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MOMENT EXPLOSIONS AND STATIONARY DISTRIBUTIONS IN AFFINE
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Many of the most widely used models in finance fall within the affine family of
diffusion processes. The affine family combines modeling flexibility with substantial
tractability, particularly through transform analysis; these models are used both for
econometric modeling and for pricing and hedging of derivative securities. We analyze
the tail behavior, the range of finite exponential moments, and the convergence to
stationarity in affine models, focusing on the class of canonical models defined by Dai
and Singleton (2000). We show that these models have limiting stationary distributions
and characterize these limits. We show that the tails of both the transient and stationary
distributions of these models are necessarily exponential or Gaussian; in the non-
Gaussian case, we characterize the tail decay rate for any linear combination of factors.
We also give necessary and sufficient conditions for a linear combination of factors to
be Gaussian. Our results follow from an investigation into the stability properties of
the systems of ordinary differential equations associated with affine diffusions.
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1. INTRODUCTION

The affine family of diffusion models includes many of the most widely used models in
finance. The affine framework offers substantial modeling flexibility and a high degree
of tractability, particularly through Laplace or Fourier transforms. Examples of affine
diffusions include the Ornstein–Uhlenbeck (OU) process, the square-root diffusion asso-
ciated with the Cox–Ingersoll–Ross (CIR) (1985) interest rate model, the Heston (1993)
stochastic volatility model, the interest rate models of Brown and Schaefer (1994) and
Longstaff and Schwartz (1992), and the Duffie–Kan (1996) family of term structure
models. Affine models are used both for econometric modeling of time series data and
for pricing and hedging of derivative securities.

Duffie, Pan, and Singleton (2000) develop a transform analysis for affine jump-
diffusions in a very general setting. They derive generalized characteristic functions
associated with these models and show that these are exponentials of affine functions of
the state variables; the coefficients of these affine functions are characterized as solutions
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to ordinary differential equations (ODEs). Duffie, Filipovic, and Schachermayer (2003)
characterize regular affine processes and their associated differential equations. Dai and
Singleton (2000) define equivalence classes of affine models that are invariant under
certain affine transformations, and they define a canonical model within each class. See
Singleton (2006) for an extensive discussion of the estimation of these models.

In this paper, we study the tail behavior of affine diffusions and their stationary
distributions. We focus on canonical models and show that these models do indeed have
limiting stationary distributions. We characterize the tail behavior of the transient and
stationary distributions of these models, and we show that the tails are always exponential
or Gaussian. This in turn allows us to characterize the range of finite moments for asset
price processes constructed from affine diffusions.

We obtain our results through an analysis of the stability of the ODEs that determine
the transforms associated with an affine model. To illustrate the connection between
tail behavior and transforms, let X be a positive-valued random variable and let φ(θ ) =
E[exp(θX)] denote its moment generating function (the mapping θ → φ(−θ ) is its Laplace
transform). We can distinguish various types of tail behavior for X based on properties
of φ(θ ) for θ ≥ 0: If φ(θ ) = ∞ for all θ > 0, then X is heavy-tailed; if φ(θ ) is finite all for
θ ∈ [0, θ0), for some θ0 > 0, then the tail of X is exponentially bounded; if, in addition,
φ(θ ) = ∞ for all θ > θ0, then the tail is exponentially bounded both above and below, so
X has an exponential tail; and if φ(θ ) < ∞ for all θ ≥ 0, then X is light-tailed. Similar
statements apply to a two-sided random variable through consideration of both positive
and negative values of θ . When we refer to the tails of a random vector X ∈ Rn , we mean
the tails of random variables of the form u · X, u ∈ Rn , with u · X denoting the scalar
product of u and X .

Consider, now, an OU process

dYt = a(b − Yt) dt + σ dWt,(1.1)

with a, σ > 0 and b ≥ 0, or a CIR process

dYt = a(b − Yt) dt + σ
√

Yt dWt(1.2)

with, in addition, 2ab > σ 2 and Y0 > 0. In either case, take Y0 fixed, for simplicity. Then,
in the case of (1.1), Yt has a Gaussian distribution for all t > 0 and a stationary Gaussian
limit distribution as t → ∞; in particular, Yt has light tails for all t. In the case of (1.2),
Yt has a scaled noncentral chi-square distribution for all t > 0 and a stationary limit with
a gamma distribution; thus, Yt has an exponential tail for all t.

Our results extend this simple illustration to the full range of canonical affine models.
We establish the existence of limiting stationary distributions, and we show that any
linear combination of the state variables has either an exponential tail or a Gaussian
distribution. The dynamics of a canonical affine model cannot produce heavy-tailed dis-
tributions, nor can they produce non-Gaussian light-tailed distributions; the same holds
for any affine model obtained from a canonical model through an affine transformation.
As a point of contrast, we note that GARCH models typically generate heavy-tailed
marginal distributions, even when driven by light-tailed innovations; see Basrak, Davis,
and Mikosch (2002).

The tail behavior of an affine process determines the maximal moments in an asset-
price model constructed from the affine process. More explicitly, suppose the process
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Y takes values in Rn , and construct a price process Pt = exp(at + ut · Yt), where at is a
scalar function of time, and ut is an Rn-valued function of time. The points

θ t = inf
{
θ ∈ R : E[Pθ

t ] < ∞} and θ t = sup
{
θ ∈ R : E[Pθ

t ] < ∞}
coincide with the endpoints of the interval of convergence of the moment generating
function of ut · Yt. We use the structure of the transform of Yt to characterize these points.
It follows from our investigation that the interval (θ t, θ t) shrinks (or, more precisely, does
not expand) as t increases. Inverting the dependence on t leads to the smallest t at which
E[Pθ

t ] becomes infinite, for fixed θ . This is the problem of finding the moment explosion
time studied by Andersen and Piterbarg (2007) in the Heston model. Through results
of Lee (2004), the extremal values θ t, θ t determine the asymptotic slope of the implied
volatility curve for options on Pt.

We derive our results through an analysis of the ODEs that arise in the transform
analysis of affine models. We show that the moment generating function of u · Yt, u ∈ Rn ,
is infinite at θ precisely if the solution to the ODE for Y explodes by time t from initial
condition θu. It follows that Yt has exponential tails if the solution remains finite on [0, t]
from all initial conditions in a neighborhood of the origin, and Yt has light tails if this
holds for all initial conditions in Rn . The limiting behavior of the distribution of Yt is
determined by the behavior of the ODEs as t → ∞. By characterizing the stability of the
ODEs, we show that {Yt, t ≥ 0} has a limiting distribution that does not depend on Y0,
and that this limiting distribution is, in fact, stationary for Y . The tails of this stationary
distribution are determined by the stability region of the ODE for Y ; properties of the
stability region are themselves of some interest, as we illustrate through examples. Our
final result shows that a linear combination of the components of Yt is light-tailed only if
it is Gaussian, and we characterize which linear combinations have this property through
the model parameters defining Y .

The rest of this paper is organized as follows. Section 2 reviews the dynamics and
parametric restrictions for canonical affine models and states our main results. Section 3
illustrates these results with examples. Sections 4–6 develop the analysis and proofs
underlying our results. Section 4 includes relevant background on the theory of dynamical
systems. We conclude in Section 7.

2. MAIN RESULTS

The canonical affine models introduced by Dai and Singleton (2000) follow equations of
the form

dYt = −A�(� − Yt) dt +
√

diag(Ft) dWt,(2.1)

evolving on Rn and driven by an n-dimensional standard Brownian motion W . Here,
Ft is an affine function of Yt, also taking values in Rn , and diag(Ft) denotes the n × n
diagonal matrix whose diagonal entries are the components of Ft. The interpretation
of the process Y depends on the application. For example, in some models, one defines
a short rate process rt by setting rt = u0 + u1 · Yt, for some u0 ∈ R and some u1 ∈ Rn ;
other models define an asset price process Pt by setting log(Pt) = at + bt · Yt, for some
deterministic functions a and b.

The canonical specification of Dai and Singleton (2000) imposes additional restrictions
on (2.1). To state these, we introduce some notational conventions to be used throughout
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the paper. For vectors or matrices a and b, we write a ≥ b if every entry of a is at least
as large as the corresponding entry of b; we write a > b if a ≥ b and a �= b; and we
write a 	 b if every entry of a is strictly larger than the corresponding entry of b. We
set Rm

+ = {x ∈ Rm : x ≥ 0} and Rm
++ = {x ∈ Rm : x 	 0}, with the dimension of the zero

vector determined by context. We write |x| for the Euclidean norm of the vector x.
In the Dai–Singleton (2000) classification, the canonical model Am(n) partitions the

state vector Y as (Yv , Yd ), with Yv evolving on Rm
+ and Yd on Rn−m, as a consequence of

restrictions imposed on (2.1). The components of Yv are called volatility factors, and the
components of Yd are called dependent factors. We use the superscripts v and d more
generally to indicate partitions of vectors and matrices associated with the partioning of
Y . Thus, we often write a vector u ∈ Rn as (uv , ud ), with uv having m components and
ud having n − m components. The parameters of a canonical model Am(n) are required
to satisfy conditions (C1)–(C4), later. Dai and Singleton (2000) and Singleton (2006)
explain the econometric identification issues that motivate these conditions.

(C1) The matrix A has the block form

A =
(

Av Ac

0 Ad

)
,

and it has real and strictly negative eigenvalues.

(C2) The off-diagonal entries of Av are nonnegative.

(C3) The vector � = (�v , �d ) has �d = 0, �v ≥ 0, and (−A��)v 	 0.

(C4) The vector Ft = (Fv
t , Fd

t ) satisfies

Fv
t = Yv

t , Fd
t = e + (Bc)�Yv

t ,

where e is a vector of 1s and Bc is a matrix in R
m×(n−m)
+ .

The eigenvalue condition in (C1) ensures mean reversion in Y . It implies (through, e.g.,
p. 62 of Horn and Johnson (1990)) that Av and Ad also have strictly negative eigenvalues,
in view of the block triangular form of A. Together, (C1) and (C2) imply that −Av is an
M-matrix (as defined, e.g., in Berman and Plemmons (1994)). The vector � represents
the long-run mean of Y . We could rewrite (2.1) in terms of

� = −A��.(2.2)

Indeed, if we specify �v rather than �, with �v 	 0, then the fact that −Av is an
M-matrix guarantees (see p. 137 of Berman and Plemmons (1994): inverse-positivity
of M-matrix) that we can find a �v ≥ 0 for which −Av ��v = �v ; in fact, we can take
�v = −(Av �)−1�v . If we then set �d = 0 and �d = (−A��)d = (Ac�)(Av �)−1�v , we
complete the specification of � in a manner consistent with (C3) and (2.2). Thus, we can
choose either � or � in specifying the model.

