM
for the jumps generally have lower bias (particularly among the CP-N estimators with
larger " values and among all the CP estimators), but the pathwise estimators have
lower variance. The differences are less consistent in the NIG examples.
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TABLE 9 Computing times in seconds.

VG model NIG model‚ …„ ƒ ‚ …„ ƒ
PWC PWC

" PW1 PW2 LRM LRM PW1 PW2 LRM/LRM

1/2 49 46 110 38 25 44 16
1/4 51 47 299 40 56 60 18
1/8 59 51 878 43 796 625 40
1/16 75 56 1,649 50 5,326 5,310 190

The increase in computing time as " decreases varies widely because of differences in the dependence on " of the
truncated intensity 	.

TABLE 10 Estimated errors in derivative estimates for an Asian option in the NIG model
with parameter ı.

" Approx. PW1 PW2 PWC LRM/LRM

1/2 CP �5.18 (0.01) �5.11 (0.01) �5.17 (0.01)
1/2 CP-N 0.28 (0.03) �1.32 (0.13) 0.24 (0.03)

1/4 CP �5.07 (0.01) �4.85 (0.01) �4.78 (0.01)
1/4 CP-N 0.24 (0.03) 0.27 (0.03) 0.22 (0.03)

1/8 CP �4.19 (0.02) �4.18 (0.01) �3.35 (0.01)
1/8 CP-N 0.08 (0.03) 0.05 (0.03) 0.11 (0.03)

1/16 CP �3.12 (0.01) �2.98 (0.02) �2.23 (0.04)
1/16 CP-N �0.07 (0.03) �0.01 (0.04) 0.06 (0.06)

The last three columns compare the estimators in Sections 5.2–5.5; the combined pathwise–LRM estimator and
pure LRM estimator coincide in this case. The reference value for the sensitivity is 3.71.

In comparing errors, it should be stressed that the bias in each case results not from
the choice of estimator (pathwise or LRM) but rather from the choice of approximation
and, especially, how the approximation changes with � . Indeed, each of the estimators
is unbiased for the particular “directional” derivative specified in its construction.
Once we specify how ", �, Yk and so on vary with � , the bias is the difference between
the derivative of the expectation of the corresponding CP or CP-N approximation and
the derivative of the expectation with respect to the true Lévy process. In every case,
the bias vanishes as " becomes small (the various directional derivatives eventually
all coincide) but the errors could potentially be very different at larger values of ".

In contrast to the bias, the variance does depend on the estimation methodology and
not just the form of the approximation. In most applications, LRM estimators have
larger variance than pathwise estimators when both are applicable, so it is notewor-
thy that the standard errors in our comparisons are generally close across methods.
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The variability of LRM estimators results from the score function, whose variability
increases with the number of terms. In the Lévy process setting, we would expect to
see higher variance in LRM estimators over longer time horizons.

Given the overall consistency in performance of the CP-N-based estimators, the
main factors in choosing among them should be computational costs and ease of
implementation. These factors are very much model dependent, as they involve sam-
pling from truncated Lévy densities, integrating Lévy densities and differentiating
various model-specific quantities with respect to the parameter of interest.

6 SUMMARY

We have developed a variety of methods for estimating price sensitivities through
simulation of Lévy-driven models. The methods combine pathwise and likelihood
ratio method estimation techniques with alternative approaches to approximating
and simulating Lévy processes. Each method, both for simulation and for deriva-
tive estimation, has potential advantages, depending on the particular model and the
information available. We summarize our conclusions as follows:

� Given an exact method for simulating the increments of the driving Lévy pro-
cess, direct application of the pathwise method will often yield the best sensitiv-
ity estimates, at least for Lipschitz payouts. A representation of a Lévy process
as a time-changed Brownian motion can be useful in implementing pathwise
estimators, though this approach breaks down in the continuous-time limit if
the parameter of interest affects the time change.

� When the probability density of the Lévy increments is known, LRM estimation
is directly applicable using the score function derived from the density. A time-
change representation is often useful in deriving an expression for the density
as a mixture of normals. The resulting score function is often more tractable
but the “mixed” LRM estimator has higher variance than one based directly on
the score function for the increments.

� When the density is known only through its characteristic function or Laplace
transform, an LRM estimator can be implemented through numerical transform
inversion, as in Glasserman and Liu (2008). Saddlepoint approximations offer
an alternative to numerical transform inversion and provide nearly closed-form
expressions for the score function. They can be fast and easy to evaluate, but
their accuracy is unpredictable. Centering the approximate score by its sample
mean substantially improves the accuracy of the resulting LRM estimator.

