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1. Introduction
Basket default swaps are derivative securities tied to an
underlying portfolio (or “basket”) of corporate bonds or
other assets subject to credit risk. A basket default swap
provides one party in the swap (the protection buyer) with
a type of insurance against the possibility of default in
exchange for regular payments made to the other party
(the protection seller). Insuring a basket of assets is typ-
ically less expensive than insuring each asset separately.
For example, in a first-to-default swap, the protection buyer
is compensated if one asset in the basket defaults but
receives no compensation for any subsequent defaults. This
is less expensive than buying insurance against all possi-
ble defaults and may provide adequate protection if mul-
tiple defaults are very unlikely. In an nth-to-default swap,
the protection buyer absorbs losses resulting from the first
n − 1 defaults and receives compensation only upon the
occurrence of the nth default. See Bruyere et al. (2006) and
Schönbucher (2003) for general background on these types
of contracts.
Valuing basket default swaps (and, indeed, all portfolio

credit derivatives) requires a model of the joint distribution
of the default times of the assets in the portfolio. For pric-
ing purposes, we are interested in the distribution under a
suitable “risk-neutral” probability measure; we will assume
that such a probability exists and is, in effect, chosen by
the market. The marginal distribution of the time to default
for each asset is typically gleaned from market information
related to that asset, such as spreads on corporate bonds

or on single-asset credit default swaps (see, e.g., Duffie
and Singleton 2003). The main modeling challenge there-
fore lies in specifying the dependence among the default
times, given their marginal distributions. The most widely
used mechanism for characterizing this dependence is the
Gaussian copula model (Gupton et al. 1997, Li 2000).
Simple cases of this and related models can be evaluated

using transform inversion and numerical integration tech-
niques, as in Laurent and Gregory (2003). However, more
general cases typically require Monte Carlo simulation. If
defaults are rare or if multiple defaults are required to
trigger a payment to the protection buyer, then most repli-
cations in an ordinary Monte Carlo simulation are unin-
formative and a very large number of replications may be
required to obtain precise price estimates.
To address this difficulty, Joshi and Kainth (2004) intro-

duced an innovative importance-sampling technique that
forces all paths to produce at least n defaults in pricing an
nth-to-default swap. Their method generates default times
sequentially, at each step, increasing the probability that the
next asset defaults within the life of the swap contract until
n defaults have occurred. Their implementation of this idea
cleverly exploits features of the Gaussian copula model.
This procedure is largely unrelated to techniques com-

monly used in the rare-event simulation literature. It is rem-
iniscent of urn sampling schemes (cf. Feller 1968) used in
clinical trials to force a certain percentage of subjects to be
assigned to each treatment, but is more complex because of
the dependence between default times. Also, unlike most
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importance-sampling techniques, the Joshi-Kainth (2004)
method violates “absolute continuity,” in the sense that their
importance-sampling distribution assigns probability zero
to certain events that have positive probability under the
original sampling distribution.
The purpose of this paper is to analyze, extend, and

improve the original method of Joshi and Kainth (2004).
We first provide theoretical support for the method through
a derivation of the likelihood ratio and verification of unbi-
asedness, despite the violation of absolute continuity. These
results are implicit in Joshi and Kainth (2004), but a rig-
orous analysis in a more general formulation is useful as a
step toward improving the method. We then investigate the
variance of the estimator. We show that the order in which
the default times are generated affects the variance and that
the method does not necessarily reduce variance; indeed,
we give conditions under which an increase in variance is
guaranteed.
To address these issues, we change the default probabil-

ities used by Joshi and Kainth (2004) to force n defaults
on every path. The values used by Joshi and Kainth (2004)
are intuitively appealing but somewhat arbitrary; we replace
these with values that are, in a certain sense, optimal when
the default times are independent. These values guaran-
tee a reduction in variance inversely proportional to the
probability of at least n defaults. We apply this method
to the Gaussian copula with a factor structure that makes
defaults conditionally independent, and we show that this
extension also guarantees variance reduction. To obtain still
greater variance reduction, we apply stratified sampling to
the underlying factors. These ideas apply to other factor
copula models as well.
Section 2 provides background on basket default swaps

and the Gaussian copula model. Section 3 presents the algo-
rithm of Joshi and Kainth (2004) and discusses some of
its theoretical properties. Section 4 presents our alterna-
tive, based on conditional default probabilities, in the case
of independent default times. Section 5 extends this to the
Gaussian copula and §6 combines this method with strat-
ified sampling of underlying factors. Section 7 concludes
the paper. Most proofs are contained in the appendix.

2. Problem Description
This section describes the class of credit derivatives we
consider and reviews the widely used Gaussian copula
model of dependent default times.

2.1. Basket Default Swaps

We consider credit derivatives tied to a basket (or portfo-
lio) of N underlying assets, such as bonds, loans, or credit
default swaps. Typical values of N range from 5 to around
100. We let �i denote the default time of the ith asset, i=
1� � � � �N , taking �i =� if the ith asset never defaults. We
consider the pricing of a contract with a discounted payoff
�V ��1� � � � � �N 	 depending on the default times.

The specific case of a basket default swap provides pro-
tection against the nth default in the basket, with n smaller
than N and typically much smaller. This type of nth-to-
default swap is less expensive than insuring each asset sep-
arately and may provide adequate protection if multiple
defaults are unlikely. We use T to denote the life of the
contract. Its cash flows are as follows. At dates 0 < T1,
T2� � � � � Tm � T , the protection buyer is scheduled to make
fixed payments of s1� � � � � sm to the protection seller. How-
ever, if the nth default occurs before T , these payments
cease and the protection seller makes a payment to the pro-
tection buyer. This payment is determined by the identity
of the nth asset to default, but is otherwise fixed. If the ith
asset is the nth to default, the payment is 1− ri, where ri
is the recovery rate and 1 is the (normalized) asset value.
(Differences in asset values can be absorbed into differ-
ences in recovery rates.) We denote by R the recovery rate
for the nth asset to default.
As in Joshi and Kainth (2004), we write the discounted

payoff of the swap as the difference between the discounted
payoffs of the payments made between the parties, called
the protection leg and the value leg:

�V ��1� � � � � �N 	= Vvalue��1� � � � � �N 	−Vprot��1� � � � � �N 	�

We write D�t	 for the discount factor for the interval from
0 to t and take this to be deterministic; in the simplest case,
D�t	 = exp�−rt	 for some fixed rate r . Let � denote the
time of the nth default. Then,

Vvalue��1� � � � � �N 	= �1−R	D��	I�� � T 	�

with I�� � T 	 the indicator of the event that the nth default
occurs before T ; and

Vprot��1� � � � � �N 	=



j∑
i=1

siD�Ti	+ sj+1D��	
� − Tj

Tj+1− Tj
if Tj � � � Tj+1�

m∑
i=1

siD�Ti	 if � > T �

The first term reflects the convention that upon the nth
default, the protection buyer makes an accrued payment
to the protection seller, with these payments accruing lin-
early between the dates Tj . To price the swap is to compute
E� �V ��1� � � � � �N 		�
It will be convenient to subtract the deterministic com-

ponent of the swap and define

V ��1� � � � � �N 	= �V ��1� � � � � �N 	+
m∑
i=1

siD�Ti	�

so it suffices to compute E�V ��1� � � � � �N 		. Moreover,
V ��1� � � � � �N 	 is zero unless n or more defaults occur
before T , so

E�V ��1� � � � � �N 		=E�V ��1� � � � � �N 	I�� � T 		� (1)

Using this formulation, Joshi and Kainth (2004) develop
a simulation method that generates at least n defaults on
every path.
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2.2. The Gaussian Copula Model

The expectation in (1) is over the joint distribution of
the default times, which we have not yet specified. The
marginal distribution of each �i is typically extracted from
the market prices of credit default swaps or bonds; these
market prices are used to construct a hazard rate function hi
from which we get the distribution

Fi�t	= P��i � t	= 1− exp
(
−
∫ t

0
hi�s	ds

)
�

The Gaussian copula (Gupton et al. 1997, Li 2000) is
a widely used mechanism for specifying a joint distribu-
tion for the default times consistent with these marginals.
The dependence among �1� � � � � �N is determined by under-
lying jointly normal random variables W1� � � � �WN . Each
Wi has a standard normal distribution �, so ��Wi	 is
uniformly distributed on �0�1	 and �i = F −1

i ���Wi		 has
distribution Fi. However, W1� � � � �WN are correlated, with
correlation matrix �, and this introduces (and, indeed, com-
pletely characterizes) dependence among the default times
�1� � � � � �N .
For purposes of simulation, it is often convenient to

work with the Cholesky decomposition of the correlation
matrix �. The Cholesky decomposition produces a lower-
triangular matrix C= �Cij � with �=CC�. This allows us
to write W = C�Z with �Z an N × 1 vector of independent
standard normal random variables. We will make the sim-
plifying assumption that � has full rank so that the diagonal
elements of C are all nonzero.
Using this formulation, each replication of an ordinary

