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a stochastic notion of robustness to uncertainty in model dynamics. In this stochastic formulation, robustness reflects
uncertainty about the probability law generating market data, and not just uncertainty about model parameters. We analyze
both finite- and infinite-horizon problems in a model in which returns are driven by factors that evolve stochastically.
The model incorporates transaction costs and leads to simple and tractable optimal robust controls for multiple assets.
We illustrate the performance of the controls on historical data. As one would expect, in-sample tests show no evidence
of improved performance through robustness—evaluating performance on the same data used to estimate a model leaves
no room to capture model uncertainty. However, robustness does improve performance in out-of-sample tests in which
the model is estimated on a rolling window of data and then applied over a subsequent time period. By acknowledging
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underlying prices.
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1. Introduction
Portfolio optimization, like most problems of optimiza-
tion that rely on estimated quantities, is vulnerable to the
error-amplifying effects of combining optimization with
estimation. Any reasonable estimation procedure applied to
multiple assets will overestimate the expected returns of
some assets or underestimate their risk, and an optimiza-
tion procedure that ignores this fact will drive a portfolio
to overinvest in precisely these assets. Dynamic portfolio
control introduces a further complication by requiring a
model of the evolution of asset prices. Any practical model
is likely to be misspecified, in addition to being subject to
estimation error, and optimization will again amplify the
effects of error, in this case, model error.

The goal of robust methods, as the term is used in the
optimization and control literature, is to account for param-
eter or model uncertainty in the optimization procedure.
Whereas Bayesian methods put a probability distribution on
model parameters, robust optimization methods typically
posit ranges over which parameters may vary (uncertainty
sets) and then optimize against the worst-case configura-
tion consistent with these ranges. This formulation leads
to a min–max or max–min optimization problem. This

approach to robustness has been developed extensively in
the portfolio optimization setting in, e.g., Ben-Tal et al.
(2000), Bertsimas and Pachamanova (2008), Goldfarb and
Iyengar (2003), and, from a different perspective, in Lim
et al. (2011). Robustness to uncertainty over a set of dis-
tributions in portfolio optimization is analyzed in, e.g.,
El Ghaoui et al. (2003), Natarajan et al. (2008, 2010),
Delage and Ye (2010), and Goh and Sim (2010), primarily
in single-period formulations.

Here we use a stochastic notion of robustness that allows
model uncertainty in the law of evolution of the stochas-
tic inputs to a model. This paper combines this approach
to robustness with the following features: We study multi-
period (finite- and infinite-horizon) portfolio control prob-
lems. We work with a model in which returns are driven
by factors that evolve stochastically; both the relationship
between returns and factors and the evolution of the fac-
tors are subject to model error, and thus treated robustly.
We incorporate transaction costs. We develop simple opti-
mal controls that remain tractable for multiple assets. We
demonstrate performance both in sample and out of sample
on historical data.

It is convenient (and customary) to interpret the mini-
mization in a max–min robust optimization problem as the
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work of a hypothetical adversary who chooses the least
favorable set of parameters allowed by the uncertainty sets.
In a stochastic formulation of robustness, the adversary can
perturb the law of the stochastic inputs to the model, and
not just a set of parameters. To get a sensible formulation,
we must either constrain or penalize the magnitude of the
perturbation; otherwise, the adversary’s effect—reflecting
the degree of model uncertainty—would be so great as to
render optimization useless. This approach thus requires
a way of quantifying deviations from a nominal or baseline
model. Relative entropy turns out to be a particularly con-
venient way to measure the degree of change or error in
the law of the stochastic inputs. This notion of stochastic
robustness was introduced to the optimal control literature
in Petersen et al. (2000) under a total cost criterion. Hansen
and Sargent (2007) give a comprehensive treatment of the
discounted case and expand the theory and applications
of this approach in several directions; their monograph
provides the main tool for the formulation of robustness
we use, although, as we will see, the factor structure of
asset returns leads to a model outside the scope of their
results. Lim and Shanthikumar (2007) apply this notion of
stochastic robustness in a point process model of pricing.
El Ghaoui et al. (2003) apply a relative entropy constraint
in a static setting.

For the factor model and factor dynamics, we start from
the (nonrobust) model of Gârleanu and Pedersen (2013).
Their model uses linear dynamics and a quadratic objec-
tive to achieve tractability with considerable flexibility and
generality that lends itself to further study. Their analy-
sis, motivated by realistic trading strategies, focuses on the
impact of the speed of mean reversion in factor dynamics
and how this affects portfolio control and, ultimately, equi-
librium asset prices. By building on their framework, we
retain a high degree of tractability, and we can study the
effect of robustness in a current and independent model,
rather than in a model introduced specifically for the com-
parison. As a by-product, we can also see the effect of
model uncertainty on factor dynamics and the factor model
of returns: the adversary in the robust formulation can per-
turb both, and the adversary’s optimal choice points to the
ways in which the investor is most vulnerable to model
error. We test our portfolio rules on the same commodity
futures as Gârleanu and Pedersen (2013). Briefly, we find
that robustness leads to better performance in out-of-sample
tests in which the model is reestimated on a rolling win-
dow; robust rules guard against model and estimation error
by trading less aggressively on signals from the factors.

Maenhout (2004) extended the continuous-time formu-
lation of robustness of Anderson et al. (2003) to solve a
robust portfolio control problem and obtained closed-form
solutions for an investor with power utility. His model has
a single risky asset, a constant expected return, and no
transaction costs; his focus is primarily on the impact of
uncertainty on the aggregate demand for the risky asset and
less on practical portfolio construction. Maenhout (2004)

develops a connection between robustness and stochastic
differential utility in the sense of Duffie and Epstein (1992),
a connection also examined, from various perspectives, in
Chen and Epstein (2003), Liu (2010), Skiadas (2003), and
Uppal and Wang (2003). A parallel in the discrete-time
setting is the emergence of a discounted recursive risk-
sensitive control problem of the type studied by Hansen and
Sargent (1995). (The total cost robust problem of Petersen
et al. 2000 leads to an undiscounted risk-sensitive control
problem of the type introduced and studied by Jacobson
1973 and Whittle 1981, Whittle and Whittle 1990.) A line
of work that includes Bielecki and Pliska (1999), Bielecki
et al. (2005), and Fleming and Sheu (2001) starts from a
risk-sensitive objective and solves for the resulting opti-
mal portfolio control. In contrast, in our setting the risk-
sensitive control problem arises as a step in the solution to
the robust problem.

In §6, we illustrate the performance of the controls on
historical data. The robust controls do improve performance
in out-of-sample tests. By acknowledging uncertainty in the
estimated model, the robust rules lead to less aggressive
trading and are less sensitive to sharp moves in underly-
ing prices. We also compare the robust controls with three
heuristic scaling and trimming methods similar to, e.g.,
DeMiguel et al. (2009). We find that risk scaling, as intro-
duced in details in §6.4, is similar to isolating robustness
in certain random sources.

The rest of this paper is organized as follows. Sec-
tion 2 formulates the basic portfolio control problem and its
robust extension. Section 3 solves the finite-horizon prob-
lem. Section 4 examines the effect of varying the degree
of robustness and compares robust and nonrobust solutions.
Section 5 solves the infinite-horizon control problem, and
§6 presents numerical results. Most proofs are collected in
the online e-companion (available as supplemental material
at http://dx.doi.org/10.1287/opre.2013.1180).

2. Problem Formulation

2.1. Dynamics and Objective

We consider a portfolio optimization problem in which
asset returns are driven by factors with stochastic dynamics.
Examples of portfolio control problems with factor mod-
els of returns include, among many others, the work of
Bielecki and Pliska (1999), Campbell and Viceira (2002),
and Pesaran and Timmermann (2012). The formulation in
Gârleanu and Pedersen (2013), which we now review, leads
to particularly explicit solutions in both its original and
robust form.

The investor has access to nx underlying assets evolving
in discrete time. The changes in prices of the assets from
time t to time t + 1 are indicated by a vector rt+1 ∈ �nx ,
specified by

rt+1 =�+Bft + ut+11 (1)

where � ∈ �nx represents an expected or “fair” return,
ft ∈�nf is a vector of factors influencing price changes and
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known to the investor at time t, B ∈ �nx×nf is a factor-
loading matrix, and u11 u21 0 0 0, are i.i.d. random vectors in
�nx following a multivariate normal distribution with mean
zero and covariance matrix èu. The factors are mean revert-
ing, evolving according to the equation

ft+1 =Cft + vt+11 (2)

with coefficient matrix C ∈ �nf ×nf and i.i.d. noise vectors
v11 v21 0 0 0 in �nf following a multivariate normal distribu-
tion with mean zero and covariance matrix èv. We assume
that the vt are independent of the ut . To make the factors
stable, we assume throughout that �4C5 < 1, where �4 · 5
gives the spectral radius of a square matrix. Equations (1)
and (2) allow the possibility that prices become negative.
However, we measure performance based on price changes,
so this does not present a problem. The probability of this
occurring can also be made very small through parame-
ter choices.

Denote by xt ∈ �nx the vector of shares of underlying
assets held in the portfolio just after any transactions made
at time t; in other words, at time t the portfolio’s holdings
are rebalanced from xt−1 to xt . Rebalancing the portfolio
imposes transactions costs modeled as

1
2ãx

>
t åãxt1 where ãxt = xt − xt−11 (3)

with cost matrix å symmetric and positive definite. For
a square matrix A, we write A > 0 (or ¾, <, ¶) if A is
positive definite (or positive semidefinite, negative definite,
negative semidefinite, respectively). If a small transaction
of dx shares temporarily moves the market price unfavor-
ably by the amount ådx, then a transaction of size ãxt
results in a total cost of ãx>

t åãxt/2, compared to execut-
ing the transaction at the original price. The simple model
penalizes large trades and provides tractability.