� A compound Poisson process can approximate the dynamics of an infinite activ-
ity Lévy process, rather than just the distribution of its discrete increments. We
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have considered approximations that truncate all small jumps or truncate the
density of small jumps. Adding a deterministic drift centers the process at
its original mean, and adding a Brownian correction matches the original vari-
ance.Alternative approximations and combinations of pathwise derivatives and
LRM lead to alternative estimators. The Brownian correction can theoretically
improve convergence by an order of magnitude (from O."2/ to O."3/ in the
VG model, fromO."/ toO."2/ in the NIG model) and has a dramatic effect in
numerical tests.

� Of the compound-Poisson-based methods, the simplest to implement is often
a combination that uses LRM for the dependence of the Poisson rate on the
parameter and pathwise derivatives for the jump sizes and the mean and variance
of the Brownian correction.

APPENDIX A: SADDLEPOINT APPROXIMATION DERIVATION

Taking logarithms on both sides of (15), we get:
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Now apply this formula to K 0
�
.Os� .x//. Since K 0

�
.Os/ D x, differentiating both sides

with respect to � yields:
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and thus:
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Applying (A.2) to K� .Os� .x// and K 00
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Substituting these expressions into (A.1) and applying (A.4), we get:
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with P�n;� .Os/ given by:
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APPENDIX B: SADDLEPOINT APPROXIMATION TO NIG PROCESS

Solving K 0
˛;ˇ;�;ı

.s/ D x yields:
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For the parameter ˇ, the saddlepoint approximation to the score function is:

OSˇ .x/ D x � � � ıˇ.˛
2 � ˇ2/�1=2

which can be verified to be the true score function. For the other parameters, the
approximate and exact score functions are as follows:
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APPENDIX C: TECHNICAL APPENDIX

In this appendix, we discuss the conditions we use to analyze the convergence of
various estimators as the truncation level " becomes small. Asmussen and Rosinski
(2001), Cont and Tankov (2004) and Signahl (2003) analyze the convergence of the
approximations X1 and X2 themselves. Our analysis builds on Signahl (2003), in
particular. We give conditions that allow us to identify the order of convergence of
the estimators and discuss these conditions. This appendix discusses the conditions;
proofs of the convergence results are given in Liu (2008).

C.1 Convergence rates of the bias: truncated jumps

We begin by considering the estimators (27) and (29) as the truncation level " becomes
small.

C.1.1 A general result

For simplicity, we just consider t D 1 and omit the argument t from the notation,
writing, for example,X� .t/ asX� . If we could apply the pathwise method directly to
X� , we would be estimating:

d

d�
EŒV .X";� CX1;� /� D E

�
V 0.X";� CX1;� /

�
@

@�
X";� C

@

@�
X1;�

��
If X1;� is used as the approximation, then we estimate:

d

d�
EŒV .X1;� /� D E

�
V 0.X1;� /

@

@�
X1;�

�
The bias therefore is:

d

d�
.EŒV .X";� CX1;� /� �EŒV.X1;� /�/ (C.1)

Signahl (2003) analyzes differences in expectations of the type in (C.1), without
derivatives, both for X1 and X2. He applies a Taylor approximation to V and thus
reduces the question of convergence of the expectation of V to the convergence of
the moments of the residual X";� . Under appropriate conditions, he finds that the
error using X1 is O."2/ whereas the error using X2 is O."3/. In our setting, we will
weaken the conditions on V (Signahl (2003) and Cont and Tankov (2004) assume V
has bounded derivatives) and we will need to include new terms arising from pathwise
differentiation, in addition to the moments of the residual.

We let:

Mk;� ."/ D

Z "

�"

jyjkq� .y/ dy for k D 1; 2
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and:
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that in the finite variation case, as shown in Signahl (2003), Jensen’s inequality gives:
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So, for sufficiently small ", in the finite variation case:
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We also let:
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so (C.1) equals:
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The analysis proceeds by differentiating in� and then applying a Taylor approximation
to the function V1;� to get:
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where �i .X";� /, i D 1; 2, lie between 0 and X";� . Once these steps are justified, the
key is then to determine the order of the two terms in (C.2).

This analysis requires several conditions, starting with the following conditions
on V .