Condition (C4) requires that only the volatility factors Yv appear inside the square
root in (2.1), which is natural, given that the components of Yd will be allowed to become
negative. The form of Fv

t implies that the volatility factors are correlated only through
the matrix A in the drift of Y . Cheridito, Filipović, and Kimmel (2006) show that the
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diffusion matrix of any affine diffusion on Rm
+ × Rn−m can be diagonalized through an

affine transformation if m ≤ 1 or m ≥ n − 1 (in particular, if n ≤ 3); but they also provide
examples for which no such transformation exists.

To illustrate this modeling framework, we formulate a stochastic volatility model in
the class A1(2)—that is, a two-factor model with a single volatility factor. We write the
state vector as Y = (Yv , Yd ), with dynamics

dYv
t = (m1 + pYv

t

)
dt +
√

Yv
t dW1

t(2.3)

dYd
t = (m2 + qYv

t + rYd
t

)
dt +
√

1 + sYv
t dW2

t ,(2.4)

for some constants m1, m2, p, q, r , and s. The restrictions of the general model Am(n)
require m1 > 0, p < 0, q ≥ 0, r < 0, s ≥ 0, and qm1 = pm2. We can then construct an
asset-price process Pt by setting

log(Pt) = at + 2btYv
t + 2ctYd

t ,(2.5)

for some deterministic functions at, bt, and ct. We will apply our general results to
the moments of Pt in the next section and illustrate the qualitatively different behavior
produced by different ranges of parameter values in the model.

The model (2.1) has associated with it a system of ODEs on Rn specified by⎛
⎜⎜⎝

ẋ1(t)
...

ẋn(t)

⎞
⎟⎟⎠ =
(

Av Ac

0 Ad

)⎛⎜⎜⎝
x1(t)

...

xn(t)

⎞
⎟⎟⎠+
(

I Bc

0 0

)⎛⎜⎜⎝
x2

1 (t)
...

x2
n (t)

⎞
⎟⎟⎠ .(2.6)

We will write this system more compactly as

ẋ = fo(x) = Ax + B
(
x2

1 , . . . , x2
n

)
, x(0) = u,(2.7)

with B the corresponding block matrix in (2.6), and the initial condition u ∈ Rn included
here for future reference. We will see that, for any initial condition u, the system (2.7)
admits a unique solution on a time interval [0, t), for some t > 0. But, the solution may
blow up in finite time and fail to exist beyond some finite time τ . We discuss this point in
greater detail in Section 4.1.

The analysis in Duffie et al. (2000) leads to the representation

E [exp(2u · Yt)] = exp
(

2
∫ t

0
� · x(s) ds + 2

∫ t

0
|xd (s)|2 ds + 2x(t) · Y0

)
,(2.8)

with x solving (2.7) and � as in (2.2), at least under some regularity conditions. Our
first result asserts the validity of this formula (even in the infinite case) without further
conditions and adds a stronger conclusion:

THEOREM 2.1. The transform formula (2.8) holds in the sense that if either side is well-
defined and finite, then the other is also finite and equality holds. Moreover, the right-hand
side of (2.8) is well defined and finite if and only if the solution of (2.7) exists at time
t. Consequently, for any t ≥ 0, the right-hand side of (2.8) is finite for any vector u in a
neighborhood of the origin.

This result connects the stability of the ODE (2.7) with the tail behavior of Yt:
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COROLLARY 2.2. Consider the system in (2.7) with initial condition x(0) = θu/2, θ > 0.
If the solution x exists at t, then

lim sup
y→∞

1
y

log P(u · Yt > y) ≤ −θ.

If the solution explodes before t, then

lim sup
y→∞

1
y

log P(u · Yt > y) ≥ −θ.

For any t ≥ 0, the solution x exists at t for all sufficiently small |θ | > 0.

Corollary 2.2 describes the tail behavior of Yt: the last statement of the corollary and
the first limsup together imply that for any u and any ε > 0, we have

P(u · Yt > y) ≤ e−(θ−ε)y,

for some θ > 0 and all sufficiently large y. Thus, u · Yt has an exponentially bounded
right tail and, with an obvious modification to the argument, an exponentially bounded
left tail as well.

A further consequence of Theorem 2.1 is a comparison of the tails of the volatility
factors of two models. For processes Y1 and Y2 on Rm

+, if E exp(u · Y1
t ) ≥ E exp(u · Y2

t ) for
all u ∈ Rm

+, then Y1
t has heavier tails than Y2

t . We give conditions for such a comparison
for processes in Am(m).

COROLLARY 2.3. Let Yi be a process in Am(m) with parameters Ai and �i , i = 1, 2.

1. Suppose A1 = A2 and Y1
0 = Y2

0 ; then E exp(2u · Y1
t ) ≥ E exp(2u · Y2

t ) for all u ∈ Rm
+

and t ≥ 0 if and only if �1 ≥ �2.
2. Suppose �1 = �2 and Y1

0 = Y2
0 = Y0; then E exp(2u · Y1

t ) ≥ E exp(2u · Y2
t ) for all

(u, Y0) ∈ Rm
+ × Rm

+ and t ≥ 0 if and only if A1 ≥ A2.

Our next result considers the limit as t → ∞. Define the stability region S of the ODE
(2.7) to be the set of initial conditions u for which the solution x(t) exists for all t ≥ 0 and
limt→∞ x(t) = 0 if x(0) = u.

THEOREM 2.4. The process Y has a unique stationary distribution, which is also the
limiting distribution of Yt, as t → ∞, for any Y0. Moreover, if Y∞ has the stationary
distribution of Y and we define

S = {u ∈ R
n : E exp(2u · Y∞) < ∞},

then S coincides with S, the stability region of the system (2.7). This set contains a
neighborhood of the origin.

By arguing as in Corollary 2.2, we conclude that u · Y∞ has exponentially bounded
tails for all u ∈ Rn . As a consequence of our analysis, we will identify the distribution of
Y∞ through its moment generating function.

Theorems 2.1 and 2.4 preclude the possibility of heavy tails for Yt and Y∞—any
linear combination of the components of Yt or Y∞ has tails that are bounded by some
exponential decay. We turn next to the possibility of light tails—tails that decay faster than
any exponential. The Gaussian subfamily of canonical affine models (which corresponds
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to taking m = 0 and thus removing all volatility factors) demonstrates that such light-
tailed models are indeed possible within the canonical affine framework. Our next result
shows that the Gaussian case is the only light-tailed case among canonical models. More
precisely, we show that if the moment generating function of u · Yt is finite for all θ ∈ R,
then the distribution of u · Yt is Gaussian.

Before stating the theorem, we review some facts from linear algebra. By choosing an
appropriate basis, we can transform Ad into a Jordan canonical form; in other words,
there exists an invertible matrix P such that P−1 Ad P = J, and J is a block diagonal
Jordan matrix. (The columns of P are eigenvectors or generalized eigenvectors of Ad .)
Let λ1, . . . , λk denote the distinct eigenvalues of Ad , and let aλi denote the algebraic
multiplicity of λi , which is the multiplicity of (x − λi ) in the characteristic polynomial of
Ad . The matrix J can then be chosen to have k diagonal blocks of the form λi Ii + Ni , i =
1, . . . , k, with Ii the identity matrix and Ni a nilpotent matrix, both of dimension aλi × aλi .
The entries of Ni immediately above its main diagonal take the values 0 or 1, and all
other entries of Ni are equal to 0.

We introduce a special matrix W to state our last theorem. For this, we select the qth
row of P if there exists some p with Bc

pq �= 0, q = 1, . . . , n − m. Denoting the row vectors
thus extracted from P by w1, . . . , wl , we define

W :=

⎛
⎜⎜⎜⎜⎜⎜⎝

w1
...

wl

Ac P

⎞
⎟⎟⎟⎟⎟⎟⎠

= [W1 · · · Wk
]
.

In the block decomposition on the right, W1 consists of the first aλ1 columns of W, W2

consists of the next aλ2 columns, and so on. Similarly, we define

ũ := P−1ud =

⎛
⎜⎜⎝

ũ1

...

ũk

⎞
⎟⎟⎠ , ũi ∈ R

aλi .

THEOREM 2.5. Assume that a Jordan canonical form J of Ad is given as aforementioned.
Then for any given t > 0 and u ∈ Rn , the following holds: E exp(2θu · Yt) < ∞ for all
θ ∈ R if and only if uv = 0 and

Wi Nl
i ũi = 0, l = 0, . . . , aλi − 1, i = 1, . . . , k.(2.9)

Moreover, u · Yt has a Gaussian distribution if and only if these conditions hold.

Because the multiplicities of the roots of the characteristic polynomial of Ad are
sensitive to the coefficients of the polynomial, small changes in the entries of Ad can
make it diagonalizable. For diagonalizable Ad , (2.9) reduces to

Wi ũi = 0, i = 1, . . . , k.(2.10)

Conditions (2.9) and (2.10) may seem surprisingly complicated, but we will illustrate
their significance and application through examples in the next section. A more intuitive
approach to checking whether a linear combination of factors has a Gaussian distribution
would be to check if each of the factors is Gaussian; individual factors might then be
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checked recursively, as follows: no volatility factor is Gaussian, no dependent factor that
has a volatility factor in its drift or diffusion coefficient is Gaussian, no dependent factor
that has a non-Gaussian dependent factor in its drift is Gaussian, and so on. Our examples
will show that this approach cannot cover all cases because of special cancellations that
can occur; nevertheless, Theorem 2.5 does support sufficient conditions of this type, as we
will show in the next corollary. These conditions become necessary when each eigenvalue
of Ad has a geometric multiplicity of 1, a restriction that effectively rules out certain
cancellations. The geometric multiplicity gλi of an eigenvalue λi is the dimension of the
eigenspace associated with λi .

We make precise the recursive procedure sketched above through a directed graph G
on the coordinates of the dependent factors. Introduce an edge (i , i + i ) in G if Ji ,i+1 = 1.
Call a node j of the graph restricted with respect to a matrix M if Mi j �= 0 for some i.
Extend this property to other nodes by saying that j is restricted if it is reachable from a
restricted node through a directed path in G. For any matrix D, let 1D denote the matrix
with (1D)i j = 1 if Di j �= 0 and 0 otherwise.

COROLLARY 2.6. A sufficient condition for (2.9) is that ũ j = 0 for all j restricted with
respect to 1Ac P + 1Bc 1P. This condition becomes necessary if gλi = 1 for all i = 1, . . . , k.

3. EXAMPLES AND APPLICATIONS

3.1. Stochastic Volatility: A Simple Case

To illustrate our results, we begin by considering the stochastic volatility model (2.3)–
(2.5), based on the A1(2) dynamics in (2.3)–(2.4). Through (2.8), moments of PT are given
by

E
[
Pθ

T

] = exp
(

aTθ + 2
∫ T

0
(m1x1(t) + m2x2(t)) dt

+ 2
∫ T

0
x2(t)2dt + 2

(
x1(T)Yv

0 + x2(T)Yd
0

))
,(3.1)

where (x1, x2) solves the ODE

ẋ1 = px1 + qx2 + x2
1 + sx2

2 , ẋ2 = r x2,(3.2)

with initial condition (x1(0), x2(0)) = (θbT, θcT).
We begin with the simple case q = s = 0, in which the ODE for x1 reduces to a scalar

quadratic differential equation. We digress briefly to record properties of this scalar
system because it will be an important tool at several points in our analysis.