In a mild abuse of notation, we use ãx to denote an
investment policy—that is, a rule for determining trans-
actions given the information available. With this conven-
tion, we write the objective introduced by Gârleanu and
Pedersen (2013), which models an investor seeking to max-
imize the present value of risk-adjusted excess gains, net
of transaction costs, as follows:

sup
ãx

E

[ T
∑

t=0

�t

(

4xt−1 +ãxt5
>4rt+1 −�5

− �

2
Vart64xt−1 +ãxt5

>rt+17−
1
2
ãx>

t åãxt

)]

=sup
ãx

E

[ T
∑

t=0

�t

(

x>
t 4Bf t+ut+15−

�

2
x>
t èuxt

− 1
2
ãx>

t åãxt

)]

0 (4)

The objective (4) consists of three terms. The first term
is the discounted sum of future excess returns with dis-
count factor � ∈ 40115. The third term measures discounted

transaction costs. The difference between these two terms
measures the discounted net cash flow to the investor. The
middle term is a risk penalty, in which � > 0 measures the
investor’s risk aversion. The notation Vart denotes condi-
tional variance of excess return, given information up to
time t, including position xt , and we use Et analogously.
Measuring risk through the expectation of the discounted
sum of conditional variances is a compromise made for
tractability, as is the case with the quadratic measure of
transaction costs. This also makes the objective time consis-
tent, which is not typically true for dynamic mean-variance
problems (e.g., Basak and Chabakauri 2010, Ruszczyński
2010). Interestingly, even if we drop the risk penalty (set-
ting � = 0), a term of exactly this form appears in the
solution to a robust formulation. We view (4) as a guide to
selecting sensible strategies rather than as a precise repre-
sentation of an investor’s preference. In our numerical tests,
we therefore evaluate performance through a Sharpe ratio
as well as directly through (4).

Given the Markov structure of the problem, it suffices
for the investor to consider policies under which ãxt is
a deterministic function of 4xt−11 ft5, and the supremum
in (4) is taken over such policies. In choosing an opti-
mal policy, the investor must, as usual, balance risk and
reward. In addition, the combination of the factor structure
in (1) and the mean reversion in (2) requires the investor to
balance the benefits of acting on a signal before the factors
decay against the costs of large transactions.

Remark 1. Our model of transaction costs can be general-
ized to incorporate more features while preserving tractabil-
ity. One generalization is to incorporate permanent price
impact by adding x>

t å̃ãxt to the transaction costs, where
å̃ãxt is the permanent price impact caused by transac-
tion ãxt . Because this term is linear in ãxt , we still get
an explicit iteration similar to Proposition 3. Moallemi
and Saglam (2012) consider more general models with
transaction costs and more general performance objectives
than (4); they forgo explicit solutions and instead optimize
numerically within the class of linear rebalancing rules.

2.2. Robust Formulation

We now introduce model uncertainty by allowing perturba-
tions in the stochastic dynamics of the model. The stochas-
tic input to the model is the sequence 84ut1 vt51 t = 1121 0 0 09
of noise terms, so we will translate uncertainty about the
model into uncertainty about the law of this sequence. As is
usually the case in discussions of robustness, it is conve-
nient to describe uncertainty through the possible actions
of a hypothetical adversary who changes the model to
maximize harm to the original agent—in our setting, the
investor. We will constrain the actions of the adversary
shortly, but first we briefly illustrate the effect the adversary
can have by changing the law of the noise sequence.

The noise vectors all have mean zero under the original
model. If the adversary changes the conditional mean of
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vt+1 to −Dft , for some nf ×nf matrix D, then (2) becomes

ft+1 = 4C −D5ft + ṽt+11

where ṽt+1 has the law of the original vt+1. Thus, the adver-
sary can change the dynamics of the factors and, for exam-
ple, accelerate the speed of mean reversion and potentially
reduce the value of the factors to the investor. By instead
setting the conditional mean of vt+1 to 4I −C5f̄ , for some
fixed f̄ , the adversary moves the long-run mean of the fac-
tors from the origin to f̄ . Changing the conditional mean
of ut+1 to −B̄ft changes (1) to

rt+1 =�+ 4B− B̄5ft + ũt+11

ũt+1 having the original distribution of ut+1, and thus allows
the adversary to change the factor loadings. By changing
the covariance of ut+1, the adversary changes the covari-
ance of the price changes rt+1. The adversary can also intro-
duce correlation between ut+1 and vt+1. We will see that
the adversary’s optimal controls take advantage of dynamic
information about both portfolio holdings and factor levels
and thus go beyond robustness to uncertainty about static
parameters like C and B.

These examples also serve to illustrate that alterna-
tive but equivalent formulations of the original control
problem (4) can lead to distinct formulations when we
consider robustness. For instance, replacing x>

t 4rt+1 − �5
on the left side of (4) with its conditional expectation
Et6x

>
t 4rt+1 −�57 = x>

t Bft clearly has no effect on the
investor’s portfolio choice or its performance as measured
by (4). However, by including ut+1 in the objective, we
allow the adversary to influence performance by changing
the distribution of this term. Put differently, including this
term leads the investor to a strategy that is robust to errors
in both the return model (1) and the factor dynamics (2),
whereas omitting ut+1 focuses robustness exclusively on the
factor dynamics. We solve and test both formulations.

We now formulate the adversary’s actions more pre-
cisely. Let gu and gv denote the probability densities of ut

and vt . The adversary may choose a new joint density g̃t
for 4ut1 vt5, which could, in the most general formulation,
depend on past values 4us1 vs5, s < t, of the noise sequence.
However, we will restrict our analysis to the Markovian
case in which any dependence of the density function g̃t
on the past is captured through dependence on the state
4xt−11 ft5. If we set

mt =
g̃t4vt1 ut � xt−11 ft5

gv4vt5gu4ut5
1 Mt =

t
∏

s=1

ms1 (5)

then Mt is the likelihood ratio relating the distribution of
4u11 v11 0 0 0 1 ut1 vt5 selected by the adversary to the origi-
nal distribution. Because gu and gv are multivariate normal
densities, so the denominator of mt is supported on all of
�nx ×�nx and is never zero.

As in Hansen and Sargent (2007), Hansen et al. (2006),
and Petersen et al. (2000), we limit the adversary by
constraining or penalizing the relative entropy of the

change of measure. How tightly we constrain or penalize
the relative entropy determines the degree of model uncer-
tainty by limiting how far the adversary can change the
stochastic evolution of the data away from the investor’s
model. The relative entropy at time t is E6Mt logMt7, which
is always positive and is equal to zero only when the
adversary leaves the original measure unchanged by taking
Mt ≡ 1. Given M0 and a sequence of one-period likelihood
ratios m= 8mt1 t = 1121 0 0 09 as in (5), let

R�4m5= 41 −�5
�
∑

t=0

�tE6Mt logMt7

=
�
∑

t=0

�t+1E
[

MtEt6mt+1 logmt+17
]

(6)

denote the infinite-horizon discounted sum of relative
entropy, where the term 1−� is introduced to simplify the
final expression. We can give the adversary a budget � > 0
and constrain the measure change to satisfy R�4m5 ¶ �.
When truncated at a finite upper limit T , the two sums
in (6) no longer coincide—the discount factor on the right
would need to be replaced with 4�t+1 −�T+15, leading to a
control problem that depends on both t and T , and not just
on the time-to-go T − t. To avoid this feature and to pre-
serve consistency with the infinite-horizon case, we use the
rightmost sum in (6), truncated at T , as our finite-horizon
measure of discounted entropy.

Constraining the adversary’s measure change to satisfy
R�4m5¶ � results in the robust control problem (for either
a finite or infinite horizon)

sup
ãx

inf
m2R�4m5<�

E

[

∑

t

�tMt

(

x>
t 4Bft + ut+15− �

2
x>
t èvxt

− 1
2
ãx>

t åãxt

)]

0 (7)

Here, the investor seeks to optimize performance in the face
of model uncertainty by maximizing performance against
the worst-case stochastic perturbation to the original model,
considering only perturbations that are sufficiently close to
the original model to satisfy the relative entropy constraint.
As before, the supremum is taken over policies under which
each ãxt is a deterministic function of 4xt−11 ft5; the infi-
mum is taken over measure changes satisfying the relative
entropy constraint and having the form in (5) in which each
new density g̃t is determined by 4xt−11 ft5. Thus, 4xt−11 ft5
remains Markovian under any policy pair 4ãx1m5.

The Lagrangian of the constrained problem (7) is a
penalty problem with parameter � > 0

sup
ãx

inf
m
E

[ T
∑

t=0

�tMt

(

x>
t 4Bft+Et6mt+1ut+175−

�

2
x>
t èvxt

− 1
2
ãx>

t åãxt+��Et6mt+1 logmt+17

)]

1 (8)
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with the constraint R�4m5 < � replaced by an admissibil-
ity condition R�4m5 <�. Hansen et al. (2006, Claim 5.4),
establish the equivalence of constrained and penalized for-
mulations through convex duality under mild conditions,
complementing a similar result in Petersen et al. (2000).
We work directly with (8) because it is more amenable
to explicit solution. This formulation also has an inter-
pretation in terms of dynamic risk measures, in which
case � measures the investor’s aversion to ambiguity; see
Ruszczyński (2010).