Monte Carlo simulation would proceed as follows:
Step 1. Generate N independent uniforms U1� � � � �UN .
Step 2. Generate N independent normals �Z1� � � � � �ZN by

setting �Zi =�−1�Ui	.
Step 3. Set W=C�Z.
Step 4. Generate �1� � � � � �N by setting �i = F −1

i ���Wi		.
Step 5. Compute V ��1� � � � � �N 	.
For later use, we record the following consequence of

the Cholesky decomposition, which is implicit in Joshi and
Kainth (2004):

Lemma 1. If � > 0, W = C�Z and �i = F −1
i ���Wi		, i =

1� � � � �N , then

P��i� t � �Z1����� �Zi−1	=�

(
�−1�Fi�t		−

∑i−1
j=1Cij

�Zj

Cii

)
� (2)

Proof. By construction,

�i = F −1
i ���Wi		= F −1

i ���Ci1
�Z1+ · · ·+Cii

�Zi		�

so

P��i � t � �Z1� � � � � �Zi−1	

= P�Wi ��−1�Fi�t		 � �Z1� � � � � �Zi−1	

= P
( i∑
j=1

Cij
�Zj ��−1�Fi�t		 � �Z1� � � � � �Zi−1

)

= P
(
�Zi �

[
�−1�Fi�t		−

i−1∑
j=1

Cij
�Zj

]/
Cii � �Z1� � � � � �Zi−1

)
�

from which the result follows. That Cii is nonzero follows
from the assumption that � has full rank. �

Even if � is only positive semidefinite, so that some Cii

may be zero, (2) remains valid provided the expression on
the right is interpreted as a step function that jumps from
zero to one at the point at which the numerator in the argu-
ment of � equals zero.

3. The Joshi-Kainth Method
For baskets of high-quality credits or short-maturity swaps,
defaults are rare events. Ordinary Monte Carlo simulation
therefore produces few paths with n or more defaults; nearly
all paths simply return a value of zero for V ��1� � � � � �N 	.
This makes importance sampling (IS) potentially attractive
in this problem.
Joshi and Kainth (2004) introduced an innovative

importance-sampling method (henceforth, the JK method)
that forces all paths to produce at least n defaults. Their
method is largely unrelated to techniques commonly used
in the rare-event simulation literature and, in particular,
to the techniques developed in the credit risk context by
Avranitis and Gregory (2001), Glasserman and Li (2005),
Joshi (2005), and Kalkbrener et al. (2004). In this sec-
tion, we review the JK method, establish some proper-
ties of the method, introduce some initial improvements,
and present some numerical examples. Our examples moti-
vate an improved method that takes advantage of the key
insights of Joshi and Kainth (2004) while producing far
greater variance reduction.

3.1. The JK Algorithm

We first give an informal description of the JK method
in the case of a first-to-default swap. The JK method first
determines whether a particular asset defaults within the
life of the swap, and, if a default is to occur, it then deter-
mines the time of the default in the interval �0� T �. Only the
default probabilities are changed. The first asset is assigned
a probability 1/N of default by time T (regardless of its
actual default probability). If it defaults, then the impor-
tance sampling is turned off and the simulation proceeds
in the usual way. Otherwise, the second asset is assigned a
default probability of 1/�N − 1	. The default probabilities
for subsequent assets are increased through the sequence
1/�N − 2	�1/�N − 3	� � � � until a default occurs, at which
point importance sampling is suspended; if we reach the
N th asset and no default has yet occurred, the N th asset is
given a default probability of 1/�N − �N − 1		 = 1. This
ensures that at least one default occurs on every path. The
case of an nth-to-default swap works similarly. When the
algorithm gets to the ith asset, if j < n defaults have thus
far occurred, the ith asset is made to default with proba-
bility �n− j	/�N − i+ 1	, ensuring that at least n defaults
occur on every path. Once n defaults have occurred, the
method reverts to the original sampling procedure. Each
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path is then weighted by a likelihood ratio to correct for
the change in distribution.
The importance-sampling probabilities used by Joshi and

Kainth (2004) may be interpreted as follows. Consider an
urn initially containing n black balls and N − n white
balls. Balls are drawn from the urn at random, without
replacement. If j < n of the first i− 1 balls are black, then
the probability that the ith draw produces a black ball is
�n− j	/�N − i+ 1	. All n black balls will eventually be
drawn.
We present the algorithm in a somewhat more generic

form than that given in Joshi and Kainth (2004); this will
facilitate the analysis and extension. For i= 2� � � � �N , write
Fi�t � �1� � � � � �i−1	 for the conditional distribution of the
default time �i given the previous default times �1� � � � �
�i−1. A generic method for simulating the default times
generates independent uniforms U1� � � � �UN and sets
�1 = F −1

1 �U1	 and

�i = F −1
i �Ui � �1� � � � � �i−1	� i= 2� � � � �N �

the inverse taken with respect to the first argument.
For the IS algorithm, define default indicator variables

Yi = I��i � T 	, i= 1� � � � �N . The conditional default prob-
abilities are then given by p1 = F1�T 	 and

pi = P�Yi = 1 � �1� � � � � �i−1	= Fi�T � �1� � � � � �i−1	�
i= 2� � � � �N �

These will be replaced by new probabilities p̃i, i =
1� � � � �N , with p̃1 fixed and p̃i a function of Y1� � � � � Yi−1.
The particular choice used by Joshi and Kainth (2004) can
be expressed as

p̃1 = n/N� p̃i =



(
n−

i−1∑
j=1

Yj

)/
�N − i+ 1	�

i−1∑
j=1

Yj < n�

pi�
i−1∑
j=1

Yj � n�

(3)

Here, the sum over Yj simply counts the number of assets
defaulting by time T .
The JK procedure can be viewed as generating the

pairs �Y1� �1	� � � � � �YN � �N 	 recursively using independent
V1� � � � � VN , uniformly distributed between zero and one.
Each replication works as follows:
Sampling Procedure. For each i= 1� � � � �N ,
Step 1. Generate Vi uniformly over �0�1	.
Step 2. Set Yi = I�Vi � p̃i	,

Ui =
{
piVi/p̃i if Yi = 1�
pi + ��1−pi	�Vi − p̃i	/�1− p̃i	� if Yi = 0�

(4)

and

�i = F −1
i �Ui � �1� � � � � �i−1	� (5)

(In the case i= 1, set �1 = F1
−1�U1	.)

Step 3. Calculate the weight:

Li =
{
pi/p̃i if Yi = 1�
�1−pi	/�1− p̃i	 if Yi = 0�

(6)

Once �1� � � � � �N have been generated, evaluateV ��1� � � � � �N 	
and return the weighted estimate V ��1� � � � � �N 	L, with L=
L1L2 · · ·LN the weight for the path.

Observe that the events #�i � T $, #Ui � pi$, and #Yi = 1$
coincide in this construction, so the Yi are indeed default
indicators, even though we generate Yi before �i. Steps (4)
and (5) thus accomplish the following:

Generate �i conditional on #�1� � � � � �i−1% �i � T $ or

#�1� � � � � �i−1% �i > T $ (7)

depending on whether Yi = 1 or Yi = 0.
Implementation of this procedure requires the ability

to sample from the conditional default time distributions
in (5). The specific case in Joshi and Kainth (2004) uses
a clever combination of the Gaussian copula and the
Cholesky decomposition. Suppose, for simplicity, that each
marginal distribution Fi is strictly increasing, so that Wi can
be recovered from �i as Wi = �−1�Fi��i		, and suppose
that � has full rank, so that �Z1� � � � � �Zi can be recov-
ered from W1� � � � �Wi. Then, conditioning on �1� � � � � �i
is equivalent to conditioning on �Z1� � � � � �Zi and pi can
be evaluated from (2) by setting t = T . Moreover, �i =
F −1
i �Ui � �1� � � � � �i−1	 can be evaluated by using (2) to get

�i = F −1
i

(
�

(i−1∑
j=1

Cij
�Zj +Cii�

−1�Ui	

))
�

This reduces the problem of sampling from the condi-
tional distributions of the default times to sampling from
their marginal distributions. (This mechanism remains valid
even if � is singular or some Fi fails to be strictly
increasing, but in either of those cases we would be sam-
pling �i conditional on the slightly larger information set
# �Z1� � � � � �Zi−1$, rather than on the more generic information
set #�1� � � � � �i−1$.)