Assumption C 1 We assume that V.x/ is four times differentiable. For x > 0,
0 6 jV .n/.x/j 6 CvevCx , and for x < 0, 0 6 jV .n/.x/j 6 Cv ev�jxj for some
constants Cv > 0, vC 2 .0; sC/ and v� 2 .0; s�/, n D 0; : : : ; 4.
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The differentiability assumed here is not directly applicable to option payouts.
We can always find a series of differentiable functions approximating a less smooth
payout, and we can replace a payout with its conditional expectation shortly before
maturity. However, our analysis does not address these additional sources of approx-
imation error. In practice, the key distinction is generally between payouts that are
Lipschitz continuous in the underlying asset price (such as standard calls and puts)
and payouts with discontinuities. The pathwise method is generally inapplicable with
discontinuities. The condition at n D 0 ensures that EŒV.X� /� exists and is finite.

Our second assumption imposes conditions on the Lévy density q� and the MGF
˚";� extended to the complex plane. The first item formally states conditions that we
introduced earlier.

Assumption C 2

1) q� .y/ > 0 for all y 2 R; q� .y/ is differentiable in � ; and:Z
R

q� .y/ dy D1

2) For any �0 there is an integrable function Hq for which, in the finite variation
case, .esy1jyj>1 C y1jyj<1/j Pq� .y/j 6 Hq.y/, and in the compensated case,
.esy1jyj>1Cy21jyj<1/j Pq� .y/j 6 Hq.y/ for all � in a neighborhood of �0, and
for all s 2 .�s�; sC/.

3) For any s 2 .�s�; sC/, j˚� .s C iu/uj2 as a function of u is integrable.

Condition 1) of Assumption C 2 ensures that X" has a density, denoted by f";� .x/,
due to Theorem 27.4 of Sato (1999); we denote its CDF by F";� .x/. Condition 2)
ensures, for any " > 0, the interchangeability of integration and differentiation in the
following equation:

d

d�

Z
R

esyq� .y/1jyj>" dy D
Z

R

esy Pq� .y/1jyj>" dy for s 2 .�s�; sC/

Using the bound:ˇ̌̌
ˇesCiu �

nX
kD0

.s C iu/k

kŠ

ˇ̌̌
ˇ 6 min

�
.ejsj C 1/

js C iujn

nŠ
; ejsj
js C iujnC1

.nC 1/Š

�
(C.3)

for s; u 2 R, condition 2) also implies that:

d

d�

Z "

�"

.esy � 1 � sy/q� .y/ dy D
Z "

�"

.esy � 1 � sy/ Pq� .y/ dy

Condition 3) of Assumption C 2 depends on the decay rate of j˚� .s C iu/j along
a vertical line in the complex plane. If j˚� .s C iu/j has an exponential decay, then
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condition 3) is automatically satisfied. Orey (1968) gives a condition on q� implying
that j˚� .s C iu/j decays exponentially in u for any fixed s. If j˚� .s C iu/j has a
power decay in u, Theorem 28.4 of Sato (1999) provides a way to estimate the power
decay rate based on the behavior of q� near 0.

Returning to (C.2), we define:

Dk;� ."/ D "
k

Z
jyj>"
j Pq� .y/j dy C

Z "

�"

jyk Pq� .y/j dy

It is easy to see that D3;� ."/ is always of higher order than D2;� ."/.
Liu (2008) shows, with a weaker Assumption C 2 and modified definition of

Dk;� , that the first term in (C.2) is O.M2;� ."// and that the second term in (C.2)
is O.D2;� ."//. We will show in the next subsection that with our more restrictive
Assumption C 2 and the definition of Dk;� , this conclusion still holds. This means
that the overall convergence order of the sensitivity estimate is bounded by whichever
of M2;� ."/ and D2;� ."/ has the lower convergence order.

A similar analysis applies to X2;� and the error:

d

d�
.EŒV .X";� CX1;� /� �EŒV.
� ."/W CX1;� /�/ (C.4)

In this case, the convergence order is determined by whichever ofM3;� ."/ andD3;� ."/
has the lower order. This demonstrates that including the normal correction term does
indeed result in higher-order convergence, becauseM3;� ."/ andD3;� ."/ have higher
order than M2;� ."/ and D2;� ."/, respectively. We summarize this discussion in the
following theorem.

Theorem C 3 Under Assumptions C 1 and C 2, the order of the bias in (C.1) is the
order of the maximum of M2;� ."/ and D2;� ."/; the order of the bias in (C.4) is the
order of the maximum of M3;� ."/ and D3;� ."/.