Our restriction to investment policies and measure
changes that are Markovian in the sense that their depen-
dence on the past is fully captured by dependence on the
state 4xt−11 ft5 does not change the value of (8) in the finite-
horizon case, provided the measure changes satisfy a more
general rectangularity condition; this is shown in Theo-
rems 2.1–2.2 of Iyengar (2005) for discrete state spaces,
but his argument applies here as well. The infinite-horizon
problem raises stability issues, but §7.6 of Hansen and
Sargent (2007) shows an analogous reduction to Markovian
strategies, under modest technical conditions, for prob-
lems of the type we consider. We avoid a digression into
these issues by limiting ourselves to Markovian strategies
throughout.

3. Finite-Horizon Robust Problem

3.1. Robust Bellman Equation for W

To lighten notation, we define

Q4x1ãx1 f 5= x>Bf − �

2
x>èux− 1

2
ãx>åx0

For a fixed horizon T < �, and any 0 ¶ t ¶ T , the finite-
horizon value function Wt1 T for the penalty problem (8) is
given by

Wt1 T 4Mt1 xt−11 ft5

= sup
ãx

inf
m
Et

[ T
∑

s=t

�sMs

(

Q4xs1ãxs1 fs5+Es6ms+1u
>
s+17xs

+ ��Es6ms+1 logms+17
)

]

1 (9)

with 4x−11 f05 fixed and WT+11 T = 0. That Wt1 T is indeed
a function of only 4Mt1 xt−11 ft5 follows from our restric-
tion to Markovian strategies 4ãx1m5 for the investor and
the adversary. In particular, under a fixed pair of policies,
the conditional expectations inside the summation reduce
to functions of 4xs1 fs5, and xs is a function of 4xs−11 fs5.

Define the one-step robust dynamic programming oper-
ator T acting on functions h2 �×�nx ×�nf →� by

T4h54M1x1f 5

=sup
ãx+

inf
m+

M
(

Q4x+1ãx+1f 5+E6m+u
>
+7x++�E6�m+ logm+7

+�E6h4Mm+1x+1f+57
)

1 (10)

where x+ = x + ãx+, f+ = Cf + v+, v+ ∼ N401èv5, and
u+ ∼ N401èu5. The supremum is over ãx+ ∈ �nx and the

infimum is over m+ of the form in (5). It is always feasible
(and optimal) for the adversary to choose m+ with finite
relative entropy.

Proposition 1. Wt1 T satisfies, for 0 ¶ t ¶ T , the robust
Bellman equation

Wt1 T =T4Wt+11 T 50 (11)

Proof. The proof is the same as that of Theorem 2.2 of
Iyengar (2005), even though the setting there is a dis-
crete state space. In particular, the rectangularity condi-
tion required there holds in our setting. (We detail the
argument for the infinite-horizon case in the proof of
Proposition 6.) �

We have taken WT+11 T = 0 as our terminal condition for
simplicity. If the underlying assets are futures contracts (the
focus of §6), then we can interpret this condition as having
all contracts mature at T +1. Alternatively, we could assign
WT+11 T a liquidation value for the portfolio, considering
both asset prices at time T + 1 and the transactions costs
incurred in selling off the portfolio’s holdings. This formu-
lation would require recording price levels (the cumulative
sum of the price differences rt) in the state vector, which
could be done quite easily. The final portfolio is just the
scalar product of xT+1 and the price vector, so this formu-
lation remains within the linear-quadratic framework. We
omit this extension for simplicity, particularly since it does
not apply to the infinite-horizon problem.

3.2. Bellman Equation for V

To solve the Bellman equation (11), we will follow the
approach in Hansen and Sargent (2007) and prove that Wt1 T

can be decomposed as a product of Mt and a function of
4xt−11 ft5, which will simplify (11) so that we can solve it
analytically. First, we write W in the form

Wt1 T 4Mt1 xt−11 ft5=MtVt1 T 4Mt1 xt−11 ft51 (12)

taking this as the definition of Vt1 T , since Mt ∈ 401�5. Then
(11) becomes

T4Mtmt+1Vt+11T 54Mt1xt−11ft5=MtVt1T 4Mt1xt−11ft50 (13)

Recalling the definition of T, we can divide both sides
of (13) by Mt to get

Vt1T 4Mt1xt−11ft5

=sup
ãxt

inf
mt+1

{

Q4xt1ãxt1ft5+Et

[

mt+1u
>
t+1xt+��mt+1 logmt+1

+�mt+1Vt+11T 4Mt+11xt1ft+15
]}

0 (14)

Set VT+11 T = 0. It now follows by induction that Vt1 T does
not depend on Mt: Suppose this is true of Vt+11 T ; then,
under our Markovian restriction on strategies, the condi-
tional expectations in (14) are functions of 4xt−11 ft5, and
thus so is Vt1 T .
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Since � > 0, the term in the conditional expectation of
(14) is convex in mt+1, so we can solve the minimization
problem through the first-order conditions, which leads to
the optimal choice

m∗
t+1

= exp8−41/�54Vt+11T 4xt1ft+15+41/�5x>
t ut+159

Et6exp8−41/�54Vt+11T 4xt1ft+15+41/�5x>
t ut+1597

0 (15)

This is a positive function of xt1 ft+11 ut+1 and vt+1, nor-
malized to integrate to 1, so it has the form required by (5).
(We verify that the normalization in the denominator is
finite in the case of interest as part of Theorem 1.) Sub-
stituting expression (15) into (14), we get the following
recursion for V :

Vt1T 4xt−11ft5

= sup
ãxt∈�d

{

Q4xt1ãxt1ft5−�� logEt

·
[

exp
{

−Vt+11T 4xt1ft+15+41/�5x>
t ut+1

�

}]}

1 (16)

which we abbreviate as Vt1 T =TV 4Vt+11 T 5 by defining TV

as the operator on the right. We summarize this transfor-
mation as follows:

Proposition 2. For any T <�, any solution to (16) gives
a solution Wt1 T 4Mt1 xt−11 ft5 = MtVt1 T 4xt−11 ft5 to (11),
where the adversary’s choice is given by (15).

The recursion in (16) has the form of a risk-sensitive
optimal control problem. With �= 1, the recursion can be
unwound and V expressed as the value function of a control
problem; this case is treated extensively in Whittle (1981),
Whittle and Whittle (1990). With � < 1, there is no non-
recursive expression for V : V cannot be expressed as the
value function for a control problem with a time-separable
objective, nor is it equivalent to specifying an exponential
utility function or any other standard utility function. This
discounted case is treated in Hansen and Sargent (1995),
although their convexity condition does not hold in our set-
ting; see also Skiadas (2003). Portfolio optimization prob-
lems with risk-sensitive criteria are solved in, e.g., Bielecki
and Pliska (1999), Bielecki et al. (2005), and Fleming and
Sheu (2001), with the risk-sensitive objective posited from
the outset. It should be stressed that, in our setting, the
risk-sensitive problem (16) emerges only as an intermedi-
ate step in solving the robust control problem, in response
to the adversary’s optimal strategy, and not as the primary
objective.

3.3. Saddlepoint Condition and Solution to the
Bellman Equation

Building on Whittle (1981) and Whittle and Whittle (1990),
we will give conditions leading to a quadratic solution

for Vt1 T . To motivate the argument, we first observe that
starting with VT+11 T = 0 and taking one step backward in
(16), we find that VT 1T is quadratic in 4xT−11 fT 5. If, for
some t ¶ T , Vt+11 T is quadratic in 4xt1 ft+15 with no depen-
dence on Mt , then the last term in (16) becomes

−�� log
(

Et

[

exp
{

−1
�
G

}]

Et

[

exp
{

− 1
��

x>
t ut+1

}])

= −�� logEt

[

exp
{

−1
�
G

}]

− 1
2��

x>
t èuxt1 (17)

where G is a quadratic function of 4xt1 ft+15 (and thus of
vt+1), and the conditional expectation factors because of the
independence of ut+1 under the original probability mea-
sure. Under the saddlepoint conditions given below, (17)
then reduces to a quadratic function of 4xt1 ft5. So, the
right side of (16) is a quadratic function of xt , ft , and xt−1.
Maximizing over xt under the saddlepoint conditions, the
right side of (16) becomes a quadratic function of 4xt−11 ft5.
Thus, Vt1 T is quadratic in 4xt−11 ft5 and has no functional
dependence on Mt .

A consequence of these properties of Vt1 T is that it is
quadratic in vt+1—implying that vt+1 continues to be nor-
mally distributed under the change of measure, although
with a different mean and covariance—and linear in ut+1—
implying that ut+1 continues to be normally distributed but
with a different mean. The absence of a cross term multi-
plying vt+1 and ut+1 in m∗

t+1 preserves the independence of
the two vectors.

In light of the foregoing discussion, we posit the
representation

Vt1 T 4xt−11 ft5= x>
t−1A

4t1 T 5
xx xt−1 + x>

t−1A
4t1 T 5
xf ft

+ f >
t A

4t1 T 5
ff ft +A

4t1 T 5
0 1

and set

A4t1 T 5 =




A4t1 T 5
xx

1
2A

4t1 T 5
xf

1
2 4A

4t1 T 5
xf 5> A

4t1 T 5
ff



 0

Without loss of generality, we take A4t1 T 5 to be symmetric.
We introduce two conditions to ensure that this structure
is preserved by the recursion (16). To state the conditions
generically, we drop the superscript 4t1 T 5.

Condition 1. è−1
v + 42/�5Aff > 0.

Condition 2. J1 > 0, with �� = � + 41/��5 and

J1 = ��èu +å− 2�Axx

+ �

�
Axf

(

è−1
v + 2

�
Aff

)−1

A>
xf > 00 (18)

By analogy with Whittle and Whittle (1990, pp. 81–83),
we call these saddlepoint conditions.