Consider, then, the scalar quadratic ODE ẋ = αx2 + βx + γ , with α > 0. Let D =
β2 − 4αγ , and denote by η1 and η2 the two solutions of αx2 + βx + γ = 0. The following
properties of the solution x, which are easily derived from its closed form, are also used
in Andersen and Piterbarg (2007). If D > 0 with η1 < η2, then

x(t) → η1 as t → ∞, if x(0) < η2;

x(t) ≡ η1 or η2, if x(0) = η1 or η2, respectively;

x(t) → ∞ as t → τ, if x(0) > η2,



MOMENT EXPLOSIONS AND STATIONARY DISTRIBUTIONS IN AFFINE DIFFUSION MODELS 9

η
1

η
2

η
1
 = η

2 η
1
, η

2
 complex

FIGURE 3.1. Qualitative behavior of ẋ = αx2 + βx + γ with equilibria η1, η2

with

τ = 1
α(η2 − η1)

log
x(0) − η1

x(0) − η2
.(3.3)

If D = 0, then

x(t) → − β

2α
as t → ∞, if x(0) < −β/2α;

x(t) ≡ − β

2α
, if x(0) = −β/2α;

x(t) → ∞ as t → τ, if x(0) > −β/2α,

with

τ = 1
x(0) − β/2α

.

If D < 0, then

x(t) → ∞ as t → τ = 1√−D

(
π − 2 tan−1 2αx(0) + β√−D

)
.

These cases are illustrated in Figure 3.1. Consider, in particular, the first case, D > 0.
The two roots are equilibrium points—points at which ẋ = 0. The root η1 is a stable
equilibrium for the ODE; x(t) moves toward η1 from any initial condition less than η1 or
between the two roots, so the stability region for the system is

S = {x : x < η2}.

In contrast, η2 is an unstable equilibrium, and x blows up in finite time τ if x(0) > η2.
The set ST consists of all initial conditions from which x continues to exist throughout
[0, T). From the expression for the explosion time τ in (3.3), we find that

ST = {x : x ≤ (η2eαT(η2−η1) − η1
)/(

eαT(η2−η1) − 1
)}

.

We can now apply this to (3.1). In the case q = s = 0, the solution x1 in (3.2) becomes
infinite at τ = (log(θbT + p) − log(θbT))/p, if θbT > −p; otherwise, x1(t) is finite for all
t and converges exponentially to zero. In other words, if θbT < −p/(1 − e pT), then the
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∂ S
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2

FIGURE 3.2. Boundaries of S and ST for A1(2) models. The left panel has parameters
p = −2, q = s = 0; the right panel has p = r = −2, q = 0, s = 1.

right-hand side of (3.1) is finite; the second coordinate x2 is always finite and integrable.
We therefore conclude that

sup{θ : E
[
Pθ

T

]
< ∞} =

⎧⎨
⎩

−p
bT(1 − e pT)

, if bT > 0;

∞, if bT ≤ 0;

inf{θ : E
[
Pθ

T

]
< ∞} =

⎧⎨
⎩

−∞, if bT ≥ 0;
−p

bT(1 − e pT)
, if bT < 0.

We can illustrate these properties through the following sets:

S = {(x, y) : lim
t→∞ E exp

(
2xYv

t + 2yYd
t

)
< ∞}

ST = {(x, y) : E exp
(
2xYv

t + 2yYd
t

)
< ∞, ∀t ∈ [0, T)

}
.

Theorems 2.1, 2.4 imply that these sets coincide, respectively, with the set S of initial
conditions for which the solution to (3.2) exists for all time and converges to zero, and
the set ST for which the solution exists throughout [0, T). Rewriting S and ST above in
terms of p and T , we get

S = (−∞, −p) × R

ST = (−∞, −p/(1 − e pT)] × R.

If (θbT, θcT) ∈ So
T (the interior of ST), then (3.1) is finite; if (θbT, θcT) ∈ S, then (3.1) is

finite for all T . The left panel of Figure 3.2 illustrates the boundaries of these sets. The
parabola shows the values of ẋ1 = px1 + x2

1 in (3.2) as a function of x1. The larger of the
two solutions to the equation ẋ1 = 0 determines the upper limit of the stability region
for x1 (as in Figure 3.1), so ∂S passes through this point. As T decreases, ∂ST shifts to the
left.

We can also see from the figure that (θbT, θcT) lies outside ST for some (and then all)
sufficiently large θ > 0 or θ < 0, unless (bT, cT) lies on the vertical axis. Thus, Pθ

T has
infinite expectation for some θ unless bT = 0. When bT = 0, log(PT) = aT + 2cTYd

T has
a Gaussian distribution, and thus does indeed have finite moments of all orders. This is
a simple graphical description of the conditions in Theorem 2.5 for this example.
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3.2. Stochastic Volatility: Further Cases

We continue to work with the basic model (2.3)–(2.5), but now take s > 0, q = 0,
and p = r < 0. In this case, the function ξ (t) := e−ptx1(t)/

√
sx2(0)2 solves ξ̇ /(ξ 2 + 1) =√

sx2(0)2e pt. Then, we have

tan−1(ξ (t)) − tan−1(ξ (0)) =
√

sx2
2 (0)(e pt − 1)/p.

Therefore,

x1(t) =
√

sx2
2 (0)e pt tan

(√
sx2

2 (0)(e pt − 1)/p + tan−1
(

x1(0)/
√

sx2
2 (0)
))

,

x2(t) = x2(0)e pt.

Then,

S = {(x, y) : x <
√

sy2 tan(π/2 +
√

sy2/p)}
and

ST = {(x, y) : x ≤
√

sy2 tan(π/2 +
√

sy2(1 − e pT)/p)}.
These sets are illustrated in the right panel of Figure 3.2. For any nonzero point

(bT, cT), the line defined by the points (θbT, θcT) as θ ranges over R crosses the boundary
of ST twice, once with θ positive and once with θ negative. If (bT, cT) is in the interior
of ST, then these values of θ are the extremal moments θT and θT as a consequence of
Theorem 2.1. In particular, E[Pθ

T ] becomes infinite for all sufficiently large positive or
negative θ . The log price log(PT) is never Gaussian.

We next consider the effect of varying r < 0, which is the coefficient on Yd
t in the

expression for dYd
t in (2.4), while fixing s > 0, q = 0, and p < 0. We can represent x1(t)

in terms of function ψ(l) by setting

ψ ′
(

−
√

kert

r

)
= 1√

kert

(
x1(t) + p

2

)
ψ

(
−

√
kert

r

)
,(3.4)

with k = sx2(0)2. The function ψ(l) solves a second-order ODE,

l2ψ ′′(l) + lψ ′(l) +
(

l2 −
( p

2r

)2
)

ψ(l) = 0.(3.5)

It follows that ψ(l) is a linear combination of Bessel functions of the first and second kinds,
respectively; see, for example, p. 748 of Polyanin and Zaitsev (2003) for properties of the
solution. Because any multiple of ψ(l) satisfies (3.4), we can set ψ(l) as the solution to (3.5)
for l ∈ (0, −√

k/r ] with ψ(−√
k/r ) = √

k, which then satisfies ψ ′(−√
k/r ) = x1(0) + p/2.

Because S = {x(0) : limt→∞ x(t) = 0}, from (3.4) we get

S =
{

x(0) : lim
l↓0

lψ ′(l)
ψ(l)

= − p
2r

}
.

A similar analysis can be carried out for s = 0, q > 0, and p < 0 case. Figure 3 shows
the boundary of S for different values of r. The left panel has q = 0 and s = 1; the
right panel has q = 1 and s = 0. In both cases, the stability region becomes smaller as r
approaches zero, indicating that Y∞ = (Yv

∞, Yd
∞) has heavier (though still exponentially
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x

y

2

r = −1
r = −2

r = −6
r = −∞

x

y

r = −1

r = −2

r = −6

r = −∞

2

FIGURE 3.3. Stability boundaries for A1(2) models. The left panel has parameters
p = −2, q = 0, s = 1; the right panel has p = −2, q = 1, s = 0.

bounded) tails at smaller values of |r |. This is to be expected from the role of r in the
dynamics (2.3)–(2.4) of the model.

The two panels of Figure 3.3 show an interesting contrast. In the right panel, we see
that a line of the form {θu : θ ∈ R}, u ∈ S ∩ R2

++, crosses the boundary of S just once,
at some θ > 0; in the left panel, such a line would cross the boundary of S at both a
positive and negative value of θ , as noted in our discussion of Figure 3.2. This reflects
an interesting distinction between two ways the volatility factor Yv can influence the
dependent factor Yd . When Yv appears in the diffusion coefficient of Yd (the left panel,
with q = 0, s �= 0), it makes both the right and left tails of u · Y∞ exponential, u ∈ R2

++;
when Yv appears only in the drift of Yd (the right panel, with q �= 0, s = 0), one tail
of u · Y∞ is exponential, but the other is light. The figure has q > 0, so the right tail
is the exponential one; taking q < 0 would reflect the figure about the horizontal axis,
corresponding to an exponential left tail.

3.3. Two Volatility Factors

Our next example is a model in A2(2):

dY1
t = (m1 + pY1

t + rY2
t

)
dt +
√

Y1
t dW1

t

dY2
t = (m2 + qY1

t + sY2
t

)
dt +
√

Y2
t dW2

t .

This can be viewed as a two-factor CIR model; it also belongs to the family of continuous-
state branching processes, as explained in Duffie et al. (2003). The associated system of
ODEs is

ẋ1 = px1 + qx2 + x2
1(3.6)

ẋ2 = r x1 + sx2 + x2
2 .(3.7)

To satisfy the restrictions on the A matrix in (2.1), we require p, s < 0, q, r ≥ 0, and
ps − qr > 0.

The ODEs (3.6)–(3.7) do not admit a closed-form solution, but we can investigate the
qualitative behavior of the system and illustrate this behavior graphically. (We review
relevant background on dynamical systems in Section 4.1.) Figure 3.4 shows the vector
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∂ S

x

y

FIGURE 3.4. Vector field of an A2(2) model and ∂S with, p = −3, q = 1, r = 0.5 and
s = −1.

field defined by (3.6)–(3.7) with p = −3, q = 1, r = 1/2, and s = −1. The two parabolic
curves are the points in the plane satisfying ẋ1 = 0 in (3.6) and ẋ2 = 0 in (3.7). At the
intersections of the two parabolic curves we have (ẋ1, ẋ2) = 0, making these equilibrium
points; there are two equilibrium points in the example of Figure 4, one of which is the
origin. The origin is a stable equilibrium: the system approaches the origin from all initial
conditions in a neighborhood of the origin. Indeed, the system approaches the origin
from all initial conditions in the stability region S, whose boundary ∂S is indicated by a
dashed line in the figure. If x(0) lies outside of S, the system explodes, in the sense that
|x(t)| → ∞.