3.2. Properties of the JK Method

Write �P for the probability of events defined by �1� � � � � �N
constructed using the modified conditional default proba-
bilities p̃i, i= 1� � � � �N , and write P for the original prob-
ability measure. Recall that p̃i may depend on the default
indicators Y1� � � � � Yi−1. Extending the original method of
Joshi and Kainth (2004), a simple condition ensures that at
least n defaults occur on every path:

Lemma 2. If p̃i = 1 whenever n − ∑i−1
j=1 Yj = N − i + 1,

i= 1� � � � �N , then �P�� � T 	= 1.
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In referring to the JK method, we will always assume
that the condition in Lemma 2 is in force. The particu-
lar case (3) used by Joshi and Kainth (2004) satisfies the
condition in the lemma, but so do many other choices of
probabilities. This raises the question of which probabilities
within this class are best, a question we return to in §4.
The next lemma shows that the JK method modifies the

distribution of the default times only to the extent that it
modifies the probability that default occurs before time T .

Lemma 3. For all i = 1� � � � �N and t � 0, �P��i � t � �1�
� � � � �i−1� Yi	= P��i � t � �1� � � � � �i−1� Yi	.
Using this result, our next result confirms that the

weight L calculated in the JK procedure is indeed the
appropriate likelihood ratio. Moreover, it confirms that
the JK method yields an unbiased estimate, despite the fact
(atypical of importance sampling) that �P assigns probability
zero to some events that have positive probability under P.
Write �E for expectation with respect to �P.
Theorem 1. (i) For any event A ⊆ #� � T $, we have
P�A	= �E�IAL�, where IA is the indicator of the event A. In
other words, L is the likelihood ratio for the restriction of
the probability P to #� � T $ relative to the probability �P.
(ii) For any V ��1� � � � � �N 	� 0 with V ��1� � � � � �N 	 = 0

whenever � > T , we have

E�V ��1� � � � � �N 	�= �E�V ��1� � � � � �N 	L��
The JK method goes through the assets sequentially,

increasing the default probability at each step until the
required number of defaults have occurred. The first issue
one faces in implementing the JK algorithm is the order
in which to take the assets. Joshi and Kainth (2004) do
not comment on this question, and one might wonder if
it matters. We will see that it does matter, and the next
result gives the optimal sequence for the case of indepen-
dent defaults with equal recoveries and different constant
hazard rates:

Proposition 1. For a basket of independent assets with
identical recovery values r1 = r2 = · · · = rN but differ-
ent constant hazard rates, variance is minimized in the
JK method by taking the assets in ascending order p1 �
p2 � · · · � pN of their marginal default probabilities
pi = P��i � T 	.

This result remains valid with nonconstant hazard rates
as long as we have h1�t	� h2�t	� · · ·� hN �t	 for all t � 0.
Although this still leaves open the question of the optimal
order for more general cases, we will not pursue this ques-
tion because the alternative we propose in §4 is insensitive
to the order in which the default times are generated.
The JK method is an intuitively appealing way to gen-

erate informative paths, but its effectiveness depends on its
ability to reduce variance. Joshi and Kainth (2004) do not
provide conditions ensuring a variance reduction; indeed,
the next result shows that a variance increase is guaranteed
under certain conditions if one uses the probabilities (3).

Proposition 2. If the default probabilities of the assets are
large enough or the life of the swap long enough, the esti-
mator given by the JK method using (3) has larger vari-
ance than plain Monte Carlo sampling if n� N − 1; i.e.,
except in the case of a last-to-default swap.

The shortcoming identified by Proposition 2 results from
the possibility that the JK method will actually decrease
one or more of the default probabilities as it goes through
the assets. As a simple way to address this case, we suggest
a modified JK method. Whereas the original method sets
p̃i = �n− j	/�N − i+ 1	 if j defaults have occurred when
we get to the ith asset, the modified method sets

p̃i =max
(

n− j

N − i+ 1 � pi

)
�

where, as before, pi = P��i � T � �1� � � � � �i−1	. An immedi-
ate consequence is the following:

Proposition 3. For all sufficiently large hazard rates or
swap maturities, the modified JK estimator coincides with
the ordinary Monte Carlo estimator.

3.3. Numerical Examples

We illustrate the JK method and the modified JK method
discussed so far with some numerical results. In these
examples, we take a continuously compounded interest rate
of r = 5%. For simplicity, we assume just a single protec-
tion payment (i.e., m= 1) of s = 0�10, paid at maturity if
fewer than n defaults have occurred. These parameters will
be used in subsequent sections as well, and all numerical
results are based on 106 replications. We use a large num-
ber of replications to make accurate variance comparisons;
the same relative performance holds even with far fewer
replications.

Basket I—Swap A1

As a first illustration, we consider a basket of N = 10 inde-
pendent assets, with constant hazard rates �0�03�0�01�0�02�
0�01�0�005�0�001�0�002�0�002�0�017�0�003	. The recov-
ery rates are �0�3�0�1�0�2�0�1�0�3�0�1�0�2�0�2�0�1�0�3	.
Swap A1 is a first-to-default swap in Basket I.

Basket II—Swap A2

Basket II contains N = 10 assets with constant hazard rates
�0�05�0�01�0�02�0�02�0�03�0�1�0�03�0�09�0�1�0�05	. The
recovery rates are �0�3�0�1�0�2�0�1�0�3�0�1�0�2�0�2�
0�1�0�3	. They are correlated and the correlation matrix
is �, which is introduced by a multivariate normal vector
#W1� � � � �WN $ in the form of a four-factor model. To
generate such a correlation matrix, one can first randomly
generate a 10 × 4 matrix A, compute the supplemen-
tary vector B such that Bi =

√
1−∑4

j=1 a
2
ij , then let

� = AA′ + BB′. The matrix A used here can be found
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Figure 1. The variance of the estimated price of Swap A1 (left panel) and Swap A2 (right panel).
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in the appendix. Swap A2 is a fifth-to-default swap in
Basket II.
The results are displayed in Figure 1, which plots

variance against swap maturity. The solid line shows
the variance of the estimator in the plain Monte Carlo
method. The dashed line shows the variance in the JK
method and the dotted line shows the variance in the
modified JK method. Figure 1 shows that the modi-
fied JK method is always better than the JK method,
but neither is guaranteed to be better than plain Monte
Carlo. As expected, the JK method deteriorates as T
increases and defaults become frequent. For the inde-
pendent assets case, when T = 7, where P�� > T 	 =
0�5034, the JK method becomes inferior to plain Monte
Carlo. For the dependent case, the transition occurs at an
even shorter maturity.

4. The Conditional Probability (CP)
Method with Independent Assets

The key feature of the JK method is that it replaces the
original conditional default probabilities pi = P��i � T � �1�
� � � � �i−1	 with new probabilities having two properties: they
guarantee at least n defaults on every replication, and they
revert to the original probabilities once n defaults have
occurred. Beyond these two properties, the particular val-
ues (3) used in the original JK method are somewhat arbi-
trary. We therefore consider building on their method by
searching for probabilities with these two key properties
that are, in some sense, optimal. We begin by considering
the case of independent default times, a restriction in force
throughout this section.
Observe that most of the variability in pricing a basket

default swap results from the occurrence or nonoccurrence
of the event #� � T $; the timing and order of defaults pro-
duce additional variability, but this is secondary. We there-
fore consider the related problem of finding effective IS
probabilities for the problem of estimating

P�� � T 	=E�I�� � T 	�=E
[
I

( N∑
i=1

Yi � n

)]
� (8)

In fact, it is well known (and easily verified) that the
optimal IS distribution for this type of problem samples
Y1� � � � � YN conditional on the event of interest; indeed,
this IS technique produces zero variance in estimating (8),
a point we return to later. We therefore propose to apply
importance sampling with probabilities

qi = P
(
Yi = 1

∣∣∣Y1� � � � � Yi−1� N∑
j=1

Yj � n

)
� i= 1� � � � �N �

It follows immediately from this definition that these prob-
abilities have the key properties identified above:

Property 1. If there are k < n defaults in the first N −
�n− k	 assets, then

qi = P
(
Yi = 1

∣∣∣Y1� � � � � Yi−1� i−1∑
j=1

Yj = k�
N∑
j=1

Yj � n

)
= 1

for i = N − �n − k	 + 1� � � � �N . Therefore, IS with these
probabilities guarantees at least n defaults on every path.

Property 2. If there are at least n defaults among the first
k assets, then

qi = P
(
Yi = 1

∣∣∣Y1� � � � � Yi−1� k∑
j=1

Yj � n�
N∑
j=1

Yj � n

)
= P�Yi = 1 � Y1� � � � � Yi−1	= pi

for i= k+ 1� � � � �N .

We will proceed to first show that these probabilities
can be evaluated easily, and second show that they produce
effective variance reduction in the original pricing problem.