The following lemma provides sufficient conditions for
the required properties.
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Lemma 1. (i) If Axx ¶ 0 and Condition 1 holds, then Con-
dition 2 holds. (ii) If Aff ¾ 0, then Condition 1 holds.

The lemma helps explain the name “saddlepoint” and
shows that the conditions we have are weaker than concav-
ity in x and convexity in f . We now apply our conditions
to the Bellman equation (16). The result is similar to that of
Hansen and Sargent (1995); however, a separate argument
is needed because we do not have joint concavity. Given a
matrix A, define

J2 = Bft +åxt−1 +�AxfCft

− 2
�

�
Axf

(

è−1
v + 2

�
Aff

)−1

AffCft1 (19)

J3 = B+�AxfC − 2
�

�
Axf

(

è−1
v + 2

�
Aff

)−1

AffC0 (20)

The matrix J3 appears when we substitute a quadratic func-
tion into (16); the vector J2 depends on the state 4xt−11 ft5
and will be used to describe the investor’s optimal port-
folio. The proof of the following result, and that of most
results throughout the paper, appears in appendices.

Proposition 3. If a symmetric matrix A satisfies Condi-
tions 1 and 2, then TV maps a quadratic function with
coefficients 4A1A05 to a quadratic function with coefficients
4S4A51U4A1A055, where

S4A5xx = − 1
2å+ 1

2åJ−1
1 å>1 (21)

S4A5xf =åJ−1
1

[

B+�AxfC

− 2
�

�
Axf

(

è−1
v + 2

�
Aff

)−1

AffC

]

1 (22)

S4A5ff = �C>AffC − 2
�

�
C>Aff

(

è−1
v + 2

�
Aff

)−1

AffC

+ 1
2
J>

3 J−1
1 J31 (23)

U4A1A05= ��

2
log

∣

∣

∣

∣

I + 2
�
èvAff

∣

∣

∣

∣

+�A01 (24)

and � · � denotes the determinant of a matrix.

We now show that the properties we need for a quadratic
representation of Vt1 T are indeed preserved by (16). We
write Sn for the n-fold iteration of the mapping S.

Proposition 4. (i) If A is symmetric, then Sn4A5 is sym-
metric for all n > 0. (ii) If A is symmetric and satisfies
å1/2J−1

1 å1/2 < I , Aff ¾ 0, and Condition 2, then

−å/2 <Sn4A5xx < 0 and Sn4A5ff ¾ 01 for n> 00

Hence, Conditions 2 and 1 hold for all n> 0.

3.4. Optimal Controls

We can now summarize the optimal controls for the adver-
sary and the investor. We use Ẽ to denote expectation under
the change of measure selected by the adversary. The con-
ditions on A4T 1 T 5 in the following result hold, in particular,
for the terminal condition A4T+11 T 5 = 0 corresponding to
WT+11 T = 0, but they hold more generally as well.

Theorem 1. Suppose A4T 1 T 5 satisfies the conditions in
Proposition 4 so that Conditions 2 and 1 hold for all A4t1 T 5,
t ¶ T .

(i) Under the adversary’s optimal change of measure,
the conditional distribution of 4ut+11 vt+15 given 4u11 v151

0 0 0 1 4ut1 vt5 is normal with conditional covariance è̃t+1,

è̃t+1 =
[

èu 0
0 4è̃v5t+1

]

1 where

4è̃v5t+1 =
(

è−1
v + 2

�
A

4t+11T 5
ff

)−1

1

and conditional mean 4zu1 t+11 zv1 t+15, with

zu1 t+1 = −èuxt
��

and

zv1t+1 = −1
�
4è̃v5t+1

(

4A
4t+11 T 5
xf 5>xt + 2A4t+11 T 5

ff Cft

)

(25)

= −1
�
4è̃v5t

¡Vt+11 T 4xt1 Ẽt6ft+175

¡ft
0

(ii) The investor’s optimal choice is

ãx∗
t = 2å−1A4t1 T 5

xx

(

xt−1 + 1
2 4A

4t1 T 5
xx 5−1A

4t1 T 5
xf ft

)

=å−1 ¡Vt1 T

¡x
1 (26)

so

xt = J−1
1 J2 = 4I + 2å−1A4t1 T 5

xx 5xt−1 +å−1A
4t1 T 5
xf ft0 (27)

The effect of the adversary’s control is to change the
evolution of the factors from (2) to

ft+1 =Cft + zv1 t+1 + ṽt+11 ṽt+1 ∼N401 4è̃v5t+153

in particular, this makes

Ẽt6ft+17=Cft + zv1t+1

=
(

I − 2
�
4è̃v5t+1A

4t+11 T 5
ff

)

Cft

− 1
�
4è̃v5t+14A

4t+11 T 5
xf 5>xt

= 4è̃v5t+1

(

è−1
v Cft −

1
�
4A

4t+11 T 5
xf 5>xt

)

1 (28)
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where Ẽ denotes expectation under the change of measure
selected by the adversary. Because 4è̃v5t+1 ¶èv, we inter-
pret the first term in (28) as shrinking the persistence of
the factors, and thus potentially reducing their value to the
investor; the second term in (28) indicates that the adver-
sary also exploits the investor’s current portfolio in setting
the conditional mean of the factors, as suggested by the
expression following (25).

Corollary 1. We can write the investor’s optimal choice
(27) as

xt = 4I + 2å−1A4t1 T 5
xx 5xt−1

− 2å−1A4t1 T 5
xx

(− 1
2 4A

4t1 T 5
xx 5−1A

4t1 T 5
xf ft

)

(29)

= (

��èu +å− 2�A4t+11 T 5
xx

)−1

× (

åxt−1 +��èu4��èu5
−1Bft − 2�A4t+11 T 5

xx

· (− 1
2 4A

4t+11 T 5
xx 5−1A

4t+11 T 5
xf Ẽt6ft+17

))

0 (30)

For (29), as in Gârleanu and Pedersen (2013), we can
interpret this choice as a weighted average of the current
portfolio xt−1 and a target portfolio given by

target = − 1
2 4A

4t1 T 5
xx 5−1A

4t1 T 5
xf ft0 (31)

The target portfolio maximizes the quadratic func-
tion Vt1 T , given the factor level ft . If transaction costs
were waived for one period, the investor would move
immediately to the target; otherwise, the investor’s opti-
mal trade (26) is proportional to the difference between the
current portfolio and the target, the proportion depending
on the cost matrix å. Recall that the A matrix depends
on the robustness parameter � through the recursions in
Proposition 3.

In (30), the term 4��èu5
−1Bft , which we call the

myopic portfolio, maximizes the single-period mean-
variance objective

x>
t Bft −

��

2
x>
t èuxt0

Thus, (30) represents xt as a weighted average of the cur-
rent portfolio xt−1, the myopic portfolio, and the condi-
tional expectation of the target portfolio one step ahead.
Comparing this expression to Equation (16) of Gârleanu
and Pedersen (2013), we can interpret the effect of the
robust solution as replacing the original conditional expec-
tation of the factors with their conditional expectation under
the adversary’s change of measure and implicitly increas-
ing the investor’s risk-aversion parameter from � to ��.
Interestingly, if we omitted the variance penalty �x>

t èuxt/2
from the original objective (4), it would still appear in the
robust formulation, because �� > 0 even if � = 0. Uncer-
tainty in the linear term u>

t+1xt has the effect of increasing
risk aversion.

4. Comparison with the Nonrobust Case
In this section, we examine the effect of varying the
robustness parameter �, including the nonrobust formula-
tion � = � as a limiting case. We affix � as a subscript
or superscript to indicate functions and quantities tied to a
specific value of the parameter. The nonrobust version is
indicated by a subscript or superscript �.

We denote by W�
t1 T and W�, respectively, the finite-

horizon and infinite-horizon value functions for the (non-
robust) objective (4) and define a dynamic programming
operator acting on functions h2 �nx ×�nf →� by

T�4h54x1 f 5= sup
ãx+∈�nx

{

x>
+Bf+ − �

2
x>

+èvx+ − 1
2
ãx>

+åãx+

+E6h4x+1 f+57
}

1

with x+ = x + ãx+, and the expectation taken over f+ =
Cf + v, v ∼ N401èv5. Then W�

t1 T satisfies the recursion
T�4W�

t+11 T 5 = W�
t1 T . Gârleanu and Pedersen (2013) show

that this dynamic programming equation maps a quadratic
function backward to another quadratic function. We can
therefore write

W�
t1 T 4xt−11 ft5= x>

t−1S
T−t
� 4A5xxxt−1 + x>

t−1S
T−t
� 4A5xf ft

+ f >
t ST−t

� 4A5ff ft +UT−t
� 4A1A051 (32)

with ST−t
� 4A5 and UT−t

� 4A1A05 the coefficients of W�
t1 T at

time t when W�
T 1T is quadratic with coefficient matrix A.

Here, Sn
� is the n-fold iteration of S�, but Un

� is
defined recursively by setting U1

� =U� and Un
�4A1A05=

U�4S
n−1
� 4A51Un−1

� 4A1A055; see the analogous dependence
on A and A0 in (24).

The nonrobust case can be considered a special case
of the robust formulation. Condition 1 holds automatically
when � = �, and if Condition 2 holds for some matrix A
for � = �, then it also holds for any � ∈ 401�5. This is
because the last term in (18) is positive definite for � ∈
401�5, but vanishes when � = �, and �� is decreasing in
�, so J �

1 ¾ J�
1 . It is also easy to verify that Proposition 4

holds at � = �. As we vary � (smaller � indicating greater
robustness), the coefficient matrices are ordered as follows:

Lemma 2. If 4A1A05 satisfies Aff ¾ 0, å1/2J−1
1 å1/2 < I ,

and Condition 2 for some 0 < �1 < �2 ¶ �, then for any
n¾ 0, Sn

�1
4A5¶Sn

�2
4A5 and Un

�1
4A1A05¶Un

�2
4A1A05.