The other point of intersection of the two parabolas is an unstable equilibrium: there
are initial conditions arbitrarily close to this point from which the system will approach
either the origin or infinity. (In the language of dynamical systems, this is a hyperbolic
equilibrium of type 1, and therefore unstable; see Section 4.1 and, e.g., Chiang, Hirsch,
and Wu (1988) for background.) Associated with the unstable equilibrium is a stable
manifold—a curve in the plane of initial conditions from which the system moves toward
the unstable equilibrium. This curve is contained within ∂S.

From Theorem 2.4, we know that the points u in S are precisely the points for which
E[exp(2u · Y∞)] is finite. Because S contains a neighborhood of the origin, any linear
combination of the components of Y∞ has exponentially bounded tails. For u ∈ S ∩ R2

++,
the line {θu : θ ∈ R} crosses ∂S just once, at some θ > 0, so E[exp(θu · Y∞)] becomes
infinite at for all sufficiently large θ > 0 but remains finite for all θ < 0. In other words,
u · Y∞ has an exponential right tail and a light left tail (in fact, u · Y∞ is nonnegative).

Figure 3.5 illustrates the behavior of this system for other parameter values. The left
panel of the figure shows an example with three equilibrium points, and the right panel
shows one with four equilibrium points. In both cases, the origin is the only stable
equilibrium. Figure 3.6 shows a degenerate case with q = r = 0. Here, equations (3.6)
and (3.7) decouple, and the stability of each reduces to the analysis of the scalar quadratic
differential equation in Section 3.1.
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x
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∂ S
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y

∂ S

FIGURE 3.5. The stability boundary for A2(2) models. The left panel has parameters
p = −3, q = 1, r = 0.089, s = −1; the right panel has the same parameters, except
with r = 0.07.

x

y

∂ S

1

3

FIGURE 3.6. The stability boundary for A2(2) with p = −3, q = r = 0, s = −1.

3.4. Gaussian Conditions

In Theorem 2.5, we gave conditions under which u · Yt and u · Y∞ have finite moments
of all orders, and we noted that these conditions also determine when Yt and Y∞ are
Gaussian. From the perspective of the associated ODEs, u · Y∞ has finite moments of
all orders precisely if the ODE solution exists for all t ≥ 0, from all initial conditions
θu, θ ∈ R; in other words, the stability region S includes all multiples u. We now illustrate
these properties with examples.

Consider the following family of models in A1(3):

dY1
t = (�1 − Y1

t

)
dt +
√

Y1
t dW1

t(3.8)

dY2
t = (�2 + aY1

t − Y2
t

)
dt + dW2

t(3.9)

dY3
t = (�3 + bY1

t + cY2
t − Y3

t

)
dt + dW3

t(3.10)
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The model has Y1 as volatility factor and Y2 and Y3 as dependent factors. The matrix A
has the form

A =
⎛
⎝ Av Ac

Ad

⎞
⎠ =

⎛
⎜⎝

−1 a b

0 −1 c
0 0 −1

⎞
⎟⎠ ,

and Bc = 0 because the volatility factor Y1 does not appear in the diffusion coefficient
of either Y2 or Y3.

Because Ad is already block diagonal, it is easy to check that

P =
(

1 0

0 1/c

)

if c �= 0, and P = I2 if c = 0. Condition (2.9) becomes

a u2 + b u3 = 0, a c u3 = 0.(3.11)

The case c = 0 reduces to (2.10). Theorem 2.5 requires uv = 0, so we must have u1 = 0.
We consider several cases for the parameters a, b, and c.

a = 0: We can satisfy (3.11) with any u that is a multiple of (0, 1, 0); i.e., with u · Yt = u2Y2
t .

This is also evident from the fact that Y2 is an OU process when a = 0. If we also
have b = 0, then u2 and u3 are both free in (3.11) and, indeed, (Y2, Y3) is a Gaussian
process.

c = 0, a �= 0, b �= 0: Condition (2.10) is satisfied by taking u = (0, 1/a, −1/b), or any
multiple thereof. From (3.8)–(3.10), we see that neither Y2 nor Y3 is Gaussian—each
has the volatility factor Y1 in its drift. Nevertheless, the linear combination ud · Yd is
Gaussian. We can also see this by noting that

d
(
ud · Yd

t

) = (m − 1
a

Y2
t + 1

b
Y3

t

)
dt + 1

a
dW2

t − 1
b

dW3
t

= −ud · Yd
t dt + 1

a
dW2

t − 1
b

dW3
t ,

with m = (�2/a) − (�3/b) = 0, in light of (2.2); thus ud · Yd is an OU process con-
structed from non-Gaussian processes. This example illustrates why Corollary 2.6
cannot cover all cases.

c �= 0, a �= 0: (3.11) requires u2 = u3 = 0; thus, no u · Y is Gaussian, except the degen-
erate case u ≡ 0. If b = 0, then the equation for Y3 in (3.10) has no direct dependence
on a volatility factor, but it fails to be Gaussian because it depends on Y2 which
depends on Y1. This is also a consequence of Corollary 2.6; the first coordinate of
ũ = P−1ud = (u2 c u3) is restricted with respect to 1Ac P and the second coordinate
has a directed path from the first coordinate.

In this example, the conclusion of the first case (a = 0) and that of the third case
(c �= 0, a �= 0) coincide with what one would expect based on the intuitive approach to
checking for Gaussian distributions outlined after (2.10) and formalized in Corollary 2.6.
However, the second case (c = 0, a �= 0, b �= 0) shows that the intuitive approach cannot
cover all cases. The necessary and sufficient conditions in Theorem 2.5 capture the
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possibility of a Gaussian distribution resulting from a cancellation of factors, as in this
example.

4. ANALYSIS OF QUADRATIC DYNAMICAL SYSTEMS

4.1. Definitions and Terminology

In this section, we establish some properties of the ODE system (2.7), in particular
viewing it as defining a mapping from the initial condition u to the solution x(t) at
time t. We begin by reviewing some definitions and basic properties from the theory of
dynamical systems; additional background can be found in Hirsch and Smale (1974) and
Chiang, Hirsch, and Wu (1988).

Consider, then, an equation

ẋ = f (x)(4.1)

defined by a Cr function f : W → E, with W ⊂ E open and E a normed vector space.
For each u ∈ W, there is a unique solution to (4.1), with x(0) = u, defined on a maximal
open time interval I(u) ⊂ R. For t ∈ I(u), we denote this solution either by x(t) or �t(u);
the notation �t(u) makes explicit the dependence on the initial condition u. Also, the
uniqueness of the solution allows us to write, for example,

�s+t(u) = �s(�t(u)),

for t and s + t in I(u). In particular, �−t is the inverse of �t.
Define

� = {(t, u) ∈ R × W : t ∈ I(u)};

then � is a mapping from � to W . Standard properties of dynamical systems imply that
� is open in R × W and � is Cr if f is Cr , for 0 ≤ r ≤ ∞. In fact, � is analytic in t and
u as long as �t(u) stays in the domain of analyticity of f.

Let τ denote the (possibly infinite) right endpoint of the interval I(u). If τ < ∞, then for
any compact set K ⊂ W, there is a t ∈ I(u) with �t(u) �= K ; in other words, the solution
escapes the domain of definition in finite time, and τ is the “blow-up time” from u.

An equilibrium point of (4.1) is a point η ∈ W at which f (η) = 0. An equilibrium point
η is called hyperbolic if every eigenvalue of the Jacobian of f at η has a nonzero real part.
The type of an equilibrium point is the number of eigenvalues (counted according to their
multiplicity) with positive real parts. The stable manifold of a hyperbolic equilibrium is
the set of points u ∈ W for which �t(u) → η as t → ∞; the unstable manifold is the set
of u ∈ W for which �−t(u) → η as t → ∞. A hyperbolic equilibrium η0 of type zero is
a stable equilibrium; this means that its stable manifold contains a neighborhood of η0

or, equivalently, that its unstable manifold consists solely of η0. It is also a standard fact
that this stable manifold of η0 is an open set.

For the system (2.7) associated with a canonical affine model, the origin is a hyperbolic
equilibrium of type zero and thus a stable equilibrium. The origin is, in fact, the unique
stable equilibrium (see Kim (2008)). We denote its stable manifold by S and call this
the stability region of the dynamical system. Part of the content of Theorem 2.4 is that
the stable manifold of the origin determines the range of finite moments of the limiting
stationary distribution of the model.
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As an aside, we note that the unstable equilibrium in Figure 3.4 is of type 1; the equi-
librium at the point of tangency of the two parabolic curves in the left panel of Figure 3.5
fails to be hyperbolic; and, in the right panel of Figure 3.5, the four equilibrium points
defined by the four points of intersection of the two curves have types 0, 1, 2, and 1 when
taken in clockwise order, starting from the origin. The type-2 equilibrium is a source: its
stable manifold consists solely of the point itself.

4.2. Solution Properties

Our analysis of the dynamical system (2.7) makes extensive use of comparison the-
orems, and these in turn prove to be very useful in establishing some distributional
properties of Y . The comparison results rely on a concept of quasi-monotonicity. Un-
der the componentwise ordering of vectors introduced in Section 2, we call a function
f : Rn → Rn quasi-monotone increasing if, whenever x ≤ y and xk = yk for some k, then
fk(x) ≤ fk(y). A mapping x �→ Ax defined by a matrix A is thus quasi-monotone increas-
ing if and only if Ai j ≥ 0 whenever i �= j . Suppose that f defined on Rn is quasi-monotone
increasing and locally Lipschitz continuous. Let x(t), y(t) : [a, b] → Rn be differentiable
functions such that

ẋ(t) − f (x(t)) ≤ ẏ(t) − f (y(t)), ∀ t ∈ [a, b];

then it follows from Volkmann (1972) that

x(a) ≤ y(a) ⇒ x(t) ≤ y(t) ∀t ∈ [a, b].(4.2)

When n = 1, this reduces to a standard comparison result for scalar differential equations.
The relevance of this result to our setting comes from property (C2), which makes

Av quasi-monotone, and the fact that the mapping (x1, . . . , xn) �→ (x2
1 , . . . , x2

n ) is also
quasi-monotone. Through (4.2), we arrive at the following comparison property for the
solution � to (2.7):

LEMMA 4.1. For any u ∈ Rn and θ > 1, we have

θ�t(u) ≤ �t(θu),

for all t ≥ 0 at which both sides are well defined.

The proofs of this result and the next two lemmas are deferred to the Appendix.
For later reference, we also record the following results on the decay of solutions.

See, for example, Chapter 7 of Verhulst (1996). For the system (2.7), there exist positive
constants C, δ, and μ such that

|�t(u)| ≤ C|u|e−μt(4.3)

for all |u| ≤ δ, and ∣∣�d
t (u)
∣∣ ≤ C|ud |e−μt,(4.4)

for all u ∈ Rn . The constant −μ can be chosen to be the eigenvalue of A of smallest
magnitude.
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LEMMA 4.2. For each u ∈ Rn , the trajectory {�t(u) : t ∈ [0, τ )} of (2.7) is bounded
later.