4.1. Calculating the Conditional Probabilities

A simple and fast recursive algorithm allows calculation
of the conditional probabilities, which can then be used in



Chen and Glasserman: Fast Pricing of Basket Default Swaps
292 Operations Research 56(2), pp. 286–303, © 2008 INFORMS

the IS procedure. To explain the algorithm, it is useful to
introduce a Markov chain

Xi =
i∑

j=1
Yj� i= 0�1� � � � �N �

that counts the number of defaults as we go through the
number of underlying assets. (The “time” parameter i of
this chain indexes the underlying assets and is unrelated
to the evolution of time in the original swap-pricing prob-
lem.) That this process is indeed Markov follows from the
independence of the default indicators Yj .
The chain is absorbed at time N into any of the states

#0�1� � � � �N $. The required probabilities qi are simply the
transition probabilities of the chain conditional on absorp-
tion into the set G= #n�n+ 1� � � � �N $. Define

P
�k	
i = P�XN � n �Xi = k	%

this is the probability of absorption into set G given that
k defaults have been observed as of time i. These prob-
abilities can be computed through backward induction by
noting that

P
�k	
N =

{
0� k= 0�1� � � � � n− 1�
1� k= n�n+ 1� � � � �N �

and

P
�k	
i = pi+1P

�k+1	
i+1 + �1−pi+1	P

�k	
i+1� (9)

The backward induction procedure is illustrated in Fig-
ure 2 for the case of a third-to-default swap with five
underlying assets (i.e., n= 3, N = 5). The binomial lattice
on the left illustrates the evolution of the Markov chain.
The chain moves up at time i if the ith asset defaults and

Figure 2. Calculation of absorption probabilities for a third-to-default swap in a basket of five independent assets.
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moves down if it does not default. The lattice is initializeds
with a value of zero at the three lowest terminal nodes
(corresponding to zero, one, and two defaults, respectively)
and a value of one at the remaining terminal nodes (corre-
sponding to three, four, or five defaults). The right side of
the figure illustrates the recursive calculation of (9) at a rep-
resentative node. (The binomial lattice in Figure 2 should
be distinguished from the type of lattice commonly used
in pricing options. In option pricing, movement from left
to right through the lattice corresponds to the passage of
time, and the right-most nodes record payoffs at expiration.
The N steps from left to right in Figure 2 correspond to
the N underlying assets and are unrelated to the passage
of time in the original swap-pricing problem; the terminal
nodes record the number of assets that default and indicate
if that number exceeds n.)
The required probabilities qi are easily derived from

absorption probabilities P�k	
i and can therefore be calculated

together with these probabilities. Set

q
�k	
i = piP

�k+1	
i /P

�k	
i−1� (10)

Then,

q
�k	
i = P�Yi=1	P�XN ∈G �Xi=k+1	/P�XN ∈G �Xi−1=k	

= P�Yi = 1 �Xi−1 = k	P�XN ∈G �Xi−1 = k� Yi = 1	
/P�XN ∈G �Xi−1 = k	

= P�Yi = 1�XN ∈G �Xi−1 = k	/P�XN ∈G �Xi−1 = k	

= P�Yi = 1 �Xi−1 = k� XN ∈G	�

Thus, if we observe k defaults among Y1� � � � � Yi−1, we set
qi = q

�k	
i ; this is the conditional default probability for the

ith asset, given that at least n of the N assets will default.
These probabilities can be used in place of the original JK
probabilities; the rest of the algorithm remains the same.
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Figure 3. The effect of changing probabilities for a third-to-default swap in a basket of five independent assets.
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Figure 3 shows how the change of measure forces at
least n assets to default in the example of Figure 2. The
left panel shows the original transition probabilities and
the right panel illustrates the qi probabilities. The number
above each node shows the number of defaults that occur
in reaching that node. In changing the default probabilities,
we are constraining the Markov chain X to stay within
the upper part of the lattice and terminate at a node with
at least n defaults.

4.2. Properties of the CP Method

Recall from Theorem 1 (which is sufficiently general to
apply to the CP method) that the likelihood ratio is given
by L = L1L2 · · ·LN , with Li given by (6). The following
result identifies a special feature of the CP method.

Proposition 4. In the CP method with independent assets,
L is a constant and equals P�� � T 	 on every path. Thus,
the CP method generates �1� � � � � �N from their conditional
distribution given � � T .

Proof. It follows from (10) that

qi = piP
�Xi−1+1	
i /P

�Xi−1	
i−1 �

so if Yi = 1, then Xi−1+ 1=Xi and

Li = pi/qi = P
�Xi−1	
i−1 /P

�Xi	
i �

Similarly, if Yi = 0, then using (9) and Xi =Xi−1, we get

Li = �1−pi	/�1− qi	= P
�Xi−1	
i−1 /P

�Xi	
i �

Thus,

L=
N∏
i=1

P
�Xi−1	
i−1
P
�Xi	
i

= P
�0	
0

P
�XN 	
N

�

The denominator in this last expression is one, because
XN � n (by Lemma 2). The numerator is P�XN ∈ G	 =
P�XN � n	 = P�� � T 	. The second assertion in the
proposition follows from the observation that the likelihood

ratio relating the conditional law of the default times to
their unconditional law is simply 1/P�� � T 	. �

Our next result shows that the CP method achieves a
guaranteed variance reduction. Moreover, it confirms that
the method is particularly effective when the probability
of n or more defaults is small.

Proposition 5. In the case of independent assets, the
CP method reduces variance by at least a factor of
1/P�� � T 	.

Proof. By Theorem 1, the estimator in the CP method is
unbiased. From Proposition 4, we know that L is identically
equal to P�� � T 	. Using a tilde to denote expectations
computed with respect to the CP importance sampling dis-
tribution, we have

Ṽar�V ��1� � � � � �N 	L	

= �E�V 2��1� � � � � �N 	L
2	− ��E�V ��1� � � � � �N 	L		2

= L�E�V 2��1� � � � � �N 	L	− �E�V ��1� � � � � �N 			
2

� LE�V 2��1� � � � � �N 		−L�E�V ��1� � � � � �N 			
2

= LVar�V ��1� � � � � �N 		�

so
Var�V ��1� � � � � �N 		

Ṽar�V ��1� � � � � �N 	L	
�
1
L
= 1

P�� � T 	
� �

We noted previously that the effectiveness of the JK
method depends, in part, on the order in which the default
times are generated. In contrast, the CP method is insensi-
tive to the ordering of the assets:

Proposition 6. In the CP method, the variance reduction
achieved does not depend on the order of assets.

This follows directly from the fact that the CP sam-
pling distribution is always the conditional distribution of
�1� � � � � �N given � � T , regardless of the order in which
the default times are generated.
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5. The CP Method with
Dependent Assets

We now return to the case in which the default times are
linked through the Gaussian copula model. In this setting,
sampling �1� � � � � �N conditional on � � T does not seem
feasible; the algorithm for calculating qi in §4 does not
extend in an obvious way to the case of dependent default
times. To apply the CP method, we therefore condition on
additional information to make the default times condition-
ally independent.

5.1. Factor Models

Recall that the dependence in the Gaussian copula model is
determined through the correlation matrix � of the underly-
ing normal random variables W1� � � � �WN . In practice, these
correlations are often specified through a factor model of
the form

Wi = ai1Z1+ · · ·+ aidZd + bi/i� i= 1� � � � �N �

or, in matrix-vector form,

W=AZ+B/� (11)

in which
• Z1� � � � �Zd, d < N , are systematic risk factors, nor-

malized to be independent standard normals;
• /i, i= 1� � � � �N , are idiosyncratic risks associated with

the ith individuals assets, also N�0�1	 distributed and inde-
pendent of each other and of Z1� � � � �Zd;

• ai1� � � � � aid are the factor loadings for the ith asset,
and

∑d
k=1 a

2
ik � 1;

• bi =
√
1−∑d

k=1 a
2
ik, so that Wi is also N�0�1	

distributed.
The correlation matrix of W implied by (11) is AA� +

B2; so, for consistency, we require that this matrix equal �.
The key property of (11) is that once we condition on Z,

the Wi become conditionally independent of each other.
This, in turn, makes the default times �1� � � � � �N condition-
ally independent of each other, thus allowing us to apply
the CP method.

5.2. The Conditional CP Method

Suppose that �i = F −1
i ���Wi		, i = 1� � � � �N , and that the

Wi admit the representation in (11). Conditioning on Z
yields

F Z
i �t	≡ P��i � t �Z	

= P�F −1
i ���Wi		� t �Z	

= P
(
bi/i ��−1�Fi�t		−

d∑
j=1

aijZj

)

=�

([
�−1�Fi�t		−

d∑
j=1

aijZj

]/
bi

)
� (12)

Conditional on Z, we can therefore apply the CP method
as in §4, but with Fi replaced by F

Z
i .

More explicitly, the steps are as follows, for each
replication:

Step 1. Generate d independent standard normals
Z1� � � � �Zd.