To illustrate, suppose we start the recursions for two
parameter levels 0 < �1 < �2 ¶ � from the same terminal
condition with coefficients 4A1A05 (including A = A0 = 0
as a special case). Suppose the conditions of Lemma 2 hold.
We make the following observations:

(a) In the portfolio decomposition (29), the weight on
the previous position satisfies 1 + 2å−1Sn

�1
4A5xx < 1 +

2å−1Sn
�2
4A5xx, so more robustness (smaller �) leads to

less weight on the previous position xt−1 and more weight
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on the target portfolio (31). The less-robust investor puts
greater trust in the persistence of the factors described by
the model and thus attaches greater value to the previous
portfolio. However, the coefficient of ft in (29) can either
increase or decrease with � because Sn

�4A5xf can increase
or decrease or change in a more complicated way.

(b) From the decomposition (30), we find similarly that
increasing robustness decreases weight on the myopic port-
folio 4�

�
èu5

−1Bft , and it also decreases the size of the
myopic portfolio because �� increases with �. If we remove
ut+1 from (4) and limit robustness to the factor dynamics
(2) only, then �� ≡ � and the myopic portfolio does not
vary with �.

(c) Also from (30), we see that increasing robustness
puts more weight on the conditional expectation of the tar-
get portfolio while decreasing the coefficient on the condi-
tional expectation of the factors. In numerical examples, we
find that the conditional expectation of the target portfolio
is very sensitive to �.

We can also interpret the effect of robustness from the
optimal controls

ãx∗
t =å−1 ¡Vt+11 T

¡x
and

zv1 t+1 = −1
�
4è̃v5t

¡Vt+11 T 4xt1 Ẽt6ft+175

¡ft
0

These expressions are already very suggestive, as they
show the investor and the adversary using their controls to
increase and decrease V , respectively. Also, the quadratic
function Vt1T is concave in xt−1 and convex in ft , making it
a hyperbolic paraboloid. The cross term x>

t Bft in the objec-
tive function leads to the cross-term coefficient Axf 6= 0 in
the value function. The presence of this term means that
the axes of the hyperbolic paraboloid are twisted and not
orthogonal to each other. As a result, the minimum point
for f is linear in x, and maximum point for x is linear in f ,
properties exploited by both players. This can also be seen
in (25) and (27).

If there were no cross term in the objective and we had
At+11 T

xf = 0, then the coefficient of Cft in (25) would be a
negative definite matrix, and the effect of the adversary’s
choice of zv1 t+1 would thus be to accelerate the mean rever-
sion of the factors in (2) and reduce their value to the
investor. In fact, in the limit as � approaches zero, the coef-
ficient of ft in (25) becomes −C, which eliminates any
persistence in the factor dynamics (2). With a nonzero cross
term, the adversary can do further harm by moving the fac-
tors in a direction that depends on the investor’s current
portfolio.

We conclude this section by verifying that value itera-
tion for the nonrobust problem converges; this is needed to
confirm that the solution to the Bellman equation found in
Gârleanu and Pedersen (2013) is in fact the value function
for the infinite-horizon problem and that the corresponding
control is optimal. In the following, J1 is evaluated with
� = �.

Proposition 5. If A is such that J1 > 0, Aff ¾ 0, and

A−







0 0

0
1

2�
B>è−1

u B







¶ 01

then the iteration of (32) converges; i.e., limn→�4S
n
�4A51

Un
�4A1A055 exists. The control (26) obtained from the limit

is optimal, and the quadratic function defined by the limit
solves the Bellman equation and is the value function for
the infinite-horizon problem.

5. Infinite-Horizon Robust Problem

5.1. Formulation and Bellman Equation

For the robust infinite-horizon problem, define W by setting
t = 0 and T = � on the right side of (9). This robust value
function is bounded above by the nonrobust value function
(corresponding to � = � in Lemma 2), and it is bounded
below because the investor can choose xt ≡ 0.

Proposition 6. With T the operator defined in (10),
W satisfies

W =T4W50 (33)

Similarly, by arguing as in Proposition 2 and the subse-
quent discussion, we arrive at the following result.

Proposition 7. Suppose V 4xt−11 ft5 satisfies V = TV 4V 5,
with TV as defined by (16). Then W4Mt1 xt−11 ft5 =
MtV 4xt−11 ft5 satisfies (33) with

m∗
t+1

= exp8−41/�54V 4xt1 ft+15+ 41/�5x>
t ut+159

Et6exp8−41/�54V 4xt1 ft+15+ 41/�5x>
t ut+1597

1 (34)

provided the normalization in (34) is finite.

This reduces the problem of finding a solution to the
robust Bellman equation (33) to one of solving V =TV 4V 5.
In solving for the infinite-horizon V , the finite-horizon
recursions for Vt1 T in Proposition 3 become simultaneous
equations. Given coefficients 4A1A05 of a quadratic func-
tion, define J1, J2, and J3 as in (18)–(20).

Proposition 8. If A is symmetric and 4A1A05 satisfy
Aff ¾ 0, J1 > 0, å1/2J−1

1 å1/2 < I , and

Axx =− 1
2å+ 1

2åJ−1
1 å>1

Axf =åJ−1
1

[

B+�AxfC−2
�

�
Axf

(

è−1
v + 2

�
Aff

)−1

AffC

]

1

Aff =�C>AffC−2
�

�
C>Aff

(

è−1
v + 2

�
Aff

)−1

AffC

+ 1
2J

>
3 J−1

1 J31

41−�5A0 =−��

2
log

∣

∣

∣

∣

I+ 2
�
èvAff

∣

∣

∣

∣

1

then the quadratic function V defined by 4A1A05 is a fixed
point of TV .
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This is a direct consequence of Proposition 4. With this
result, we can solve the equations for 4A1A05 and check the
conditions in the statement of the proposition (which ensure
the saddlepoint conditions we need for optimality). If these
are satisfied, then we have a fixed point V , from which we
get a solution W to the Bellman equation T4W5 = W by
setting W4M1x1 f 5 = MV 4x1 f 5. Such a solution provides
candidate optimal controls for both the investor and the
adversary—controls that attain the supremum and the infi-
mum in the one-step operator T. The calculation of these
controls is similar to that in Theorem 1, but simpler because
of that stationarity implicit in the infinite-horizon setting.
We summarize the calculation as follows:

Lemma 3. Suppose the conditions of Proposition 8 hold
and define V from 4A1A05 accordingly.

(i) Under the change of measure (34), the conditional
distribution of 4ut+11 vt+15 given 4u11 v151 0 0 0 1 4ut1 vt5 is
normal with conditional covariance è̃,

è̃=
[

èu 0
0 è̃v

]

1 where è̃v =
(

è−1
v + 2

�
Aff

)−1

1

and conditional mean 4zu1 t+11 zv1 t+15, with

zu1 t+1 = −èuxt/4��5 and

zv1 t+1 = −1
�
è̃v4Axf

>xt + 2AffCft5

= −1
�
è̃v

¡V 4xt1 Ẽt6ft+175

¡ft
0

(ii) The supremum over ãx in the Bellman equation V =
TV 4V 5 is given by the investment choice

ãx∗
t = 2å−1Axx

(

xt−1 + 1
2 4Axx5

−1Axf ft
)

=å−1 ¡V 4xt−11 ft5

¡x
1

under which

xt = J−1
1 J2 = 4I + 2å−1Axx5xt−1 +å−1Axf ft0

5.2. Stability

Lemma 3 provides explicit expressions for the controls
obtained by solving the robust Bellman equation. As is
often the case in infinite-horizon problems, we need addi-
tional conditions to verify that a solution to the Bellman
equation is in fact the value function (9) (with T = �)
and that the corresponding controls are optimal. For these
properties, we need to impose stability properties on the
evolution of the controlled system. The key property is the
admissibility condition R�4m5 < �, with R� as defined
in (6).

Although it refers only to the adversary’s control, this
property is best viewed as a condition on the controls of

both players because the adversary’s choice of mt may
depend on the investor’s choice of portfolio. Define the
state yt and the extended state yet by setting

yt =
[

xt−1

ft

]

and yet =




ut

xt−1

ft



 0

The state evolution depends on the chosen pair of policies
4ãx1m5. Details of the state dynamics can be found in the
beginning of §8 in online e-companion (available as sup-
plemental material at http://dx.doi.org/10.1287/opre.2013
.1180). We use � · � to denote the usual Euclidean vector
norm. The full stability condition we use is as follows.

Definition 1 (�-Stability). We call a policy pair 4ãx1m5
and the resulting extended state evolution �-stable if
R�4m5 < � and if �tẼ6�yet �27 ⇒ 0 for some � ∈ 4�115,
for all ye0 .

The mean square convergence to zero of �t/2yet under
the change of measure is sufficient to ensure that the infi-
nite discounted sum (with discount factor �) of a quadratic
function of the extended state is finite. We thus interpret
�-stability as ensuring that the adversary cannot drive the
investor reward to −� and that the investor cannot drive
the relative entropy penalty to +�; in particular, the con-
dition avoids the possibility of getting �−� in the robust
value function. For the controls obtained from the Bellman
equation (the controls in Lemma 3), a simpler condition
characterizes �-stability. We use the condition

R�4m5 <� for some � ∈ 4�1150 (35)

Lemma 4. Suppose U is a solution to the robust Bellman
equation (33) for which U4M1x1 f 5 is the product of M
and a quadratic function of 4x1 f 5. If the quadratic function
satisfies Conditions 2 and 1, then the resulting controls
4ãx1m5 are �-stable if and only if (35) holds.