LEMMA 4.3. Suppose |�t(u)| → ∞ as t → τ , for some τ ≤ ∞. Then
∫ t

0 � · �s(u) ds →
∞ as t → τ .

4.3. Proof of Theorem 2.1 and its Corollaries

In light of the expression that appears in the exponent of (2.8), it is natural to introduce
the notation

�t(u) =
∫ t

0
� · �s(u) ds +

∫ t

0

∣∣�d
s (u)
∣∣2 ds + �t(u) · Y0.

For (t, u) ∈ �, �s(u) is bounded for s ∈ [0, t], so �t(u) is well defined and finite. As part
of the proof of Theorem 2.1, we will show that �t(u) blows up at τ precisely if �t(u)
does.

Proof of Theorem 2.1. We first show that the finiteness of �t(u) is equivalent to that of
�t(u). One direction is trivial: if (t, u) ∈ �, then �s(u) is bounded for s ∈ [0, t] and thus
�t(u) is finite. To show the converse, observe that |�d

t (u)| is bounded on t ∈ R+ (by (4.4))
and �t(u) is bounded below for its entire life span t ∈ [0, τ ) (by Lemma 4.2). It follows
that �t(u) · Y0 = �v

t (u) · Yv
0 + �d

t (u) · Yd
0 is also bounded below because Yv

0 ≥ 0. It thus
follows from Lemma 4.3 and the continuity of �t(u) (as a function of t) that

�t(u) blows up at time τ ⇔ �t(u) blows up at τ.(4.5)

Next, we show that if �t(u) is finite, then E exp(2u · Yt) is also finite and equality
holds in (2.8). Duffie, Filipović, and Schachermayer (2003) define regular affine Markov
processes and show that there are necessary and sufficient conditions for parameters
of an affine model to ensure regularity, namely, admissibility. They also show that the
transform formula holds true for all (t, u) ∈ R+ × Cm

− × iRn−m for affine models with
admissible parameters. It is not hard to check that canonical affine models satisfy the
admissibility condition. And the processes generated by them are conservative, as defined
in Duffie et al. (2003). This follows easily from Proposition 9.1 in (2003); we note that
the generalized Riccati equation (2.14) with (2.15) in Duffie et al. (2003) is (2.7) in the
canonical case.

Now suppose �t(u) is finite. Because the process Y is conservative regular affine, by
Lemma A.2 we can invoke Theorem 2.16 in (2003) and conclude that E exp(2u · Yt) is
finite and the transform formula holds.

We now prove the converse of the main statement of the theorem. Suppose, then, that
E exp(2u · Yt) < ∞ for some t > 0 and u ∈ Rn . Because the origin is a stable equilibrium
and its stability region S is open (see Section 4.1), there is a θ0 ∈ (0, 1) such that θ0u ∈ S.
But if θ0u ∈ S, then lims→∞ �s(θ0u) = 0, and it follows that sups |�s(θ0u)| < ∞. We may
then define a positive θ∗ by setting

θ∗ = sup
{
θ > 0 :

1
θ

∫ t

0
� · �s(θu) ds < ∞

}
,(4.6)
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the supremum taken over those θ > 0 for which �t(θu) is well defined—i.e., those for
which t ∈ I(θu). (If �s(θu) blows up before t, then the integral in (4.6) is infinite.)

If θ∗ > 1, then �t(u) is finite, and we have already shown that this implies that �t(u)
is finite, and we have also shown that (2.8) holds in this case. To complete the proof, we
will show that θ∗ ≤ 1 leads to a contradiction.

Suppose, then, that θ∗ ≤ 1. Because �v 	 0 and �d
s (u) is linear in the initial condition

u, Lemma 4.1 implies that the function

θ �→ 1
θ

∫ t

0
� · �s(θu) ds, θ ∈ [θ0, θ

∗)

is increasing. This implies that

lim
θ↑θ∗

∫ t

0
� · �s(θu) ds = ∞.

Also by Lemma 4.1, we have

1
θ0

�s(θ0u) ≤ 1
θ
�s(θu)

for all (θ, s) ∈ R ≡ [θ0, θ
∗) × [0, t]. Because �s(θ0u) is bounded below (by Lemma 4.2),

�s(θu) is bounded below uniformly on R. Moreover, the solution �d
s (θu) to the linear

part of (2.7) is uniformly bounded above as well on R, as is easily deduced from (4.4).
Thus,

�t(θu) ≥
∫ t

0
� · �s(θu) ds + K,

for some constant K and all θ ∈ [θ0, θ
∗). It follows that limθ↑θ∗ �t(θu) = ∞.

However, for any θ ∈ (0, θ∗), we have �t(θu) < ∞, which we already know implies
that (2.8) holds at θu, so

exp(2�t(θu)) = E exp(2θu · Yt) ≤ (E exp(2u · Yt)
)θ

< ∞,

by Jensen’s inequality. This implies that lim supθ↑θ∗ �t(θu) < ∞. But this is a contradic-
tion, so we must in fact have θ∗ > 1.

The last assertion of the theorem now follows directly from the fact that the stability
region S of the origin is open. �

Proof of Corollary 2.2. The indicated tail properties are standard consequences of finite
moment generating functions, but we include a brief proof for completeness. From the
inequality 1{z > y} ≤ exp(θ (z − y)), θ ≥ 0, we get P(u · Yt > y) ≤ exp(−θ y)E exp(θu ·
Yt), from which the first limsup follows. Suppose now that

lim sup
y→∞

1
y

log P(u · Yt > y) ≤ −θ − ε,

for some ε > 0. Then P(u · Yt > y) ≤ exp(−(θ + ε)y) for all sufficiently large y, and so

θ

∫ ∞

−∞
eθ y

P(u · Yt > y) dy < ∞.
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With the change of variables x = exp(θ y), this becomes∫ ∞

0
P(exp(θu · Yt) > x) dx = E exp(θu · Yt).

The last statement in the corollary is an easy consequence of the fact that the stability
region of (2.7) contains a neighborhood of the origin. �

Proof of Corollary 2.3. In the case of Am(m), the vector field fo(x) of (2.7) is quasi-
monotone increasing. We may therefore apply the comparison result in (4.2) with the
trivial solution x ≡ 0 to conclude that �t(u) ≥ 0, for all t ≥ 0, for any u ≥ 0.

Fix a u ≥ 0. If �s(u) blows up at or before t, then there is nothing to prove because both
expectations are infinite. If �t(u) is finite, then the transform formula (2.8) holds due to
Theorem 2.1. It follows from (2.8) and the nonnegativity of �t(u) that the ordering of �1

and �2 implies the ordering of the E exp(2u · Yi
t ), i = 1, 2. Conversely, if E exp(2u · Y1

t ) ≥
E exp(2u · Y2

t ) for all u ∈ Rm
+ and t ≥ 0, then we get

�1 · u = lim
t↓0

1
t
�1 ·
∫ t

0
�s(u) ds ≥ �2 · u = lim

t↓0

1
t
�2 ·
∫ t

0
�s(u) ds.

Because this holds for any u ≥ 0, �1 ≥ �2.
For the second statement of the corollary, we write x(t) for a solution to (2.7) with

A1 for A, and y(t) for a solution with A2. Suppose u ≥ 0 and Y0 ≥ 0 are given. Then, if
A1 ≥ A2, we have

ẋ − (A2x + (x2
1 , . . . , x2

m

)) = (A1 − A2)x ≥ 0 = ẏ − (A2 y + (y2
1 , . . . , y2

m

))
,

the inequality following from the fact that x(t) ≥ 0 for x(0) = u ≥ 0. Thus, x(t) ≥ y(t)
and so the inequality for exponential moments follows from (2.8), because x, y, �, and
Y0 are nonnegative. Conversely, if the inequality holds for all nonnegative u and Y0, then

lim
t↓0

1
t

(
1
2

log E exp
(
2u · Y1

t

)− u · Y0

)
≥ lim

t↓0

1
t

(
1
2

log E exp
(
2u · Y2

t

)− u · Y0

)

yields ((A1 − A2)u) · Y0 ≥ 0. Because Y0 is an arbitrary vector in Rm
+, (A1 − A2)u ≥ 0,

and this in turn implies A1 ≥ A2. �

5. CONVERGENCE TO STATIONARITY

In this section, we use the transform formula (2.8) and our analysis of the ODE (2.7) to
prove that a canonical affine model has a unique limiting distribution, that this limiting
distribution is stationary, and that the domain of the moment generating function of
this limiting stationary distribution coincides with the stability region of the associated
dynamical system.

As a first step in our analysis, we show that the moment generating function of Yt

converges, as t → ∞, precisely on the stability region.

LEMMA 5.1. Let S be the stability region of the system (2.7). Then,

S = {u ∈ R
n : lim

t→∞ E exp(2u · Yt) < ∞}.
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Proof. Suppose u ∈ S. Then, as in (4.3), �t(u) converges to the origin exponentially
as t → ∞; we may therefore define

tδ = inf{t : |�t(u)| ≤ δ} < ∞.

Let μ and C be as in (4.3). Then, for t ≥ tδ,

∫ t

0
|� · �s(u)| ds ≤

∫ t

0
|�| · |�s(u)| ds

≤
∫ tδ

0
|�| · |�s(u)| ds + Cδ|�|

∫ t

tδ
e−μ(s−tδ ) ds.

The last integral converges to a finite value as t → ∞. The integrability of |�d
t (u)|2 as

a function of t follows similarly from (4.4). Therefore, limt→∞ |�t(u)| < ∞, and thus
Theorem 2.1 implies

lim
t→∞ E exp(2u · Yt) = lim

t→∞ exp(2�t(u)) = exp(2�∞(u)) < ∞.(5.1)

For the converse, suppose u /∈ S. If �t(u) blows up in finite time τ , then
limt→τ exp(2�t(u)) = ∞, as shown in (4.5), so no further argument is required in this case.
Assume that �t(u) exists for all t ≥ 0. Because S is open and it contains the origin, we can
choose k > 1 sufficiently large that u/k ∈ S. Then Lemma 4.1 implies k�t(u/k) ≤ �t(u)
for all t. This implies that

lim inf
t→∞

∫ t

0
�s,i (u) ds ≥ ci :=

∫ ∞

0
k�s,i (u/k) ds,

for some real number ci , for each i ∈ {1, . . . , m}. We also have

lim inf
t→∞ �t(u) ≥ lim inf

t→∞ k�t(u/k) = 0.

But this lim inf cannot be the zero vector; if it were, �t(u) would reach S in finite time and
then converge to 0, which would contradict the fact that u /∈ S. Thus some component
i of �t(u) has a positive lim inf, and i must be in {1, . . . , m} because �d

t (u) converges to
zero. As a consequence,

lim inf
t→∞

∫ t

0
�v · �v

s (u) ds ≥
∑
j �=i

� j c j + lim inf
t→∞

∫ t

0
�i�s,i (u) ds = ∞.