Step 2. Compute the conditional default probability
pZ
i = F Z

i �T 	, for each i= 1� � � � �N .
Step 3. Construct the conditional probabilities qZi using

the algorithm of §4.1.
Step 4. Generate �1� � � � � �N and L1� � � � �LN by follow-

ing (4)–(6), using pZ
i for pi, q

Z
i for p̃i, and F

Z
i for Fi.

Step 5. Evaluate and return V ��1� � � � � �N 	L, with L =
L1L2 · · ·LN .
For Step 4, we can calculate Ui as in (4) and then set

�i=F −1
i ���Wi		� Wi=ai1Z1+···+aidZd+bi�

−1�Ui	�

Although we do not have a lower bound on the magni-
tude of variance reduction as we did in the case of indepen-
dent assets, we nevertheless have the following guarantee:

Proposition 7. The conditional CP method always re-
duces variance.

Proof. Using the conditional independence of the default
times given Z1� � � � �Zd, Proposition 4 yields L = P�� �

T �Z	. Thus, L� 1 and

Ṽar�V ��1� � � � � �N 	L	

= �E�V 2��1� � � � � �N 	L
2	− ��E�V ��1� � � � � �N 	L		2

=E��E�V 2��1� � � � � �N 	L
2 �Z		−E�V ��1� � � � � �N 		

2

=E�E�V 2��1� � � � � �N 	L �Z		−E�V ��1� � � � � �N 		
2

�E�E�V 2��1� � � � � �N 	 �Z		−E�V ��1� � � � � �N 		
2

=Var�V ��1� � � � � �N 		�

The second equality uses the fact that Z1� � � � �Zd have
the same distribution under the original and CP sampling
procedures. �

5.3. Numerical Examples

We compare the CP method, the modified JK method,
the JK method, and plain Monte Carlo simulation through
numerical results for the test cases Swaps A1 and A2. For
comparison, we include one more test case—Swap A3,
which is very similar to Swap A2, but with different signs
in factor loadings. All examples use 106 replications.

Basket III—Swap A3

Swap A3 is a fifth-to-default swap in Basket III, where
Basket III contains N = 10 assets with the same hazard
rates and recovery rates as in Basket II. The assets are
also correlated through a four-factor Gaussian copula. The
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Figure 4. The variance of the estimated price
of Swap A1.
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only difference between Baskets II and III is the factor-
loading matrix A. The loadings in Basket III have the same
magnitudes as those in Basket II but are all positive.
Figures 4 and 5 plot the variance for each method against

the maturity of the swap. The solid line shows the variance
in the plain Monte Carlo method, the dashed line shows the
variance in the JK method, the dotted line shows the vari-
ance in the modified JK method, and the solid line with dots
shows the variance in the CP method. As expected, the CP
reduces variance in all examples at all maturities. In Fig-
ure 4 (which shows an example with independent assets),
the CP method works particularly well at short horizons,
where the probability of default within the life of the swap
is small.
The examples illustrated in Figure 5 are four-factor

models, and the CP method continues to work well in
these examples. The variance reduction achieved by the

Figure 5. The variance of the estimated price of Swap A2 (left panel) and Swap A3 (right panel).

0 5 10 15 20 25 30
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Maturity (years)
0 5 10 15 20 25 30

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Maturity (years)

V
ar

ia
nc

e

V
ar

ia
nc

e

The plain simulation
The JK method
The modified JK method
The CP method

CP method is greater in the left panel (Swap A2) than in
the right panel (Swap A3). Recall that the only difference
between these examples is that Swap A2 has loadings of
mixed sign, whereas all the loadings in Swap A3 are posi-
tive. As a consequence, an unusually large or small value of
one of the factors Z1� � � � �Zd will move all the default times
in Swap A3 in the same direction, whereas in Swap A2 the
effects on different assets will tend to offset each other. In
this respect, Swap A3 is more sensitive to variability in the
underlying factors than Swap A2 is; recall that we apply
the conditional CP method conditional on the outcomes of
the factors.
In the right panel of Figure 5, the JK and modified JK

methods actually produce slightly lower variance than the
CP method at short horizons. This, too, results from the fact
that the conditional CP method applies conditional on the
factor outcomes. In contrast, the JK method relies on con-
ditional probabilities calculated through Cholesky decom-
position, as in Lemma 1. This can be advantageous when
the variability from the factors is large (as in Swap A3).
However, because of the conditional probability calcula-
tions, the JK method takes about 4–5 times longer than the
CP method in Swap A3, so the overall efficiency improve-
ment is greater using the CP method across all maturities.
In the next section, we will see that the factor structure
can be used to further improve the performance of the CP
method.

6. Stratifying the Factors
The CP method, as implemented in §5, reduces vari-
ance conditional on the outcome of the factors Z1� � � � �Zd,
but it does nothing to reduce the variability in the sam-
pling of the factors themselves. This observation leads us
to apply stratified sampling to the factors. We refer to
this combination as the CPST method. We introduce this
method in a single-factor setting, then extend it to multiple
factors.
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6.1. Single-Factor Models

A single-factor model takes the form

Wi = aiZ+
√
1− a2i /i� i= 1� � � � �N �

We apply stratified sampling to the factor Z, which has a
standard normal distribution.
To this end, we partition the real line into subintervals

A1� � � � �AK of equal probability 1/K; the interval Ak has
endpoints �−1��k−1	/K	 and �−1�k/K	. To generate one
sample of Z in stratum Ak, we generate �U uniformly over
��k− 1	/K�k/K�, and then set Z=�−1� �U	.
The CPST method entails the following steps, for each

replication:
Step 1. Generate U�1	� � � � �U�K	 independently and uni-

formly over �0�1	 and set �U�k	 = �k− 1+U�k		/K. Then,
Z�k	 =�−1� �U�k		 has the distribution of a standard normal
random variable conditioned to fall in Ak.

Step 2. For each Z�k	, apply the CP method to obtain
a sample V�k	 of V ��1� � � � � �N 	 and a sample L�k	 of the
likelihood ratio.

Step 3. Return
∑K

k=1 V�k	L�k	/K as one sample of the
estimator V ��1� � � � � �N 	L.
This procedure can be repeated over multiple indepen-

dent replications to estimate a standard error along with the
swap value.

6.2. Multifactor Models

In principle, the same idea can be applied to each of the
underlying factors in a multifactor model. However, full
stratified sampling becomes impractical when the number
of factors d is large. If, for example, we use Ki strata in
generating Zi, i= 1� � � � � d, then the total number of strata
is K1 · · ·Kd. Generating at least one point from each stra-
tum therefore requires a sample size at least this large.
Unless the Ki are quite small (in which case stratification
will provide little benefit), this is likely to be prohibitive
for d larger than three.
As an alternative to full stratification in d dimensions,

we seek to identify a small number (one or two) of “impor-
tant” directions along which to stratify. More specifically,
we choose an N × d̃ (d̃� 2) matrix Ã and write

AZ= Ã�Z+ Â�Z�
where Â is an N × d̂ (d̂� d) matrix, and �Z (d̃× 1) and �Z
(d̂ × 1) are independent multivariate normals. The matrix
Â is constrained to satisfy

�Z ≡AA� = ÃÃ� + ÂÂ��

Our objective is to choose Ã so that Ã�Z explains most of
the variability of AZ. We then apply stratified sampling to
�Z to eliminate most of this variability.
A convenient way to choose Ã is through principal com-

ponents analysis. Suppose that �Z =AA� has full rank d;

the singular case can be handled similarly by first partition-
ing the vector Z. Then, �Z has d positive real eigenval-
ues 11 � · · ·� 1d > 0 and an associated set of orthonormal
eigenvectors #21� � � � � 2d$; i.e., vectors satisfying �Z2i =
1i2i and

2Ti 2i = 1� 2Ti 2j = 0� j �= i� i� j = 1� � � � � d�

It follows that �Z = � 3� T , where � is the orthogo-
nal matrix with columns 21� � � � � 2d and 3 is the diagonal
matrix with the diagonal entries 11� � � � � 1d. Let 3

1/2 denote
the diagonal matrix with the diagonal entries

√
11� � � � �√

1d. Then,

�Z = �� 31/2	�� 31/2	��

Methods for calculating � and 3 are included in many
mathematical software libraries and discussed in detail
in, e.g., Golub and Van Loan (1996). As discussed in
Glasserman (2004), a good choice for Ã is the matrix
with columns

√
1121, � � � �

√
1d̃2d̃. The matrix Â then has

columns
√
1d̃+12d̃+1� � � � �

√
1d2d.