5.3. Optimality

We now verify that that the policies provided by the robust
Bellman equation through Lemma 3 do indeed solve the
robust control problem in a suitable sense. Suppose both the
investor and the adversary choose their policies (Markov, as
we assume throughout), and let x∗

t and m∗
t be the resulting

portfolios and likelihood ratios. Then the value attained by
this pair of policies, starting from 4M01 x−11 f05, whenever
this expression is well defined, is given by

W ∗4M01 x−11 f05=E

[ �
∑

t=0

�tMt4Q4x∗
t 1ãx

∗
t 1 ft5

+ ��m∗
t+14logm∗

t+1 + u>
t+1x

∗
t 55

]

(36)

= Ẽ

[ �
∑

t=0

�t4Q4x∗
t 1ãx

∗
t 1 ft5

+ ��m∗
t+14logm∗

t+1 + u>
t+1x

∗
t 55

]

1 (37)
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where, as before, Ẽ denotes expectation under the adver-
sary’s change of measure. We show that a solution to the
robust Bellman equation (33) is indeed the value attained
under the corresponding policies, and the policy forms an
equilibrium. Once one player has selected a policy, we call
a policy selected by the other player a �-stable response if
the resulting policy pair is �-stable.

Theorem 2. Suppose U ∗ is a solution to the robust
Bellman equation (33), and suppose U ∗4M1x1 f 5 is the
product of M and a quadratic function of 4x1 f 5 satisfy-
ing Conditions 1–2. Suppose the corresponding policy pair
4ãx∗1m∗5 satisfies R�4m

∗5 <� for some � ∈ 4�115. Then
(i) U ∗ is the value attained under the policy pair

4ãx∗1m∗5.
(ii) The investor’s best �-stable response to m∗ is ãx∗.

The adversary’s best �-stable response to ãx∗ is m∗.

This result justifies the controls that come out of
Lemma 3. It is worth noting that a violation of �-stability
entails either a portfolio size that grows exponentially or an
infinite relative entropy penalty. The restriction to �-stable
policy pairs is therefore sensible, and it is appropriate to
view the policy ãx∗ derived from the robust Bellman equa-
tion as the investor’s optimal choice in the face of the model
uncertainty captured by the robust formulation.

5.4. Convergence of Value Iteration

From Lemma 3, we see that the key step in solving
the infinite-horizon robust control problem is solving the
equations in Proposition 8, which restate the condition
V =TV 4V 5 for quadratic V . A natural approach is to start
from some initial 4A1A05 and apply the equations itera-
tively. Each application of the equations is an application of
the operator TV , so the question of convergence of this iter-
ative approach is equivalent to the question of convergence
of the finite-horizon function Vt1 T as t → −� with VT 1T the
quadratic function determined by the starting point 4A1A05.
Hansen and Sargent (1995) consider the case where the
objective function is concave in the state variable, which
allows a simple proof through a monotone convergence
argument, but our setting is beyond the scope of their result.

Over a finite horizon T , each 4At+11 T 1At+11 T
0 5 determines

candidate controls through the prescription in Theorem 1.
Under these controls, the state yt evolves as in (5) in
online e-companion (available as supplemental material at
http://dx.doi.org/10.1287/opre.2013.1180), but with a time-
dependent transition matrix

ë̄t1 T =
[

I 0

−1
�
4è̃v5t+1A

4t+11 T 5
xf 4è̃v5t+1è

−1
v C

]

·
[

I + 2å−1A4t+11 T 5
xx å−1A

4t+11 T 5
xf

0 I

]

0

If both factors in this representation have norm less than
�−1/2, then we have convergence of Sn4A5 Un4A1A05

for any initial 4A1A05 that satisfies å1/2J−1
1 å1/2 < I and

Aff ¾ 0. The norm here can be any matrix norm for which
�Mn�1/n → �4M5, such as any p-norm.

We have not found simple sufficient conditions that
ensure this uniform stability condition. The condition can
easily be checked for each ë̄t1 T at each iteration as part of
an iterative algorithm, but given the difficulty of verifying
the condition in advance we omit the details of the result.
In our numerical experiments, we have never observed a
failure to converge, starting either from zero or the solution
of the nonrobust case and, indeed, the convergence appears
to be quite fast. An alternative to iteration is the decompo-
sition method covered in Hansen and Sargent (2007). This
approach leads to conditions that guarantee a solution, but
it requires a lengthy and technical digression, so we omit it.

6. Numerical Results

6.1. Data Description and Model Estimation

In order to test the effect of the robust formulation, we
work with the application to commodity futures in Gârleanu
and Pedersen (2013), using futures prices on the follow-
ing commodities: aluminum, copper, nickel, zinc, lead, and
tin from the London Metal Exchange; gas oil from the
Intercontinental Exchange; WTI crude, RBOB unleaded
gasoline, and natural gas from the New York Mercantile
Exchange; gold and silver from the New York Commodi-
ties Exchange; and coffee, cocoa, and sugar from the
New York Board of Trade. For consistency with Gârleanu
and Pedersen (2013), we use daily prices for the period
01/01/1996–01/23/2009 for our in-sample tests; we use data
through 04/09/2010 for out-of-sample tests. As discussed
in Gârleanu and Pedersen (2013), extracting price changes
from futures prices requires some assumptions on how con-
tracts are rolled, and this makes it difficult to reproduce
exactly the same time series of price changes. We choose
the contract with the largest volume on each day. In some
early samples when volumes for some commodities are
not available, we choose the contract closest to maturity
that does not expire in the current month. Our estimates
and results are quite close and adequate for the purpose of
examining the effect of robustness.

For each commodity, Gârleanu and Pedersen (2013)
introduce factors f 5D, f 1Y , and f 5Y , which are the moving
averages of price changes over the previous five days, one
year, and five years, normalized by their respective standard
deviations. Using these factors, we estimate the following
model of price changes for each commodity:

r st+1 = 00004
400545

+11043
420415

f 5D1s
t + 107055

420425
f 1Y 1 s
t − 218076

4−10655
f 5Y 1 s
t

+ us
t+11

the superscript s indexing the 15 commodities. This is
a pooled panel regression—the coefficients are the same
across all commodities—with parameters estimated using
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Table 1. In-sample performance comparisons using the full data series with robust-
ness in returns (ut) and factor dynamics (vt).

Obj × 10−6 Mean/std

� Gross t-stat Net t-stat Gross t-stat Net t-stat

No TC 1022 −159068 0082 −11067
Myopic −0021 −0022 0008 0008
Nonrobust 0070 0062 0060 0056
Robust 1010 0070 −0004 0062 0012 0061 −0008 0057 −0013

109 0055 −0065 0051 −0049 0061 −0029 0057 −0048
108 0015 −1024 0013 −1009 0063 0009 0057 −0035
107 0002 −1037 0002 −1021 0072 0089 0066 0070
106 0000 −1040 0000 −1023 0079 1004 0077 1018
105 0000 −1040 0000 −1023 0082 1013 0082 1040

Note. For each �, the t-stats compare performance of the robust rule at that � with the nonrobust
case, based on grouping the data into 40 batches.

feasible generalized least squares. The numbers reported
under the coefficients are t-statistics. Similarly, for the fac-
tor dynamics we get the following estimates:

ãf 5D1s
t+1 = −002510

4−00675
f 5D1s
t + v5D1s

t+1 1

ãf 1Y 1 s
t+1 = −000039

4−00645
f 1Y 1 s
t + v1Y 1 s

t+1 1

ãf 5Y 1 s
t+1 = −000010

4−00785
f 5Y 1 s
t + v5Y 1 s

t+1 0

The matrix C is thus diagonal, and, in light of the
t-statistics, a potential source of model error to be cap-
tured in the vt+1 terms. With f = 4f 5D111 f 1Y 111 f 5Y 111 0 0 0 1
f 5D1151 f 1Y 1151 f 5Y 1155>, the form of the loading matrix B
follows from the regression equation for r st . Erb and
Harvey (2006) documented the 1-year momentum factor
in commodity futures prices. Asness et al. (2013) and
Moskowitz et al. (2012) documented 1-year and 5-year
many asset classes.

We adopt the choices in Gârleanu and Pedersen (2013)
in estimating èv and èu, and in setting the risk-aversion
parameter to � = 10−9, the one-day discount factor � =
exp4−0002/2605 corresponding to a 2% annual rate, and
the transaction cost matrix to å= �èu, with �= 3 × 10−7.

Table 2. In-sample performance comparisons using the full data series with robust-
ness in factor dynamics (vt) only.

Obj × 10−6 Mean/std

� Gross t-stat Net t-stat Gross t-stat Net t-stat

Nonrobust 0070 0062 0060 0056
Robust 1010 0070 0040 0062 0053 0060 0080 0056 0089

109 0071 0038 0062 0052 0060 0081 0057 0089
108 0072 0035 0065 0048 0061 0098 0057 1005
107 0072 0007 0066 0019 0065 1015 0062 1019
106 0051 −0050 0048 −0037 0072 0097 0068 0096
105 0023 −1002 0022 −0087 0075 0084 0071 0077

Note. For each �, the t-stats compare performance of the robust rule at that � with the nonrobust
case, based on grouping the data into 40 batches.