It follows that lim inf t→∞ �t(u) = ∞ and thus lim inf t→∞ E exp(2u · Yt) = ∞. �

Proof of Theorem 2.4. We start by showing that the sequence {Yt} is tight (as defined, for
example, in Chung (2001), p. 90). For this, we need to show limr→∞ supt P(|Yt| > r ) = 0.
But, we have
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P(|Yt| > r ) ≤ P

(⋃
i

{|Yt,i | > r/
√

n}
)

≤
∑

i

P(|Yt,i | > r/
√

n)

=
∑

i

{P(Yt,i > r/
√

n) + P(−Yt,i > r/
√

n)}

=
∑

i

{P(e2δYt,i > e2δr/
√

n) + P(e−2δYt,i > e2δr/
√

n)}

≤
∑

i

{
Ee2δYt,i

e2δr/
√

n
+ Ee−2δYt,i

e2δr/
√

n

}
,

where δ is a positive constant such that Bδ(0) ⊂ S. From Lemma 5.1, we get
supt E exp(±2δYt,i ) ≤ Mi < ∞, for some Mi , for each i. Therefore,

sup
t

P(|Yt| > r ) ≤ 2
∑

i

Mi exp(−2δr/
√

n)

which converges to zero as r → ∞.
Because the sequence {Yt} is tight, it is relatively compact (Chung (2001), p. 90), so

each subsequence {Yt′ } contains a further subsequence {Yt′′ } converging weakly to some
limiting random vector Ya . Because we have supt′′ E exp(2u · Yt′′ ) < ∞, for any u ∈ Bδ(0)
(by Lemma 5.1) and because Yt′′ ⇒ Ya , Theorem 4.5.2 in Chung (2001) implies that

lim
t′′→∞

E exp(2θu · Yt′′ ) = E exp(2θu · Ya), ∀θ ∈ (0, 1).(5.2)

Equality continues to hold if we replace θu by u because Bδ(0) is open: we can find
u′ ∈ Bδ(0) such that u = θu′ for some θ ∈ (0, 1) and then apply (5.2) at u′. From (5.1) we
know that the original sequence {Yt} satisfies limt→∞ E exp(2u · Yt) = exp(2�∞(u)) for
u ∈ Bδ(0), so the same limit applies to {Yt′′ }. Applying the same argument to any other
weakly convergent subsequence of {Yt}, say with limit Yb, we find that

E exp(2u · Ya) = exp(2�∞(u)) = E exp(2u · Yb), ∀u ∈ Bδ(0).

But the distribution of a random vector is uniquely determined by its moment gen-
erating function in a neighborhood of the origin, so Ya ∼ Yb. Because every conver-
gent subsequence has the same limiting distribution, the original sequence {Yt} also
converges to Ya in distribution, so we now denote Ya by Y∞. We have shown that
E exp(2u · Yt) → E exp(2u · Y∞) for all u ∈ Bδ(0). Our next step will be to show that this
holds for all u ∈ S, and to show that E exp(2u · Y∞) = ∞ if u /∈ S.

For any u ∈ S, we can find u′ ∈ S and θ ∈ (0, 1) with u = θu′, because S is an open set
containing the origin. We know that Yt ⇒ Y∞ and, by Lemma 5.1, that supt E exp(2u′ · Yt)
is finite. It follows from Theorem 4.5.2 of Chung (2001) that E exp(2u · Yt) → E exp(2u ·
Y∞), so we conclude that S ⊆ {u : E exp(2u · Y∞) < ∞}.

We prove the opposite inclusion by contradiction. For this, suppose that u /∈ S and
that E exp(2u · Y∞) < ∞. Define

θ∗ = sup{θ ∈ [0, 1] : θu ∈ S};
then θ∗ > 0 and θ∗u is on ∂S, the topological boundary of S, because S is open and
u /∈ S. Fix a θ0 ∈ (0, θ∗), so that θ0u ∈ S, and set g(t) = �t(θ0u)/θ0. Lemma 4.1 implies
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that �t(θu) ≥ θg(t), for all t ≥ 0 and all θ ∈ [θ0, θ
∗). Consider the trajectory of �t(θ∗u).

We claim that τ = ∞. To see this, choose a θ ∈ (θ0, θ
∗). Then, for each i ∈ {1, . . . , m},

x2
i +
∑

j

Ai j xj +
∑

j

Bi j x2
j ≥ x2

i + Aii xi + θ
∑
j �=i

Ai j g j (t)

≥ x2
i + Aii xi + θ M

where x(t) = �t(θu) and M is a lower bound of the summation. Next, we define a new
function y starting at t0 by

ẏ = y2 + Aii y + θ M, y(t0) = xi (t0).

If y(t0) is sufficiently large, then y(t) blows up in finite time (see Section 3.1) and so
does xi (t). Suppose τ < ∞. Then, it is possible to choose θ close to θ∗ and t0 < τ such
that some xi (t0) becomes large enough to make y(t) blow up in finite time. This is a
contradiction to θu ∈ S.

Therefore, we have limt→∞ �t(θ∗u) = ∞ as shown in the proof of Lemma 5.1. On the
other hand, we have

∫ ∞

0
�v · (�v

t (θ∗u) − θ∗gv (t)) dt =
∫ ∞

0
lim
θ↑θ∗

�v · (�v
t (θu) − θgv (t)) dt

≤ lim inf
θ↑θ∗

∫ ∞

0
�v · �v

t (θu) dt − θ∗
∫ ∞

0
�v · gv (t) dt(5.3)

where the equality comes from the continuity of the flow � and the inequality is from Fa-
tou’s lemma. Because �v · gv (t) and �d

t (θ∗u) are integrable, limt→∞ �t(θ∗u) = ∞ implies
that the left-hand side of (5.3) is infinite. Therefore, lim infθ↑θ∗

∫ τ

0 �v · �v
t (θu) dt = ∞.

But for θ ∈ (0, θ∗), θu ∈ S and utilizing Jensen’s inequality,

exp(2�∞(θu)) = E exp(2θu · Y∞) ≤ (E exp(2u · Y∞))θ < ∞.

Therefore, lim supθ↑θ∗ �∞(θu) < ∞ and this is a contradiction.
To conclude the proof, we need to show that the limiting distribution is a stationary dis-

tribution. Suppose, therefore, that Y0 ∼ Y∞. Then for any u ∈ S, by taking a conditional
expectation,

E exp(2u · Yt) = E exp
(

2
∫ t

0
� · �s(u) ds + 2

∫ t

0

∣∣�d
s (u)
∣∣2 ds + 2�t(u) · Y0

)

= exp
(

2
∫ t

0
� · �s(u) ds + 2

∫ t

0

∣∣�d
s (u)
∣∣2 ds
)

E exp(2�t(u) · Y0)

= exp
(

2
∫ t

0
� · �s(u) ds + 2

∫ t

0
|�d

s (u)|2 ds
)

× exp
(

2
∫ ∞

0
� · �s(�t(u)) ds + 2

∫ ∞

0

∣∣�d
s (�t(u))

∣∣2 ds
)

= exp
(

2
∫ ∞

0
� · �t(u) dt + 2

∫ ∞

0

∣∣�d
t (u)
∣∣2 dt
)

= E exp(2u · Y∞).(5.4)
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Because the distribution of a random vector is determined by the values of its mo-
ment generating function in a neighborhood of the origin, we conclude that Yt has the
distribution of Y∞ whenever Y0 does. �

Observe that (5.4) gives the moment generating function of Y∞ and thus characterizes
the stationary distribution of Yt.

From the preceding proof, we see that the distribution of Y∞ is determined by the
behavior of the dynamical system (2.7) on the stable manifold S of the stable equilibrium
at the origin: the fact that �t(u) → 0 for u ∈ S is crucial to the convergence of �t(u) and
thus the moment generating function of u · Yt. This raises the question of whether other,
unstable equilibria play any role in the stochastic behavior of the basic model (2.1). Our
next result illustrates a setting in which they do.

PROPOSITION 5.2. Suppose that η is a hyperbolic equilibrium of system (2.7) of type less
than n. Then for any u in the stable manifold of η, we have

lim
t→∞

1
t

log E exp(2u · Yt) = 2� · η.(5.5)

Proof. If u lies on the stable manifold of η, then limt→∞ �t(u) = η, so �t(u) is well
defined for all t ≥ 0. The limit on the left side of (5.5) is given by the limit of 2�t(u) as
t → ∞; i.e., by

lim
t→∞

2
t

∫ t

0
� · �s(u) ds + lim

t→∞
2
t

∫ t

0

∣∣�d
s (u)
∣∣2 ds + lim

t→∞
2
t
�t(u) · Y0.

The last term is clearly zero, and the second term also vanishes because

1
t

∫ t

0

∣∣�d
s (u)
∣∣2 ds ≤ 1

t

∫ t

0
C2|ud |2 exp(−2μs) ds = 1

t
C2|ud |2 1 − exp(−2μt)

2μ
→ 0,

in light of (4.4). The first limit is 2� · η. �

The condition in the proposition on the equilibrium’s type ensures the existence of a
stable manifold. An equilibrium of type n is a source, an example of which appears in
the right panel of Figure 3.5, at the upper right intersection of the two curves. The limit
in (5.5) arises in the definition of the rate function used in the Gärtner–Ellis Theorem
(see, e.g., Dembo and Zeitouni (1998)). The behavior in (5.5) is somewhat pathological
because the limit, viewed as a function of u, fails to be a closed convex function. As a
consequence, the Gärtner–Ellis Theorem does not apply to the sequence {Yt/t}.

Theorem 2.4 characterizes the set of u for which E exp(2u · Y∞) is finite and identifies
this set with the stability region S of (2.7). The problem of describing the boundary
of S has attracted considerable attention. Genesio et al. (1985) survey methods using a
Lyapunov approach; Chiang et al. (1988) characterize ∂S in terms of stable submanifolds
of unstable equilibria. Kim (2008) establishes a similar result for the quadratic system
(2.7).

Theorem 2.4 raises the question of characterizing the region in which Yt has finite
exponential moments, for finite t; that is, characterizing

St = {u ∈ R
n : E exp(2u · Ys) < ∞, ∀ s ∈ [0, t)}.
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This set coincides with the set of initial conditions u for which the solution �s(u) exists
throughout [0, t). Directly from the definition of St, we see that St shrinks as t increases;
that St is convex follows from Hölder’s inequality. Beyond these basic properties, it is
generally more difficult to characterize St than S, at least from the perspective of the
dynamical system (2.7). Theorem 2.5 and the analysis in the next section give some
results in this direction.

6. GAUSSIAN CONDITIONS

LEMMA 6.1. For any t > 0 and u ∈ Rn, E exp(2θu · Yt) < ∞ for all θ ∈ R if and only
if

uv = 0, Acxd (s) = 0, Bc(x2
m+1(s), . . . , x2

n (s)
) = 0

for all s ≥ 0, where xd is the solution to ẋ = Ad x with x(0) = ud . Moreover, in this case,
u · Yt has a Gaussian distribution.