We combine the various steps as follows:
Step 1. Compute the eigenvectors and eigenvalues �

and 3 of �Z, and find Ã and Â with d̃� 2.
Step 2. Stratify the unit hypercube �0�1	d̃ by partition-

ing the jth coordinate into Kj intervals to form strata
A1� � � � �AK , with each Ak of the form

∏d̃
j=1�ij − 1� ij 	/Kj ,

k= 1� � � � �K, with K =K1 · · ·Kd̃.
Step 3. In stratum Ak, generate a d̃-dimensional uni-

form U�k	 = �U�k	�1� � � � �U�k	� d̃	 by setting the jth coordi-
nate of �U�k	 to be �U�k	� j = �ij −1+U�k	� j 	/K. Then, �Z�k	 =
�−1��U�k		 (applied coordinatewise) is a sample of the
d̃-dimensional standard normal conditional on �Z ∈�k.

Step 4. Generate a �d− d̃	-dimensional normal �Z�k	, and
set AZ�k	 = Ã�Z�k	 + Â�Z�k	.

Step 5. For each AZ�k	, apply the conditional CP
method, and compute the discounted payoff V�k	 and like-
lihood ratio L�k	.

Step 6. Take
∑K

k=1 V�k	L�k	/K as one sample of the esti-
mator V ��1� � � � � �N 	L.
As in the single-factor case, these steps can be repeated

over multiple independent replications to estimate a stan-
dard error. For this method, we have the following
observation:

Proposition 8. The CPST method has lower variance than
the CP method and thus has lower variance than ordinary
Monte Carlo.

This follows directly from the fact that stratified sam-
pling with proportional allocation (here meaning that we
draw equal numbers of samples from the equiprobable
strata) always reduces variance (see, e.g., Glasserman 2004,
pp. 215–217).
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6.3. Factor-Model Approximation

Although the correlations in the Gaussian copula model are
often represented through a factor model of the form (11),
this is not always the case. We therefore consider an alter-
native to the principal components method of the previous
section that starts directly from the correlation matrix �
of W and approximates it with a low-dimensional factor
model. In other words, we seek an approximation of the
form

W≈ ÃZ+ �B/�

with Z and � independent standard normal vectors and
Ã having d̃ columns. Given such a representation with
small d̃, we can apply stratified sampling to Z and combine
that with the conditional CP method.
Without a constraint on d̃, such a representation is

always possible (e.g., set Ã equal to the Cholesky matrix C
and set B= 0), but if we put an upper bound on d̃, this may
introduce some approximation error. Thus, unlike the other
methods considered in this article, this method involves
some bias.
The problem of finding a low-dimensional factor rep-

resentation is considered in Andersen et al. (2003). They
suggest choosing the factor-loading matrix Ã (N × d̃) as
the solution to the minimization problem

min
Ã
tr��− ÃÃ� − �B	��− ÃÃ� − �B	��

where tr is the usual matrix trace operator and �B is a diag-
onal matrix with

��B	jj = 1− �ÃÃ�	jj � j = 1� � � � � d� (13)

Andersen et al. (2003) propose a recursive algorithm to
search for the optimal Ã; in our tests as well as theirs, the
algorithm appears to converge very quickly.

Figure 6. The variance of the estimated price of Swap A4 (left panel) and Swap A5 (right panel).
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6.4. Numerical Examples

We showed in Propositions 5 and 7 that the CP method
guarantees a variance reduction and outperforms plain
Monte Carlo. In this section, we examine the additional
improvement obtained by applying the CPST method com-
pared with the CP method and the modified JK method. We
exclude the JK method from the figures because in all our
numerical examples, we have observed that the modified JK
method outperforms the JK method. We use 100 strata for
one-dimensional stratification and 40 strata in each dimen-
sion for two-dimensional stratification. (We have observed
quite similar results for one-dimensional stratification using
just 10 strata.) All examples use a total of 106 samples.
In the case of one-dimensional stratification, this means
104 replications, with each replication consisting of the
average over 100 strata. In the case of two-dimensional
stratification, this means 625 replications, each the average
over 402 strata. This results in an equal number of sam-
ples for all methods compared, and thus makes the variance
comparisons meaningful. All examples in this section use
dependent underlying assets because this is the setting in
which CPST is relevant.

Basket IV—Swap A4 and Basket V—Swap A5

Swap A4 is a first-to-default swap in Basket IV, where Bas-
ket IV contains N = 10 assets with the same hazard rates
and recovery rates as in Basket I. The assets are correlated
and the correlation matrix is �, which is introduced by a
multivariate normal vector #W1� � � � �WN $ in the form of a
single-factor model. To generate such a correlation matrix,
one can first randomly generate a 10×1 matrix A, compute
the supplementary vector B, then let �=AA�+BB�. The
correlation matrix used here can be found in the appendix.
Basket V is the same as Basket IV except that the signs
in A are all positive. Swap A5 is a first-to-default swap in
Basket V. We apply stratified sampling to that single factor.
Figure 6 shows the variance of the estimators given

by plain Monte Carlo, the modified JK method, the CP
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Figure 7. The variance of the estimated price of Swap A2 (left panel) and Swap A3 (right panel).
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method, and the CPST method with one-dimensional strat-
ified sampling applied to the single-factor models Swaps
A4 and A5. Figure 7 shows corresponding results applying
one- and two-dimensional stratification to the four-factor
models Swaps A2 and A3. In all cases, the figures show
substantial variance reduction from the combination of the
CP method with stratified sampling.
The two panels in Figures 6 and 7 should be contrasted

with those in Figure 5. In Figure 5, we saw that the con-
ditional CP method was most effective when the factor
loadings had varying signs; we suggested that this resulted
from the offsetting effect on the default times, which tends
to reduce the variability contributed by the factors. In both
Figures 6 and 7, we see that stratification has a greater
effect when the factor loadings all have the same sign (the
right panel in each case). Thus, by removing variability
from the factors, stratification contributes the greatest vari-
ance reduction in those cases in which the conditional CP
method by itself is less effective.
Observe also in Figure 7 that in the case of mixed factor

loadings (Swap A2), one-dimensional stratification has lit-
tle benefit, and there is an evident difference between two-
dimensional and one-dimensional stratification. In the case
of positive loadings (Swap A3), one-dimensional stratifi-
cation is as effective as two-dimensional stratification, and
both improve markedly over the CP method without strat-
ification. In all cases, the CPST methods outperform the
modified JK method.
In gauging the effectiveness of the CP method (with-

out or with stratified sampling), we need to consider the
computing time required as well as the variance reduction
achieved. In the independent assets case (Swap A1), the
conditional probabilities q need only be calculated once and
the time required for this calculation is negligible. Given
the new probabilities, each replication of the CP method
takes about 1–1.5 times longer than the plain Monte Carlo
method. In the dependent case, the conditional probabili-
ties need to be recalculated on each replication. With this

additional work, each replication of the CP method takes
about 4–5 times longer than the plain Monte Carlo method.
The CP method with one-dimensional stratification takes
about 5–6 times longer than the plain Monte Carlo method,
and with two-dimensional stratification the time required
is about 6–7 times longer. These comparisons are for the
same total number of paths.
The additional computing time is offset by the vari-

ance reduction achieved except when defaults are very fre-
quent. In the independent asset case (Swap A1), the CP
method reduces variance by at least a factor of two for
T � 25. In the dependent assets cases, the conditional CP
method by itself improves efficiency in the examples with
mixed factor loadings (Swap A2, T � 6�5, and Swap A4,
T � 14), but not in the examples with all loadings pos-
itive (Swaps A3 and A5). With one-dimensional stratifi-
cation, CPST improves efficiency for T � 5 in Swap A2,
T � 27 for Swap A3, T � 15 for Swap A4, and T � 22 for
Swap A5. Two-dimensional stratification extends the range
for Swap A2 to T � 8�5 and has little effect on Swap A3,
as we saw in Figure 7.

7. Concluding Remarks
In this paper, we have developed a variance reduction tech-
nique for Monte Carlo pricing of basket default swaps
by analyzing and building on the method of Joshi and
Kainth (2004). As in their original method, we sequen-
tially increase the probability of default within the life of
the swap as we generate the default times of the assets.
However, in contrast to the original method, our choice of
probabilities guarantees variance reduction and is, in a cer-
tain sense, optimal. We achieve further variance reduction
through the strategic use of stratified sampling.
Although we have stressed the application of this method

in the widely used Gaussian copula, it extends easily
to other models’ dependence, including multifactor ver-
sions of the various factor copula models in Laurent and
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Gregory (2003). Also, eventhough we have focused on
basket default swaps, similar ideas can be used for other
portfolio credit derivatives; this is a topic of current investi-
gation. Finally, Joshi and Kainth (2004) consider the calcu-
lation of price sensitivities as well as the prices themselves;
a further analysis of this problem is another topic of current
investigation.