6.2. In-Sample Tests

This section reports results of in-sample tests in which we
evaluate portfolio performance on the same price data used
to estimate the model. We compare performance at various
levels of the robustness parameter �, including the non-
robust case � = �. The “No TC” case is a strategy that
ignores transaction costs and thus reduces to the mean-
variance optimal portfolio xt+1 = 4�èu5

−1Bft . With å =
�èu, the myopic portfolio corresponds to taking �= 0, and
it evolves as xt+1 = 4�/4�+�55xt + 41/4�+�55è−1

u Bft .
Tables 1 and 2 summarize performance results. The

robust results in Table 1 are based on allowing the
changes in both returns (through ut) and factor dynamics
(through vt); in Table 2, robustness is limited to vt by omit-
ting ut+1 from the original problem (4). As we discussed
in §2.2, alternative but equivalent nonrobust objectives can
lead to different robust problems.

The columns labeled “mean/std” report annualized per-
formance ratios computed as√

260 × Mean(daily $ profit)/

Standard deviation(daily $ profit)0

We refer to these loosely as Sharpe ratios although they are
calculated from differences ratherthan percentage changes
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because the assets are futures contracts—each contract has
zero initial value, and total portfolio value can become neg-
ative. The columns labeled “Obj” report the objective func-
tion value

Mean(daily $ profit) − �

2
Variance(daily $ profit)0

The difference between gross and net performance is the
effect of transaction costs.

To provide a rough indication of the statistical signifi-
cance of our comparisons, we group the data into consec-
utive batches and calculate standard errors across batches.
For each level of the robustness parameter �, we calculate
an approximate t-statistic (using the first estimator in The-
orem 1 of Muñoz and Glynn 1997) for the difference in
performance between the robust and nonrobust strategies.
With sufficient stationarity and mixing in the underlying
data, these statistics are indeed asymptotically t-distributed,
although the conditions required are not guaranteed to hold
in practice. We report results based on 40 batches and
have obtained very similar results with 30 batches and with
50 batches.

Not surprisingly, ignoring transactions costs leads to
good gross performance and terrible net performance in the
first row of Table 1. The myopic rule produces less extreme
differences, but overall poor results. These portfolios help
illustrate the value of dynamic control rules. The nonrobust
rule is optimized to the net objective function, so there is
no reason to expect to see any benefit to robustness by this
criterion. In Table 1, we see some deterioration in the net
objective as we increase robustness (decrease �); in Table 2,
the net objective is relatively insensitive over a wide range
of � values. Interestingly, when we compare performance
based on Sharpe ratios, for which none of the rules has
been optimized, adding robustness appears to improve per-
formance in both cases, although the differences are not
significant as measured by our t-statistics. The in-sample
improvement in the Sharpe ratio for the robust portfolios
is primarily due to a reduction in the standard deviation in

Table 3. Out-of-sample performance comparisons using a rolling six-month estima-
tion window with robustness in returns (ut) and factor dynamics (vt).

Obj × 10−6 Mean/std

� Gross t-stat Net t-stat Gross t-stat Net t-stat

No TC −59076 −81257060 0053 −5074
Myopic −11080 −11090 −0057 −0059
Nonrobust −36078 −42092 0035 0004
Robust 109 −8017 2024 −10050 2032 0039 0093 0015 3007

108 0029 2006 0002 2018 0040 0021 0026 1076
107 0010 1099 0008 2013 0046 0038 0037 1073
106 0001 1099 0001 2012 0052 0066 0049 2021
105 0000 1099 0000 2012 0053 0069 0052 2032
104 0000 1099 0000 2012 0053 0069 0053 2034

Note. For each �, the t-stats compare performance of the robust rule at that � with the nonrobust
case, based on grouping the data into 40 batches.

the denominator. At high robustness levels, the net excess
return of the robust portfolio can be lower than that of the
nonrobust portfolio, but with smaller standard deviation.

6.3. Out-of-Sample Tests

To compare out-of-sample performance, we reestimate the
model parameters each week from 01/01/1996 through
04/09/2010 using the previous six months of data. Each
time the parameters are estimated, the investment control
rule remains fixed for one week until the parameters are
next updated. Thus, at each point in time, the investment
policy is based solely on prior market data. Updating the
parameter estimates based on a rolling six-month window
is also more reflective of how such a model would be used
in practice.

Table 3 (with robustness to both ut and vt) and Table 4
(with robustness to vt only) summarize the results. Over
a wide range of � values, the robust control rules show
improved net performance as measured by either the objec-
tive function value or the Sharpe ratio. In effect, the robust
rules acknowledge the uncertainty in the estimated model,
and thus trade less aggressively than the nonrobust rule, and
this improves out-of-sample performance. Allowing robust-
ness to both the model of returns and the model of factor
dynamics (Table 3) results in somewhat better results over-
all than focusing robustness on the factor dynamics.

As with the in-sample tests, the improvement mainly
comes from the reduction in risk. In Table 5, t-statistics
for the difference in net returns between the robust and
nonrobust portfolios are estimated using batch means with
40 batches. None of the robust portfolios has a significantly
better net return than that of the nonrobust portfolio.

Our subsequent analysis focuses on the less favorable
case in which robustness is limited to the factor dynamics.

To illustrate the effect of robustness, Figure 1 shows
the evolution of the positions in gold and crude oil under
various strategies. Ignoring transaction costs leads to wild
swings on a much wider scale, so we omit this case
from the graph. Positions under the robust rules (shown at
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Table 4. Out-of-sample performance comparisons using a rolling six-month estima-
tion window with robustness in factor dynamics (vt) only.

Obj × 10−6 Mean/std

� Gross t-stat Net t-stat Gross t-stat Net t-stat

Nonrobust −36078 −42092 0035 0004
Robust 109 −31016 1069 −36038 1072 0037 1021 0008 2067

108 −18070 1091 −22016 1095 0040 1006 0016 2065
107 −5010 2005 −6070 2012 0044 0058 0025 1099
106 −0028 2003 −0085 2013 0042 −0039 0027 0081
105 0027 2001 0011 2013 0037 −0073 0026 0038
104 0018 2000 0014 2013 0041 −0026 0033 0086

Note. For each �, the t-stats compare performance of the robust rule at that � with the nonrobust
case, based on grouping the data into 40 batches.

Table 5. t-statistics of the difference of net returns
between robust and nonrobust portfolios for
out-of-sample tests, based on grouping the
data into 40 batches.

� 109 108 107 106 105 104

Robust in v only 0096 0069 0033 0003 −0009 −0012
Robust in v and u 0024 −0007 −0014 −0015 −0015 −0015

� = 107 and � = 104 with robustness to vt only) fluctuate
less than those chosen by the nonrobust rule. At the same
time, by anticipating the evolution of the factors, the robust
rules are quicker to respond than the myopic portfolio.

Figure 1. Positions in gold in out-of-sample tests under various control rules.

6/21/1996 3/26/1999 12/28/2001 10/4/2004 7/6/2007 4/8/2010
–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

× 106 Gold position

Robust � = 107

Nonrobust
Myopic

6/21/1996 3/26/1999 12/28/2001 10/4/2004 7/6/2007 4/8/2010
–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

× 106 Gold position

6/21/1996 3/26/1999 12/28/2001 10/4/2004 7/6/2007 4/8/2010
–6

–4

–2

0

2

4
× 104 Gold position

Robust � = 104

Scaled nonrobust

Robust � = 104

Nonrobust
Myopic

Note. The lower-left figure shows the positions for risk-scaled nonrobust portfolio and corresponding robust portfolio.

The figures and numerical results suggest that � = 107 pro-
vides a reasonable level of robustness and � = 104 is overly
conservative. The third panel scales the nonrobust posi-
tions to facilitate comparison. We discuss scaling strategies
in §6.4.

Figure 2 compares net returns over the full time period
and provides further insight into differences across strate-
gies. Ignoring transaction costs results in disastrously poor
performance, so this case is omitted from the figure. The
performance of the myopic portfolio degrades over the
time. Interestingly, much of the benefit of the robust rule,
compared with the nonrobust rule, appears to be because of
a small number of days. The nonrobust rule can outperform

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

59
.8

3.
12

] 
on

 2
8 

M
ar

ch
 2

01
4,

 a
t 0

9:
54

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Glasserman and Xu: Robust Portfolio Control with Stochastic Factor Dynamics
888 Operations Research 61(4), pp. 874–893, © 2013 INFORMS

Figure 2. Net portfolio returns in out-of-sample tests.

6/21/1996 3/26/1999 12/28/2001 10/4/2004 7/6/2007 4/8/2010

–1.0

–0.5

0

0.5

1.0

1.5

2.0

× 1010 Net excess return

Robust � = 107

Nonrobust
Myopic

the robust rule over long periods of time; adding robustness
reduces the impact of a small number of bad bets by trading
less aggressively on the signals from the factors. Consis-
tent with what we see in Figure 2, the improved Sharpe
ratio under the robust rules results mainly from a smaller
denominator rather than a larger numerator. We have also
observed in QQ-plots (not included) that the tails of the
out-of-sample distributions of daily returns of the robust
portfolio are lighter than those of the nonrobust portfolio.

The largest losses in Figure 2 occur near September
27, 1999, and February 2, 2006, so we examine events
around these days in greater detail. Leading up to this
date, the loading matrix (B) and the mean-reversion matrix
(C) were relatively slow moving. As shown in Figure 3,
both portfolios had short positions in gold, although more
aggressively under the nonrobust rule. On September 26,
15 European central banks signed an agreement to limit
gold sales (Weber 2003); the price of gold rose 6% the next
day and 11% the day after. This spike results in large losses
for the short positions in our test portfolios, but the loss is
tempered under the robust rule.

To ensure that our results are not overly influenced by
a single day, we repeat the comparison removing days

Figure 3. Parameter estimates near September 29, 1999.