Proof. See the Appendix.

Proof of Theorem 2.5. In writing P−1 Ad P = J, we may assume P is chosen to give J
the specific form described before the statement of the theorem. We further assume that
the k distinct eigenvalues of Ad are numbered in decreasing order, λk < · · · < λ1 < 0.

Define y(t) = P−1x(t), where x is the solution to ẋ = Ad x with x(0) = ud . Then
y satisfies ẏ = Jy with y(0) = ũ and ũ = P−1ud . Let yi denote the block of y cor-
responding to the ith block Ji = λi Ii + Ni of J. We use this notation similarly for
other vectors. In other words, if the aλi × aλi matrix Ji runs through coordinates
(p + 1, p + 1), . . . , (p + aλi , p + aλi ) of J, then vi of v ∈ Rn is (v p+1, . . . , v p+aλi

). Be-
cause we have ẏi = Ji yi , yi (0) = ũi , the solution is expressed as follows:

yi (t) = exp(λi t)

⎡
⎣Ii +

aλi −1∑
l=1

tl

l!
Nl

i

⎤
⎦ ũi .

Suppose that w�y ≡ 0 for some w ∈ Rn . Then
∑k

i=1 wi �yi ≡ 0. If we divide this by
exp(λ1t), which has the smallest magnitude among eigenvalues, and send t → ∞, then
exp(−λ1t)w1�y1 ≡ 0; otherwise, we equate one exponentially decreasing function with a
polynomial, which is absurd. By applying the same procedure with other λi ’s, we conclude
that wi �yi ≡ 0 for each i. Consequently, w�y ≡ 0 is equivalent to

wi �Nl
i ũi = 0, i = 1, . . . , k, l = 0, . . . , aλi − 1.(6.1)

This observation implies that the first two conditions in Lemma 6.1 are equivalent to
requiring that uv = 0 and that (6.1) holds for all wi� that are rows of Ac P. As for the
third condition in Lemma 6.1, we note that xq =∑l Pql yl ≡ 0 if there exists some p such
that Bc

pq �= 0. Therefore, (2.9) follows. �

Proof of Corollary 2.6. Choose any block Ji of J and ũi . By construction, Ji is itself a
block diagonal matrix consisting of Jordan blocks associated with λi ; each Jordan block
has a 1 in every entry immediately above the main diagonal. Let Q be any Jordan block
of Ji and ũQ the corresponding block of ũi with dimension d, say. Then, the following
condition becomes a sufficient condition that induces (6.1):
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w Q�
NlũQ = 0, l = 0, . . . , d − 1, ∀ Q,

where N is Q less the diagonal part. But, then, this is just

w Q�

⎛
⎜⎜⎜⎜⎜⎜⎝

ũQ
1

...

ũQ
d−1

ũQ
d

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0, w Q�

⎛
⎜⎜⎜⎜⎜⎝

ũQ
2

...

ũQ
d

0

⎞
⎟⎟⎟⎟⎟⎠ = 0, . . . , w Q�

⎛
⎜⎜⎜⎜⎜⎝

ũQ
d

0

...

0

⎞
⎟⎟⎟⎟⎟⎠ = 0.

Therefore, an equivalent statement is that if j is a coordinate with w Q
j �= 0, then ũQ

j =
ũQ

j+1 = · · · = ũQ
d = 0.

The directed graph G in this case consists of paths such as n → n + 1 → · · · → n +
d − 1 if Q starts at the coordinate (n, n). If j is restricted with respect to 1Ac P + 1Bc 1P,
then (Ac P)i j �= 0 or Bc

iq Pq j �= 0 for some i , q. This in turn means that w j �= 0 where w
is the ith row of Ac P or the qth row of P, and thus ũ j = 0. In this case, the observation
in the previous paragraph requires that any other components of ũ that have a directed
path from ũ j in G are also zero.

If gλi = 1 for all i, then there is only one Jordan block for each λi and thus Q coincides
with Ji . Therefore, the condition above becomes necessary, too. �

Corollary 2.6 essentially means that we achieve a non-Gaussian distribution for u · Yt

as long as it has some dependence on one or some of volatility driving factors by including
them in the dynamics or by including a factor that depends on volatility factors. Of course,
u has to be outside the closed set specified by (2.9). The vectors in this set cancel out the
effects of the volatility factors in u · Yt. The next examples illustrate this feature in more
detail.

EXAMPLE. Am(n) with diagonal Ad . In this case, we have

dYd
j (t) =

(
�d

j +
∑

k

Ac
kj Y

v
k + Ad

j j Y
d
j (t)

)
dt +
√

1 +
∑

k

Bc
kj Y

v
k dWd

j (t)

and

d
(
ud · Yd (t)

) =
⎛
⎝ud · �d +

∑
k

⎛
⎝∑

j

ud
j Ac

kj

⎞
⎠Yv

k +
∑

j

ud
j Ad

j j Y
d
j (t)

⎞
⎠ dt

+
∑

j

ud
j

√
1 +
∑

k

Bc
kj Y

v
k dWd

j (t).(6.2)

For u · Y not to have any dependence on Yv , we must have uv = 0,

∑
j

ud
j Ac

kj = 0, k = 1, . . . , m
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and ud
j = 0 whenever there exists k such that Bc

kj �= 0. However, these conditions are not
enough to remove all the dependence on Yv . For example, suppose Ad is given by

Ad =

⎛
⎜⎝

λ1 0 0

0 λ1 0

0 0 λ2

⎞
⎟⎠ .

Then, (6.2) becomes

d
(
ud · Yd (t)

) = (ud · �d + λ1
(
ud · Yd (t)

)+ (λ2 − λ1)ud
3Yd

3 (t)
)

dt +
∑
j /∈J

ud
j dWd

j (t)

where J is a set of coordinates that are restricted with respect to 1Bc . Therefore, if Yd
3

has a volatility factor in its drift or diffusion, then ud · Yd is not free of Yv effects. This
kind of additional dependency is captured by (2.9).

EXAMPLE. Am(m + 2). This class of models has two dependent factors. We consider
the case in which Ad has only one eigenvalue λ with gλ = 1. The other possible case is
diagonal and is similar to the example above but with a lower dimension. Let P = (v1 v2)
be the non-singular matrix of an eigenvector and a generalized eigenvector in a Jordan
canonical form of Ad and let P−1u = (a, b). We write

Ad P = P

(
λ 1

0 λ

)
, L =

(
Iv 0

0 P�

)
.

Next we apply an invariant affine transformation as defined in Dai and Singleton (2000),
Y �→ LY. Then the dynamics of Yv are the same as the original and that of Ỹ = P�Yd

becomes

dỸt = (P��d + (Ac P)�Yv
t + J�Ỹt

)
dt + P�

√
diag
(
Fd

t
)
dWd

t .

Denoting Ỹ by (Ỹ1, Ỹ2),

d

(
Ỹ1(t)

Ỹ2(t)

)
= P��ddt + (Ac P)�Yv

t dt +
(

λỸ1(t)

Ỹ1(t) + λỸ2(t)

)
dt

+

⎛
⎜⎜⎝

(v1)1

√
1 +
∑

Bc
k1Yv

k dW2(t) + (v1)2

√
1 +
∑

Bc
k2Yv dW3(t)

(v2)1

√
1 +
∑

Bc
k1Yv

k dW2(t) + (v2)2

√
1 +
∑

Bc
k2Yv

k dW3(t)

⎞
⎟⎟⎠

Note that u · Yt = ũ · Ỹt = aỸ1(t) + bỸ2(t) (we assume uv = 0). Now suppose a �= 0.
Then, u · Yt has a dependence on Yv unless (Ac P)k1 = 0 and Bc

ki = 0 for all k when-
ever (v1)i �= 0. This is the same as asking whether coordinate 1 is restricted with respect
to 1Ac P + 1Bc 1P. A similar argument applies to the case b �= 0 regarding the second
coordinate.

If a = 0 but b �= 0, then we still have to consider the dependence of Ỹ1 on Yv because
Ỹ2 is correlated with Ỹ1 through the drift term. This means that u · Yt has dependence on
Yv if coordinate 1 is restricted. It is clear from the dynamics of Ỹ that the final dynamics
induce a Gaussian distribution after we remove the dependence on Yv .
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7. CONCLUSION

We have established three general results for affine models. Our first result confirms the
validity of the transform representation without further conditions and shows that the
range of exponents for which the transform is finite at time t coincides with the set of
initial conditions from which the ODE solution exists on [0, t]. Based on this result,
we are able to investigate the properties of affine models by analyzing the associated
differential equations. As an example, we gave two comparison criteria for processes in
Am(m).

Our second result establishes the existence of a limiting stationary distribution and
characterizes this limit through its transform; the tail behavior of the limiting distribution
is determined by the stability region of the associated dynamical system.

Our last result gives necessary and sufficient conditions for a linear combination
of factors to have a Gaussian distribution and shows that any non-Gaussian linear
combination has exponential tails. Essentially, a Gaussian distribution is obtained by
removing from a linear combination all the dependence on the volatility factors, but the
precise conditions that achieve this turn out to be subtle.

APPENDIX A: PROOFS

Proof of Lemma 4.1. Define x(t) = �t(u) and y(t) = �t(θu)/θ ; then

ẋ = Ax + B
(
x2

1 , . . . , x2
n

)
ẏ = Ay + θ B

(
y2

1 , . . . , y2
n

)
with x(0) = y(0) = u. It is immediate that xd ≡ yd because they satisfy the same linear
ODE with the same initial condition. So, we concentrate on xv and yv , for which the
corresponding ODEs are

ẋv = Av xv + (x2
1 , . . . , x2

m

)+ c(t) + d(t)

ẏv = Av yv + θ
(
y2

1 , . . . , y2
m

)+ c(t) + θd(t)

where c(t) = Acxd (t) and d(t) = Bc(x2
m+1, . . . , x2

n ). Now define

f (xv ) = Av xv + (x2
1 , . . . , x2

m

)
.

By condition (C2) (see the discussion preceding Lemma 4.1), the mapping xv �→ Av xv

is quasi-monotone increasing, as is the mapping xv �→ (x2
1 , . . . , x2

m), and thus also f .
Recalling that Bc has nonnegative entries and θ > 1, we get

ẋv − f (xv ) = c(t) + d(t)

≤ (θ − 1)(y2
1 , . . . , y2

m) + c(t) + θd(t)

= ẏv − f (yv ).

It now follows from the comparison result (4.2) that x(t) ≤ y(t). �
For the proof of Lemma 4.2, we need a preliminary result that limits the crossing of

coordinates of the solution to (2.7).