Appendix. Proofs

A.1. Proof of Lemma 2

Proof. The sequences n − ∑i−1
j=1 Yj and N − i + 1, i =

1� � � � �N + 1, are both decreasing. The first of these
sequences starts at n; the second starts at N > n and
decreases to zero. If the two sequences are never equal,
then the first one must reach zero first, at which point n
defaults have occurred. If the sequences become equal at
some i, then p̃i = 1, so Yi = 1 and they are equal again at
i + 1. This continues until i = N + 1, at which point the
sum of the default indicators is again n. Either way, the nth
default occurs before T . �

A.2. Proof of Lemma 3

Proof. Suppose that Yi = 1. Then, the conditional distri-
bution of �i under P is its conditional distribution given
�1� � � � � �i−1 and given �i � T . This is the conditional dis-
tribution of F −1

i �Ui � �1� � � � � �i−1	 given Ui � pi, pi =
P��i � T � �1� � � � � �i−1	, where Ui is uniform on �0�1	
and independent of �1� � � � � �i−1. In other words, the con-
ditional distribution of �i is the conditional distribution of
F −1
i �Ui � �1� � � � � �i−1	 given that Ui is uniformly distributed
between 0 and pi.
Under �P, we see from (4) that the conditional distribution

of �i given �1� � � � � �i−1 and given Yi = 1 is the conditional
distribution of F −1

i �piVi/p̃i � �1� � � � � �i−1	, given that Vi is
uniform between 0 and p̃i. This is the same as the condi-
tional distribution of F −1

i �Ui � �1� � � � � �i−1	 given that Ui is
uniformly distributed between 0 and pi.
The argument for the case Yi = 0 works similarly, except

that now the conditional distribution of �i under both prob-
ability measures becomes the conditional distribution of
F −1
i �Ui � �1� � � � � �i−1	 given that Ui is uniformly distributed
between pi and 1. �

A.3. Proof of Theorem 1

Proof. The second assertion is a consequence of the first.
To establish (i), we calculate the likelihood ratio directly.
In light of Lemma 2, we restrict attention to the event
#� � T $. It is evident from (4) and the surrounding steps
that, within this event, P and �P have the same support,
in the sense that any sequence of default times that could
be generated by one sampling mechanism could also be
generated by the other. Therefore, consider any nonnega-
tive t1� � � � � tN with at least n of the ti falling within �0� T �,

and let yi = I�ti � T 	� i= 1� � � � �N . We can write the joint
density or mass function of the default times under P as

P�Y1 = y1� �1 ∈ dt1� � � � � YN = yN � �N ∈ dtN 	

= P�Y1 = y1	P��1 ∈ dt1 � Y1 = y1	P�Y2 = y2 � �1 = t1	

· ···P��N ∈dtN ��1= t1������N−1= tN−1�YN =yN 	�

Lemma 3 yields

�P�Y1 = y1� �1 ∈ dt1� � � � � YN = yN � �N ∈ dtN 	

= �P�Y1 = y1	P��1 ∈ dt1 � Y1 = y1	�P�Y2 = y2 � �1 = t1	

· ···P��N ∈dtN ��1= t1������N−1= tN−1�YN =yN 	�

The likelihood ratio is therefore given by

N∏
i=1

P�Yi = yi � �1 = t1� � � � � �i−1 = ti−1	
�P�Yi = yi � �1 = t1� � � � � �i−1 = ti−1	

�

The ith factor in this product equals pi/p̃i if yi = 1 and it
equals �1−pi	/�1− p̃i	 if yi = 0. Thus, the ith factor is Li

and the likelihood ratio is indeed L. �

One could arrive at the same expression for the like-
lihood ratio by viewing the JK algorithm as applying
a change of distribution to U1� � � � �UN . Without impor-
tance sampling, these are independently and uniformly
distributed over �0�1	. The JK algorithm makes Ui uni-
form over �0� pi	 with probability p̃i and uniform over
�pi�1−pi	 with probability 1− p̃i. The advantage of the
argument in Theorem 1 is that it follows from the key
properties in (7) and Lemma 3, and does not rely on the
mechanism used to implement (7); in particular, it does not
rely on the use of the inverse transform method (in (5)) to
generate the default times.

A.4. Proof of Proposition 1

Proof. By Theorem 1, the JK method is unbiased, regard-
less of the order in which default times are generated. It
therefore suffices to compare second moments in compar-
ing the variances under different orderings.
Suppose that the assets are ordered in such a way that

there are two consecutive assets, say the kth and �k+ 1	st,
with default probabilities pk > pk+1. We will show that
the second moment of the JK estimator will decrease after
switching the order of the kth and �k+ 1	st assets.
Define events �1 = #

∑k−1
i=1 I��i � T 	 = n − 1$, �2 =

#
∑k−1

i=1 I��i � T 	 < n− 1$, and �3 = #
∑k−1

i=1 I��i � T 	� n$.
Consider any realization of �1� � � � � �k−1 and set Lk−1

1 =∏k−1
i=1 Li� where Li is the importance-sampling weight asso-

ciated with asset i. The second moment is

E�V 2��1� � � � � �N 	L	=
3∑

i=1
E�V 2��1� � � � � �N 	L ��i	P��i	�
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Given �3, the importance sampling must have been sus-
pended before the generation of the kth asset’s default time.
Therefore, switching the positions of the kth and �k+ 1	st
assets does not affect the value of L, which is equal to Lk−1

1 .
Therefore, the second moment conditional on �3 remains
the same.
Given �1, the second moment of the estimator is

E�V 2��1� � � � � �N 	L ��1	

= Lk−1
1

pk

p̃k

E�V 2��1� � � � � �N 	I��k � T 	 ��1	

+Lk−1
1

1−pk

1− p̃k

pk+1
p̃k+1

E�V 2��1� � � � � �N 	

· I��k > T � �k+1 � T 	 ��1	

+Lk−1
1

k+1∏
i=k

1−pi

1− p̃i

E
(
V 2��1� � � � � �N

)
·

N∏
j=k+2

LjI��k > T � �k+1 >T 	 ��1	� (14)

where p̃i = 1/�N − i+ 1	 for i= k�k+ 1.
After switching the positions of the kth and �k + 1	st

assets, the second moment becomes

E�V 2��1� � � � � �N 	L ��1	

= Lk−1
1

pk+1
p̃k

E�V 2��1� � � � � �N 	I��k+1 � T 	 ��1	

+Lk−1
1

1−pk+1
1− p̃k

pk

p̃k+1
E�V 2��1� � � � � �N 	

· I��k+1 > T � �k � T 	 ��1	

+Lk−1
1

k+1∏
i=k

1−pi

1− p̃i

E
(
V 2��1� � � � � �N

)
·

N∏
j=k+2

LjI��k > T � �k+1 > T 	 ��1

)
� (15)

We claim that

E�V 2��1� � � � � �N 	I��k � T � �k+1 > T 	 ��1	

�E�V 2��1� � � � � �N 	I��k > T � �k+1 � T 	 ��1	� (16)

We defer the proof of this claim until the end. By the choice
of p̃ in the JK method, p̃i = 1/�N − i+ 1	 for i= k�k+ 1,
it is clear that

p̃k = �1− p̃k	p̃k+1�

whence the equality

pk

p̃k

− 1−pk+1
1− p̃k

pk

p̃k+1
= pk+1

p̃k

− 1−pk

1− p̃k

pk+1
p̃k+1

�

Subtracting Equation (15) from Equation (14) gives

Lk−1
1

(
pk

p̃k

− 1−pk+1
1− p̃k

pk

p̃k+1

)
·E�V 2��1� � � � � �N 	I��k � T � �k+1 > T 	 ��1	

+Lk−1
1

pk−pk+1
p̃k

E�V 2��1������N 	I��k�T ��k+1�T 	 ��1	

−Lk−1
1

(
pk+1
p̃k

− 1−pk

1− p̃k

pk+1
p̃k+1

)
·E�V 2��1� � � � � �N 	I��k > T � �k+1 � T 	 ��1	 > 0�

Thus, the second moment is decreased by switching the
order.
Given �2, p̃k has only one value, but p̃k+1 has two

choices:

p̃k =
n−∑

j<k I��j � T 	

N − k+ 1 �

p̃k+1 =


51 =

n− 1−∑
j<k I��j � T 	

N − k
if �k � T �

52 =
n−∑

j<k I��j � T 	

N − k
if �k > T �

The second moment of the estimator is

E�V 2��1� � � � � �N 	L ��2	

= Lk−1
1

pk

p̃k

pk+1
51

E�V 2��1� � � � � �N 	

·
N∏

j=k+2
LjI��k � T � �k+1 � T 	 ��2	

+Lk−1
1

pk

p̃k

1−pk+1
1−51

E
(
V 2��1� � � � � �N 	

·
N∏

j=k+2
LjI��k � T � �k+1 > T 	 ��2

)
+Lk−1

1

1−pk

1− p̃k

pk+1
52

E
(
V 2��1� � � � � �N 	

·
N∏

j=k+2
LjI��k > T � �k+1 � T 	 ��2

)
+Lk−1

1

1−pk

1− p̃k

1−pk+1
1−52

E
(
V 2��1� � � � � �N 	

·
N∏

j=k+2
LjI��k > T � �k+1 > T 	 ��2

)
� (17)