We stress that all our results on convergence hold in the big-O sense and are
thus upper bounds. The exact convergence rate in each case is potentially faster than
indicated by our results.

C.1.2 Proof of Theorem C 3

First, let us show that the MGF of PF";� .x/ is P̊";� .s/=s; s 2 .�s�; sC/. Let P̊";� .s/ D
˚";� .s/R";� .s/. Then:

R";� .s/ D

Z "

�"

.esy � 1 � sy/ Pq� .y/ dy C .es" � 1 � s"/
Z 1
"

Pq� .y/ dy

C .e�s" � 1C s"/
Z 1
"

Pq� .�y/ dy

The Journal of Computational Finance Volume 14/Number 2, Winter 2010/11



Estimating Greeks in simulating Lévy-driven models 49

Applying (C.3), we can bound jR";� .s C iu/j as follows:

jR";� .s C iu/j 6 1
2

ejs"jjs C iuj2
Z "

�"

jy2 Pq� .y/j dy

C 1
2

ejs"jjs C iuj2"2
Z
jyj>"
j Pq� .y/j dy

D 1
2

ejs"jjs C iuj2D2;� ."/ (C.5)

Then: ˇ̌̌
ˇ P̊";� .s C iu/

s C iu

ˇ̌̌
ˇ 6 1

2
ejs"jD2;� ."/j˚";� .s C iu/jjs C iuj (C.6)

where the right-hand side is an integrable function of u by condition 3) of
Assumption C 2. So j P̊";� .s C iu/=.s C iu/j is an integrable function of u for any
s 2 .�s�; sC/.

Since ˚";� .s/=s, s 2 .�s�; 0/ is the MGF of F";� .x/, and �˚";� .s/=s, s 2 .0; sC/
is the MGF of NF";� .x/ D 1�F";� .x/, we have the inverse formula forF";� .x/ (similar
formula for NF";� .x/):

F";� .x/ D
e�sx

2� i

Z 1
�1

e�iux˚";� .s C iu/

s C iu
du

This, combined with (C.6), shows that P̊";� .s/=s is the MGF of PF";� .x/.
Now we return to the proof of Theorem C 3. The first term of (C.2) isO.M2;� ."//,

as shown in Liu (2008). We need to show the second term is O.D2;� ."// using the
new Assumption C 2 and definition of Dk;� .

Applying (8) and noting that P̊";� .s/=s is the MGF of PF";� .x/, we have:

ˇ̌̌
ˇE
�
V 001;� .�2.X"//X"

@

@�
X"

�ˇ̌̌
ˇ

D

ˇ̌̌
ˇ
Z

R

V 001;� .�2.x//x
PF";� .x/ dx

ˇ̌̌
ˇ

6 Cv
Z 1
0

evCxjx PF";� .x/j dx C Cv

Z 0

�1

e�v�xjx PF";� .x/j dx

6 Cv
�Z 1

0

x2e�2
x dx

�1=2�Z
R

.e.vCC
/x PF";� .x//
2 dx

�1=2

C Cv

�Z 1
0

x2e2
x dx

�1=2�Z
R

.e.v�C
/x PF";� .x//
2 dx

�1=2
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for small 
 > 0 by the Schwartz inequality, and:ˇ̌̌
ˇE
�
V 001;� .�2.X"//X"

@

@�
X"

�ˇ̌̌
ˇ

D
Cv
p
2


�
1

2�

Z
R

ˇ̌̌
ˇ P̊";� .vC C 
C iu/

vC C 
C iu

ˇ̌̌
ˇ2 du

�1=2

C
Cv
p
2


�
1

2�

Z
R

ˇ̌̌
ˇ P̊";� .v� C 
C iu/

v� C 
C iu

ˇ̌̌
ˇ2 du

�1=2
(C.7)

The last equation is due to the Planchrel equality. By (C.5) and by condition 3) of
Assumption C 2, (C.7) is bounded by D2;� ."/ times some constant. Therefore, the
second term of (C.2) is O.D2;� ."//, which completes the proof.

C.1.3 Convergence rate of the bias in the VG and NIG models

As a consequence of Theorem C 3, we have the following proposition.

Proposition C 4 Suppose that Assumption C 1 holds and T > 3�=4. Then, in the
VG model, the bias in the pathwise derivative estimate for � is O."2/ using X1.T /,
and O."3/ using X2.T /.