LEMMA A.1. For the system (2.7), suppose (t, u) ∈ � and let x(t) = �t(u). For i , j ∈
{1, . . . , n}, the set {s ∈ [0, t] : xi (s) = xj (s)} has only finitely many isolated points.
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Proof. As noted in Section 4.1, �t(u) is analytic in (t, u) so long as it lies within the
domain of analyticity of fo in (2.7); but this function is analytic in the entire domain.
It follows that xi (s) − xj (s) is analytic in s. An analytic function can have only a finite
number of isolated zeros on a compact interval. �

Proof of Lemma 4.2. Fix u ∈ Rn and let us denote �t(u) by x(t) to simplify notation. We
define a piecewise differentiable function γ (t) = mini=1,...,m xi (t). Because xd (t) converges
to zero (as implied by (4.4)), we can find M > 0 such that supt |xd (t)| < M. The value
of M depends on xd (0). Lemma A.1 implies that in any bounded interval [0, t] with x(t)
finite, the set of s at which xi (s) = xj (s) is either finite or an interval. Therefore, we can
define a sequence of closed intervals of R+, {Ij }, such that I(u) ∩ R+ =⋃∞

j=1 Ij and

γ (t) = xi ( j ), ∀t ∈ Io
j ,

for some i ( j ) ∈ {1, . . . , m}, where Io
j denotes the interior of Ij .

In an interval Io throughout which γ (t) = xi (t), we have

γ̇ (t) = γ 2 +
n∑

k=1

Aikxk +
n∑

k=m+1

Bikx2
k

≥ γ 2 +
m∑

k=1

Aikγ +
n∑

k=m+1

Aikxk

≥ γ 2 +
m∑

k=1

Aikγ − M max
j=1,...,m

n∑
k=m+1

|Ajk|.(A.1)

In the first inequality, we used the assumption that Av has nonnegative off-diagonal
entries and Bc ≥ 0. Next, we define a continuous, piecewise differentiable function v by

v̇ = L(v), L(v) := v2 +
m∑

k=1

Aikv − K

whenever γ (t) = xi (t), with K = Mmax j
∑n

k=m+1 |Ajk| and γ (0) ≥ v(0). Then, because
γ and v satisfy

γ̇ − L(γ ) ≥ v̇ − L(v),

we get γ ≥ v by applying the standard comparison result repeatedly on the intervals Ij .
If we show that v is bounded below, then γ is also bounded below and the statement
follows.

To see that v is indeed bounded below, we observe that M can be set large enough
to make L(x) = 0 have two real solutions, ηi

1 < ηi
2, for each i; in this case v̇(t) ≥ 0 or

v(t) ≥ ηi
1 (as is evident in Figure 3.1) when γ (t) = xi (t). �

Proof of Lemma 4.3. We write x(t) for �t(u) to simplify notation. Define a piecewise
differentiable function γ = maxi=1,...,m xi , similarly as in the proof of Lemma 4.2. We
saw there that we can define a sequence of intervals {Ij } until τ with γ (t) = xi ( j )(t) in
Io

j . In an interval I on which γ = xi , γ satisfies (A.1). Because the trajectory of x(t) is
bounded below (by Lemma 4.2), γ → ∞. So, at some time t0 < τ, γ (t0) is sufficiently
large that the right-hand side of (A.1) becomes positive for all i = 1, . . . , m, and then γ

never decreases. We can then divide both sides of (A.1) by γ to get
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γ̇

γ
=

m∑
k=1

Aik
xk

γ
+ γ + 1

γ

n∑
k=m+1

Aikxk + 1
γ

n∑
k=m+1

Bikx2
k

≤
m∑

k=1

Aik + γ + M

on (t0, τ ), for some sufficiently large M. Here we have used the fact that xk ≤ γ, k ∈
{1, . . . , m}, and the nonnegativity of the off-diagonal entries of Av . The existence of M
is guaranteed by the fact that |xd | is bounded and γ never decreases after t0. Then,

∫ τ

t0

γ̇

γ
dt ≤
∫ τ

t0
γ dt +

(
max

i

m∑
k=1

Aik + M

)
(τ − t0).

However, the left-hand side is infinite, so
∫ τ

t0
γ dt = ∞ as well. We can pick a constant C

such that |�d xd (t)| ≤ C for all t ≥ 0; then, because �v 	 0, we have

∫ τ

0
� · x(t) dt ≥ (min

i
�v

i

) ∫ τ

0
γ dt − Cτ = ∞.

�
The system (2.7) can be thought of as a system of equations defined in Cn by setting

x(t) = Re x(t) + iIm x(t). Based on the analyticity of fo, the solution x(t) also has a nice
analytic property which is used in the proof of Theorem 2.1.

LEMMA A.2. For the system (2.7), suppose (t, u) ∈ �. Then we can find an open convex
subset of Cn, containing the line segment L = {λu ∈ Rn : λ ∈ [0, 1]}, in which �t(·) is
analytic.

Proof. Because �t(u) is finite, �t(λu) is finite for all λ ∈ [0, 1]. This is because, first,
�t(λu) ≤ λ�t(u) by Lemma 4.1 (take θ = 1/λ, for λ ∈ (0, 1]) and, second, it is bounded
below by Lemma 4.2.

For each λu ∈ L, there is an open ball Bλ in Cn centered at λu in which �t(·) is analytic,
because of the analyticity of fo. Because L is compact, we can cover L by a finite number
of such balls. We can then find an open convex set U that contains L and is contained
within the cover; for example, we can define U to be the set of points less than a distance
ε from L, for sufficiently small ε > 0. Then �t(·) is analytic in U . �

Proof of Lemma 6.1. The proof uses an approach of Getz and Jacobson (1977). We
write the ODE for xv in (2.7) as

ẋv =

⎛
⎜⎜⎝

x2
1

...

x2
m

⎞
⎟⎟⎠+ Av xv + Acxd + Bc

⎛
⎜⎜⎝

x2
m+1

...

x2
n

⎞
⎟⎟⎠ , xv (0) = uv .

Choose any w ∈ Rm
++ and let ρ = mini wi . Multiplying both sides of the ODE by w�, we

get

w�ẋv = xv �diag(w)xv + (w� Av )xv + w� Acxd + xddiag(w� Bc)xd .
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Define b = Av �w/2 and x̃ = xv + diag(w)−1b. Then,

w� ˙̃x = x̃�diag(w)x̃ − b�diag(w)−1b + w� Acxd + xddiag(w� Bc)xd

≥ ρ x̃�x̃ − b�diag(w)−1b + w� Acxd + xddiag(w� Bc)xd

≥ ρ

|w |2 (w�x̃)2 − b�diag(w)−1b + w� Acxd + xddiag(w� Bc)xd .(A.2)

Let g(w) = b�diag(w)−1b, y = w�x̃ and y(0) = w�x̃(0).
We want to determine whether there is a real number θ such that x(s) blows up as

s → t for the scaled initial condition x(0) = θu. We divide the rest of the proof into four
cases.

Case (i): Suppose uv �= 0. From (A.2) we get

ẏ ≥ ρ

|w |2 y2 − g(w) + w� Acxd

≥ ρ

|w |2 y2 − g(w) − C|θ | · |w� Ac| · |ud |(A.3)

with y(0) = θw�uv + e�b, using (4.4) in the second inequality. Now choose w so that
w�uv �= 0. Define a new function z by setting

ż = ρ

|w |2 z2 − g(w) − |θ |M,(A.4)

with z(0) = y(0) and M = C|w� Ac| · |ud |; then y ≥ z on their common interval of ex-
istence. Let η2 =

√
(g(w) + |θ |M)|w |2/ρ and η1 = −η2, the two equilibria of the ODE

(A.4). Because w ∈ R++, g(w) > 0 so η2 �= 0. By increasing θ (if w�uv > 0) or increasing
−θ (if w�uv < 0), we can make z(0) > η2. Then, as in (3.3), z has a finite blow-up time

τ = |w |2
ρ(η2 − η1)

log
z(0) − η1

z(0) − η2
.

Because we always have y ≥ z, τ is an upper bound on the blow-up time of y. Moreover,
this upper bound can be made arbitrarily small because τ ↓ 0 as θ → ∞ or θ → −∞,
depending on the sign of w�uv . Thus, by taking θ of sufficiently large magnitude and
with the sign of w�uv , we ensure that x blows up by time t.

Case (ii): Next, suppose uv = 0 but Acxd (s) is not identically zero, xd having initial
condition xd (0) = ud . The solution xd (t) is given by exp(Adt)ud . So, there is some t0 <

t for which
∫ t0

0 Ac exp(Adt)udds �= 0; otherwise, Acxd (s) = 0 for all s ∈ [0, t) and this
implies Acxd ≡ 0 because Acxd is analytic. Now consider the scaled initial condition
x(0) = θu, and let y be the function defined above by y = w�x̃. Then, the initial condition
becomes y(0) = e�b. For s ≤ t0, (A.3) yields

ẏ ≥ ρ

|w |2 y2 − g(w) + w� Acxd ≥ −g(w) + w� Acxd ,

and so

y(t0) ≥ e�b − g(w)t0 + θw�
∫ t0

0
Ac exp(Ads)udds.
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The integral in this expression is nonzero, so the last term is nonzero for some w ∈ Rm
++.

On the other hand, for t ≥ t0, we use

ẏ ≥ ρ

|w |2 y2 − g(w) − |θ |M,

with M as before. We can make y(t0) greater than η2 by increasing θ or −θ . Applying the
same argument we applied to z following (A.4), we conclude that y blows up in time t,
and then x does too.

Case (iii): Suppose that uv = 0 and Acxd ≡ 0, but Bc(x2
m+1(s), . . . , x2

n (s)) is not iden-
tically zero. We can pick t0 < t such that

N ≡
∫ t0

0
(exp(Ads)ud )�diag(w� Bc) exp(Ads)udds �= 0.

Now consider x with x(0) = θu and take y = w�x̃. Then (A.2) yields

ẏ ≥ ρ

|w |2 y2 − g(w) + w� Acxd + xddiag(w� Bc)xd

≥ −g(w) + xddiag(w� Bc)xd

and so y(t0) ≥ e�b − g(w)t0 + θ2 N. And we use the following inequality for t ≥ t0 (by
(A.2)):

ẏ ≥ ρ

|w |2 y2 − g(w).

By the argument in Cases (i)–(ii), we conclude that x blows up by time t for sufficiently
large |θ |.

Case (iv): Suppose uv = 0, Acxd ≡ 0 and Bc(x2
m+1, . . . , x2

n ) ≡ 0. This means that xv

is a solution of

ẋv =

⎛
⎜⎜⎝

x2
1

...

x2
m

⎞
⎟⎟⎠+ Av xv , xv (0) = 0.

This makes xv ≡ 0 and thus

E exp(2θu · Yt) = exp
(

2θ2
∫ t

0
|xd (s)|2ds + 2θ

(∫ t

0
�d · xd (s) ds + xd (t) · Yd

0

))

where xd is the solution from the original (unscaled) initial condition, xd (0) = ud . Because
the moment generating function of u · Yt is the exponential of a quadratic function of θ ,
we conclude that u · Yt is Gaussian. �
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