After switching the kth and �k + 1	st assets, the second
moment becomes

E�V 2��1� � � � � �N 	L ��2	

= Lk−1
1

pk

p̃k

pk+1
51

E
(
V 2��1� � � � � �N 	

·
N∏

j=k+2
LjI��k � T � �k+1 � T 	 ��2

)
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+Lk−1
1

1−pk+1
1− p̃k

pk

52
E
(
V 2��1� � � � � �N 	

·
N∏

j=k+2
LjI��k � T � �k+1 >T 	 ��2

)
+Lk−1

1

pk+1
p̃k

1−pk

1−51
E
(
V 2��1� � � � � �N 	

·
N∏

j=k+2
LjI��k > T � �k+1 � T 	 ��2

)
+Lk−1

1

1−pk

1− p̃k

1−pk+1
1−52

E
(
V 2��1� � � � � �N 	

·
N∏

j=k+2
LjI��k > T � �k+1 > T 	 ��2

)
� (18)

By noting that

�1−p̃k	52=
(
1− n−∑

j<k I��j �T 	

N−k+1
)
n−∑

j<k I��j �T 	

N−k

= n−∑
j<k I��j �T 	

N−k+1(
1− n−1−∑

j<k I��j �T 	

N−k

)
= p̃k�1−51	�

switching the positions of the kth and the �k+ 1	st assets
does not change the second moment conditional on �2.
We have shown that switching the positions of the kth

and the �k+ 1	st assets when pk > pk+1 decreases the sec-
ond moment of the JK estimator. Therefore, variance is
minimized in the JK method by taking the assets in ascend-
ing order p1 � p2 � · · ·� pN .
To conclude the proof, we need to establish (16). Using

the relation between �i and Ui, we have

E�V 2��1� � � � � �N 	I��k � T � �k+1 > T 	 ��1	

=E�V 2��1� � � � � �N 	I�Uk � pk� Uk+1 >pk+1	 ��1	

�E�V 2��1� � � � � �N 	I�Uk � pk+1� Uk+1 >pk	 ��1	

�E�V 2��1� � � � � �N 	I�Uk > pk� Uk+1 � pk+1	 ��1	

=E�V 2��1� � � � � �N 	I��k > T � �k+1 � T 	 ��1	�

The second inequality is based on the following two
facts: (1) Because pk > pk+1, then hk > hk+1, so �k�u	 <
�k+1�u	� T for any u� pk+1. Therefore � , the nth default
time, increases after switching the order. (2) V 2��1� � � � � �N 	
decreases when � increases. �

A.5. Proof of Proposition 2

Proof. To compare the variances of the estimators given
by the JK method and the plain Monte Carlo method, it is
enough to compare their second moments.

For a last-to-default swap, in the JK method, p̃i = 1 for
i= 1� � � � �N , and

L=
N∏
i=1

pi

p̃i

< 1�

Therefore,

�E�V 2��1� � � � � �N 	L
2	=E�V 2��1� � � � � �N 	L	

<E�V 2��1� � � � � �N 		�

i.e., the JK method has smaller variance than plain Monte
Carlo.
For an nth-to-default swap, with n < N , if the default

probabilities of the assets are large enough or the life of the
swap is long enough, the estimator given by the JK method
has a larger variance than plain Monte Carlo sampling, as
we now show by induction on N .
In the case N = 2, it suffices to consider n= 1, a first-

to-default swap, for which the JK method yields

�E�V 2��1� � � � � �N 	L
2	

=E�V 2��1� � � � � �N 	L	

= p21
p̃1

E�V 2��1� � � � � �N 	 � �1 � T 	

+ �1−p1	
2

1− p̃1
E�V 2��1� � � � � �N 	p2 � �1 >T 	�

In the plain Monte Carlo method,

E�V 2��1� � � � � �N 		= p1E�V
2��1� � � � � �N 	 � �1 � T 	

+ �1−p1	E�V
2��1� � � � � �N 	 � �1 > T 	�

If p1 → 1, then p1 > p̃1, �1− p1	/�1− p̃1	→ 0, and 1−
p1 → 0; therefore,

�E�V 2��1� � � � � �N 	L
2	 >E�V 2��1� � � � � �N 		

for all sufficiently large p1. Therefore, the same holds if
either the swap maturity or the default hazard rate is suffi-
ciently large.
Now consider an arbitrary N > 2 and n < N . In the JK

method,

�E�V 2��1� � � � � �N 	L
2	

= p21
p̃1

E
(
V 2��1� � � � � �N 	

N∏
i=2

Li

∣∣∣∣�1 � T

)

+ �1−p1	
2

1− p̃1
E
(
V 2��1� � � � � �N 	

N∏
i=2

Li

∣∣∣∣�1 > T

)
�

In the plain Monte Carlo method,

E�V 2��1� � � � � �N 		= p1E�V
2��1� � � � � �N 	 � �1 � T 	

+ �1−p1	E�V
2��1� � � � � �N 	 � �1 > T 	�
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As p1 → 1, we need to compare the first term in the
two expressions for the second moments of the two estima-
tors. The first term in each case is a conditional expectation
given �1 � T . Conditional on �1 � T , the two procedures
(the JK method and plain Monte Carlo) reduce to prob-
lems that have N − 1 assets (and require n− 1 defaults)
and are thus covered by the induction argument. Moreover,
it follows from (2) that the conditional default probability
p2 = P��2 � T � �1	 approaches one as the marginal default
probability F2�T 	 = P��2 � T 	 approaches one. Thus, by
induction,

E
(
V 2��1������N 	

N∏
i=2

Li ��1�T

)
>E�V 2��1������N 	 ��1�T 	

once the marginal default probabilities are sufficiently
large. We conclude that

�E�V 2��1� � � � � �N 	L
2	 >E�V 2��1� � � � � �N 		

once the marginal default probabilities are sufficiently
large. �

A.6. Correlation Matrices Used in the Numerical
Examples

The four-factor model in the example of Swap A2 uses the
following randomly generated factor-loading matrix:

A=



−0�3955 −0�6130 0�3032 0�3093

0�3984 0�4795 0�5043 −0�0636
0�3316 −0�2816 −0�2323 −0�3391
0�0706 −0�2863 0�5232 −0�2069
−0�4649 0�0665 −0�2604 0�5511

0�0769 0�3760 0�7403 0�5437

0�2009 0�6573 0�1423 0�2606

−0�0588 −0�3827 −0�4279 0�4484

0�3364 −0�4151 0�0155 −0�1919
−0�1921 −0�0465 −0�4700 0�3500



�

The one-factor model in the example of Swap A4 uses

A=



0�4564

0�4929

−0�3811
−0�3363
−0�4127
0�3544

0�3412

−0�4832
−0�3756
0�3409



�

The corresponding correlation matrix can be obtained by

�=AA� +BB��

where B is the supplementary matrix of A.

A.7. Variance Reduction Ratios in the Numerical
Examples

Here we supply estimated variance reduction ratios at var-
ious maturities in our examples:
Swap A1

T 0.5 1 2 5 10 15 20 30

CP 1,613.5 757.0 324.5 78.6 17.9 6.5 3.2 1.5

Swap A2

T 3 4 5 10 15 20 30

CP 10.5 7�9 6�5 3.9 3.1 2.2 1.2
CPST (one-dimensional) 11.0 8�1 6�7 3.9 3.1 2.3 1.2
CPST (two-dimensional) 14.3 12�1 10�5 6.5 4.7 3.0 1.4

(In Swap A2, the CP and CPST methods produce variance
very close to zero for T � 2. This makes it difficult to
measure their variance reduction ratios accurately, so we
begin this table at T = 3.)
Swap A3

T 1 2 5 10 15 20 30

CP 2.2 1�9 1�6 1�4 1�3 1�2 1.1
CPST (one-dimensional) 7.5 22�5 39�9 27�9 17�4 11�3 6.2
CPST (two-dimensional) 7.8 26�7 53�4 32�6 17�9 11�8 6.3

Swap A4

T 0.5 1 2 5 10 15 20 30

CP 32�3 25�0 20�7 16.8 10.1 5.1 2.8 1.4
CPST 371�5 320�8 231�2 75.7 17.9 6.5 3.2 1.5

Swap A5

T 0.5 1 2 5 10 15 20 30

CP 5�3 4�4 3�6 3�0 2�5 2�1 1.8 1.4
CPST 120�3 194�8 183�8 80�5 27�8 12�8 7.2 3.6
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