3/18/1999 5/27/1999 8/5/1999 10/14/1999 12/23/1999

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5
× 106 × 104

Position of gold

9/27/1999

3/18/1999 5/27/1999 8/5/1999 10/14/1999 12/23/1999

2.0

2.2

2.4

2.6

2.8

3.0

Price of gold

9/27/1999

Robust �= 107

Nonrobust

September 27–28, 1999, from the data. Table 6 shows
that the robust portfolio still outperforms the nonrobust
portfolio.

Whereas the large price change on September 27, 1999
was limited to gold, changes around February 2, 2006
were spread across multiple commodities, and the portfolio
losses resulted from large positions rather than large price
changes. The largest positions for both the robust and non-
robust portfolios on that date are in aluminum, zinc, gold,
and sugar. The prices for these commodities are shown in
Figure 4.

The position sizes for these commodities are shown
in Figure 5. The steady price increases in the first half
of Figure 4 lead to growing positions, particularly for
the nonrobust portfolio. The positions change smoothly;
this is consistent with the representation in (29)—more
precisely, the infinite-horizon version without the super-
scripts 4t1 T 5—of the portfolio as a weighted average of
the previous position and a target position, together with
the observation that the factors are moving smoothly as a
consequence of the pattern of price changes. The large posi-
tions produce large losses on February 2. The price drop
in sugar, for example, is barely perceptible, yet it produces
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Table 6. Out-of-sample results with two extreme days (9/27–28/1999) removed from
the data.

Obj × 10−6 Mean/std

� Gross t-stat Net t-stat Gross t-stat Net t-stat

Nonrobust −32011 −37098 0049 0018
Robust 107 −3089 1089 −5045 1097 0056 1005 0037 2058

106 −0002 1086 −0058 1098 0048 −0003 0033 1024

the largest losses of any of the commodities because of
the large position accumulated. The robust portfolio suffers
smaller losses because it is less aggressive in building up
large positions in response to the increasing factor levels.
Interestingly, the two portfolios hold fairly similar posi-
tions in zinc and gold, despite the large difference in their
sugar positions. The nonrobust portfolio positions continue
to grow quickly following the price drop. We attribute this,
informally, to the nonrobust portfolio ascribing greater per-
sistence to the factors.

Table 7 lists relative entropy values for in-sample tests
with standard errors reported in parentheses. Using the

Figure 4. Prices for aluminum, gold, zinc, and sugar before and after February 2, 2006.

11/17/2005 12/22/2005 1/30/2006 3/6/2006
1

2

3

4

5

6

7

×104

Aluminum
Zinc
Gold
Sugar

2/2/2006

Note. These are the commodities in which the portfolios hold the largest positions on that date.

Figure 5. Four largest positions for the nonrobust (left) and robust (right) portfolios around February 2, 2006.

11/17/2005 12/22/2005 1/30/2006 3/6/2006 4/10/2006

0

0.5

1.0
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2.0

2.5

3.0
3.0

× 106
× 106

2/2/2006

Aluminum
Zinc
Gold
Sugar

11/17/2005 12/22/2005 1/30/2006 3/6/2006 4/10/2006

2/2/2006

results in Theorem 1, 104 sample paths with the same
length as the history for in-sample tests are simulated using
the estimated model, and the relative entropy is estimated
using (6). For each Mt , the conditional relative entropy
Et6mt+1 logmt+17 is calculated using the closed-form
expression (6) in the online e-companion (available as sup-
plemental material at http://dx.doi.org/10.1287/opre.2013
.1180). To achieve the similar level of relative entropy for
the robustness only in v with � = 109, one needs to set
� = 107 when robustness in both v and u are considered.
Both objective function and Sharpe ratio with � = 107 in
Table 3 are better than those with � = 109 in Table 4.
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Table 7. Relative entropy for in-sample tests.

� Robustness in v Robustness in v and u

1010 00020 (1.4×10−4) 00017 (1.2×10−4)
109 0030 (1.2×10−3) 0017 (604 × 10−4)
108 101 (5.7×10−3) 0027 (1.0×10−3)
107 204 (0.016) 0031 (907 × 10−4)
106 500 (0.048) 0040 (8.2×10−4)
105 12 (0.16) 0044 (8.1×10−4)

Note. Standard errors are reported in parentheses.

The difference of these performance measurements sug-
gests that the improvement is brought by considering the
extra source of uncertainty from u.

For out-of-sample tests, there is no exact way to capture
the relative entropy budget at each time, so we simply use
the relative entropy for the same value of � in in-sample
tests.

6.4. Scaling and Trimming

In this section, we will compare the robust portfolios
with simple heuristics to make the nonrobust portfolios
less aggressive by adding constraints. We consider three
alternatives.

Risk-scaled portfolio: For the out-of-sample test, at each
time the model is updated, the position of the nonrobust
portfolio is scaled by a factor. For given robustness level
� > 0, the scaling factor is computed using the previous
six-months’ realized return so that the variance of the net
return of the scaled portfolio equals that of the robust port-
folio. The scaling factor is applied to those positions in the
subsequent week. For the first six months, we still use their
own performance for scaling.

Capital-scaled portfolio: First, define the total exposure
to be the sum of absolute exposures,

∑

i �xi1 t�pi1 t , with pi1 t

being the price of the ith asset at time t. Whenever the
total exposure of the nonrobust portfolio exceeds a prede-
termined threshold, it will be scaled down proportionately
so that the total exposure of the scaled portfolio equals
the threshold. We choose the maximum total exposure of a
robust portfolio as the threshold.

Trimmed portfolio: Here we trim the nonrobust portfo-
lio so that at any time t the position for each asset will
be bounded by some upper and lower bounds. We set the
bounds to be the maximum and minimum positions of the
robust portfolio for each asset.

Table 8. Average of scaling parameters for out-of-sample tests, so that the realized
variance of the scaled nonrobust portfolio equals that of the robust portfolio.

� 109 108 107 106 105 104

Robust in v only 0096 0081 0053 0027 0011 00037
Robust in v and u 0053 0011 00013 1.5×10−3 1.5×10−4 1.5×10−5

�/�� 005 00091 9.9×10−3 1.0×10−3 1.0×10−4 1.0×10−5

Tables 8, 9, and 10 report out-of-sample performance for
these three portfolios. Columns labeled with “RS,” “CS”
and “T ” refer to risk-scaled portfolio, capital-scaled port-
folio, and trimmed portfolio, respectively. The t−statistics
in parentheses, which compare performance of the robust
portfolio with these three portfolios, indicate that none
of these alternatives performs consistently as well as the
robust method. Actually, the robust portfolio perform sig-
nificantly better than these three portfolios as measured by
the objective function when robustness is not too extreme,
i.e., when � is not too small.

Among the three constrained portfolios, the risk-scaled
portfolios have relatively closer performance to the corre-
sponding robust portfolios. Interestingly, there is a heuristic
reason for this. Suppose that we scale down the nonrobust
portfolio by a factor s ∈ 40115, such that the positions of
the resulting portfolio becomes xs

t = sx�
t , where x�

t is the
position of the nonrobust portfolio. Then

xs
t = 4I + 2å−1A4t1 T 5

xx 5xs
t−1 − 2å−1A4t1 T 5

xx × s × target1

where the matrix A is computed under the case � = �.
Therefore, the scaled portfolio follows original nonrobust
policy, but with scaled target. Gârleanu and Pedersen (2013,
Proposition 3) show that under the specification å = �èu

for some �> 0, the target portfolio of the nonrobust portfo-
lio can be written as a discounted sum of expected myopic
portfolios, 4�èu5

−1Bft , at all future times. Therefore, scal-
ing the target portfolio is very close to scaling up the risk-
aversion parameter � to �s = �/s, although the discounting
factor for myopic portfolios will change slightly when �
changes.

On the other hand, from (16), (17), and online e-com-
panion A (available as supplemental material at http://dx
.doi.org/10.1287/opre.2013.1180), robustness in the mean
of u with � > 0 is equivalent to increasing � to ��. Thus,
scaling down the nonrobust portfolio by s is close to con-
sidering robustness in the mean of u with

� = s

41 − s5��
0 (38)

The performance of the risk-scaled portfolios in Table 10
is close to that of the corresponding robust portfolios. This
suggests that most of the improvement is explained by the
robustness in u, since the gap between the risk-scaled port-
folio and the robust portfolio can be considered as the
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extra benefit brought by considering robustness in v. This
is consistent with the observation in Table 7, where the
performance of the robust portfolio considering only the
uncertainty in v is much less than the portfolio with robust-
ness in both u and v at the same relative entropy level.

In Figure 1, the lower-left figure shows the position of
gold for risk-scaled portfolio and the corresponding robust
portfolio with � = 104. The robust portfolio is different
from the risk-scaled portfolio, especially when it has some
extreme positions.

Table 8 reports average scaling parameters over time.
For the cases with robustness in both v and u, the scal-
ing parameters are very close to �/��, which supports our
observation on the effect of scaling.

7. Concluding Remarks
We have developed robust portfolio control rules using a
stochastic and dynamic notion of robustness to model error.
Our analysis covers both finite- and infinite-horizon multi-
period problems. We work with a factor model of returns,
in which factors evolve stochastically. The relationship
between returns and factors and the evolution of the fac-
tors are subject to model error and are treated robustly. We
incorporate transaction costs and develop simple optimal
controls that remain tractable for multiple assets. Robust-
ness significantly improves performance in out-of-sample
tests on historical data.

Using this approach requires choosing a value for the
parameter �, which controls the degree of robustness or
pessimism. In principle, one would want to select this
parameter to reflect the reliability of a model based on the
data available to support it. Conveniently, we find that our
results are consistent over a wide range of � values, so the
exact choice of this parameter does not dominate our empir-
ical results. Methods for selecting this parameter neverthe-
less remain an interesting topic for further investigation.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2013.1180.
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