Proof First, we verify that the VG process satisfies Assumption C 2. Condition 1)
is easily verified. Since there are constants c1 > 0 and c2 > 0 such that Pqvg;�.y/ 6
c1 exp.�c2jyj/, condition 2) is satisfied. From the form ofqvg;�, we see thatM1;�."/ D

O."/ and M2;�."/ D O."2/. Also, we have j˚vg;�.s C iu/j D O.juj�2t=�/. So if
4t=� > 3, then j˚vg;�.s C iu/uj2 is integrable and condition 3) is satisfied.

With condition 3) of Assumption C 2 satisfied, we have D2;� ."/ D O."2/. So,
by Theorem C 3, the error in the pathwise estimate using X1.T / is O."2/. Similar
calculations give M3;� ."/ D O."

4/ and D3;� ."/ D O."3/, so the error using X2.T /
is O."3/. �

In the NIG model, we consider sensitivities to the parameter ı. Interestingly, the
convergence rates in this example are slower than in the previous one.

Proposition C 5 Suppose that Assumption C 1 holds. Then, in the NIG model, the
bias in the pathwise derivative estimate for ı is O."/ using X1.T /, and O."2/ using
X2.T /.

Proof We need two properties of the function K1. Applying a bound for modified
Bessel functions (Laforgia (1991)), it follows that:

K1.x/

K1.y/
> ey�x; 0 < x < y
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SoK1.˛jyj/ < exp.˛" � ˛jyj/K1.˛"/ for jyj > ". The second property we need is
K1.x/ � 1=x as x ! 0, by which we have 
2

ı
."/ D O."/.

Now we check Assumption C 2. Condition 1) is easily verified. By the properties
of K1 just noted, there exist c1 > 0 and c2 > 0, such that:

.esy1jyj>1 C y
21jyj<1/j Pqnig.y/j 6 c1 exp.�c2jyj/

Since j˚nig;ı.s C iu/j has an exponential decay along the vertical line, condition 3)
is satisfied. Direct calculation shows that D2;ı."/ is O."/, and M3;ı."/ and D3;ı."/
are both O."2/. �

C.2 Pathwise method: truncated density

C.2.1 The method

We introduce a jump-size random variable QY� which has the same density as Y� on
.�1;�"� [ Œ";1/, but with a positive density on .�"; "/. We choose the density
of QY� on .�"; "/ to be proportional to a positive function g� . This will allow QY� to
change continuously with � and eliminates the need to separate positive and negative
jumps. We impose the following assumption on g� .y/.

Assumption C 6 The function g� .y/ is integrable on .�"; "/ and differentiable in
� . Moreover, Pg� .y/ is bounded by an integrable function Hg.y/.

We let:

Q� D

Z "

�"

g� .y/ dy C �

denote the total arrival rate of jumps. We now require d Q�=d� D 0 to make the pathwise
method applicable to the new compound Poisson process. To achieve this, we let "
depend on � and denote it by "� . Setting d Q�=d� D 0, we find that we must have:

P"� D

R
jyj>"� Pq� .y/ dy C

R
jyj6"� Pg� .y/ dy

q� .�"� /C q� ."� / � g� ."� / � g� .�"� /
(C.8)

in contrast with (26). This mechanism for varying " with � is illustrated in Figure 6
on page 33.

The density of QY� is:

f QY�
.y/ D

8̂̂<
ˆ̂:
q� .y/

Q�
; jyj > "�

g� .y/

Q�
; jyj < "�
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The derivative of QY� with respect to � is then given by:

@

@�
QY� D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

� PQ� . QY� /

q� . QY� /
; QY� 6 �"�

PNQ� . QY� /

q� . QY� /
; QY� > "�

R "�
QY�
Pg� .y/ dy C .g."� / � q� ."� //P"� C

PNQ� ."� /

g� . QY� /
; j QY� j < "�

(C.9)

Let:

QX1;� .t/ D Qc� t C

QN.t/X
kD1

QYk;�

where QN.t/ is a Poisson process with arrival rate Q�� , the QYk;� are iid with the same
distribution as QY� and:

Qc� D c� �

Z "�

�"�

yg� .y/ dy

Then QX1;� .t/ provides an alternative compound Poisson approximation to X� .
The derivative of QX1;� .t/ is:

@

@�
QX1;� .t/ D

d Qc�
d�
t C

QN.t/X
kD1

@

@�
QYk;�

where:

d Qc�
d�
D P�� �

Z
"�6jyj61

y Pq� .y/ dy �
Z "�

�"�

y Pg� .y/ dy

C "� P"� .q� ."� / � q� .�"� / � g� ."� /C g� .�"� //

With the normal correction, we get:

QX2;� .t/ D Q
� ."� /W.t/C QX1;� .t/

where Q
2
�
."� / D 


2
�
."� / � 


2
g;�
."� /, and:


2g;� ."/ D

Z "

�"

y2g� .y/ dy

So:
@

@�
QX2;� .t/ D

d Q
� ."� /

d�
W.t/C

@

@�
QX1;� .t/
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with:

d Q
2
�
."� /

d�
D

d"�
d�
"2� .q� ."� /C q� .�"� / � g� ."� / � g� .�"� //

C

Z "�

�"�

y2. Pq� .y/ � Pg� .y// dy

D "2�

�Z
jyj>"�

Pq� .y/ dy C
Z "�

�"�

Pg� .y/ dy

�

C

Z "�

�"�

y2. Pq� .y/ � Pg� .y// dy (C.10)

C.2.2 Convergence rate of the bias

The analysis goes through as before, with some changes in definition. Corresponding
to Mk;� ."/ and Dk;� ."/, we define, for k D 1; 2; 3; 4:

QMk;� ."/ DMk;� ."/C

Z "

�"

jyjkg� .y/ dy

QDk;� ."/ D Dk;� ."/C "
k

Z "

�"

j Pg� .y/j dy

With these definitions, we state the following result, proved in Liu (2008).

Theorem C 7 Under Assumptions C 1–C 6, the order of the bias of the pathwise
estimate using QX1;� is the order of the maximum of QM2;� ."/ and QD2;� ."/; the order
of the bias using QX2;� is the order of the maximum of QM3;� ."/ and QD3;� ."/.

A simple choice of g� .y/ would be to set it equal to some constant G, which may
or may not depend on � but should satisfy the constraint that Q
2

�
."� / > 0. If G does

not depend on � , a lot of formulas introduced above simplify. For example, P"� reduces
to:

P"� D

R
jyj>"� Pq� .y/ dy

q� .�"� /C q� ."� / � 2G

Also on .�"� ; "� /, .@=@�/ QY� becomes:

@

@�
QY� D

.G � q� ."� //P"� C
@
@�
NQ� ."� /

G

On the other hand, to achieve a higher order of convergence, it is better to choose
G depending on � so that Q
2

�
."� / � 0 for all � , which yields:

G� D
3
2
"�3� 


2
� ."� /
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Then:

P"� D
"2
�

R
jyj>"� Pq� .y/ dy C 3

R "�
�"�

y2 Pq� .y/ dy

�2"2
�
.q� .�"� /C q� ."� / � 3"

�3
�

2
�
."� //

PG� D �
3
4
"�3�

�
"2�

Z
jyj>"�

Pq� .y/ dy C
Z "�

�"�

y2 Pq� .y/ dy

�
and:

@

@�
QY� D

."� � QY� / PG� C .G� � q� ."� //P"� C @=@� NQ� ."� /

G�

for QY� 2 .�"� ; "� /. This, however, involves more computation.

C.2.3 Convergence rates of the bias in the VG and NIG models

Proposition C 8 Suppose that Assumption C 1 holds and T > 3�=4. Then, in the
VG model, the bias in the pathwise derivative estimate for � is O."2�/ using QX1.T /
and O."3�/ using QX2.T /.

Proof By simple algebra:

Q
2� ."�/ D 

2
� ."�/ � "

3
�=3 D O."

2
�/;

QD2;� ."�/ D D2;�."�/ D O."
2
�/

and:
QM3;�."�/ D O."

3
�/;

QD3;� ."� / D D3;�."�/ D O."
3
�/

�

The following result is established along the same lines as the previous examples.

Proposition C 9 Suppose that Assumption C 1 holds. Then, in the NIG model, the
bias in the pathwise derivative estimate for ı isO."ı/ using QX1.T /, andO."2

ı
/ using

QX2.T /.

C.3 Convergence rate of the bias in the pathwise–LRM method

The convergence rate analysis for the bias in Section 5.2 goes through essentially as
before. Because " no longer depends on � , the MGF of Pf";� .x/ is simply:

˚";� .s/

Z "

�"

.esy � 1 � sy/ Pq� .y/ dy

and the definition of Dk;� ."/ is changed to:

Dk;� ."/ D

Z "

�"

jyk Pq� .y/j dy

With these changes, Theorem C 3 holds as before.
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