
Mathematical Finance, Vol. 17, No. 3 (July 2007), 345–379

LARGE DEVIATIONS IN MULTIFACTOR PORTFOLIO CREDIT RISK
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The measurement of portfolio credit risk focuses on rare but significant large-loss
events. This paper investigates rare event asymptotics for the loss distribution in the
widely used Gaussian copula model of portfolio credit risk. We establish logarithmic
limits for the tail of the loss distribution in two limiting regimes. The first limit examines
the tail of the loss distribution at increasingly high loss thresholds; the second limiting
regime is based on letting the individual loss probabilities decrease toward zero. Both
limits are also based on letting the size of the portfolio increase. Our analysis reveals a
qualitative distinction between the two cases: in the rare-default regime, the tail of the
loss distribution decreases exponentially, but in the large-threshold regime the decay
is consistent with a power law. This indicates that the dependence between defaults
imposed by the Gaussian copula is qualitatively different for portfolios of high-quality
and lower-quality credits.
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1. INTRODUCTION

The measurement of portfolio credit risk focuses on rare but significant large-loss events,
with banks and other financial institutions seeking to measure the 99.9th or 99.99th
percentile of their credit loss distributions over, e.g., a one-year horizon. Credit portfolios
are often large, including exposure to thousands or even tens of thousands of obligors;
and the default probabilities of high-quality credits are extremely small over short or
intermediate time horizons. These features of the credit risk context lead us to consider
rare-event asymptotics of loss distributions for large credit portfolios.

An essential feature of a portfolio view of credit risk is a mechanism for capturing de-
pendence between the defaults of multiple obligors. Because historical data on defaults
are limited, theory and practice have looked to the equity market for information on “cor-
relations” between obligors. The most widely used mechanism for mapping correlations
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(such as correlations between asset returns) to dependence between defaults is the Gaus-
sian copula framework (as in Gupton et al. [1997] and Li [2000]), which is loosely based
on foundational work of Merton (1974), in which default occurs when firm value crosses
a boundary. The mixed Poisson model of CreditRisk+ (Wilde [1997]) is in some respects
closer to the intensity-based models of Duffie and Singleton (1999) and Jarrow and Turn-
bull (1995). A key feature of both the Gaussian copula and the mixed Poisson model is
that defaults become independent conditional on a set of underlying factors. Our analysis
of the Gaussian copula takes advantage of this structure.

We prove logarithmic limits for the loss distribution in the Gaussian copula frame-
work under two different limiting regimes. The first limit examines the tail of the loss
distribution at increasingly high loss thresholds; the second limiting regime is based on
letting the individual loss probabilities decrease toward zero. Both limits are also based
on letting the size of the portfolio increase.

The two limits we consider correspond to the two sources of rarity in the problem of
measuring portfolio credit risk—the rarity of large losses resulting from multiple defaults
and the rarity of individual defaults of high-quality credits. Our analysis reveals an inter-
esting and surprising qualitative distinction between the cases: in the rare-default regime,
the tail of the loss distribution decreases exponentially, but in the large-threshold regime
the rate of decrease follows a power law.

In both cases, the rate of decrease is determined primarily by the correlation structure
underlying the Gaussian copula, and a good deal of our analysis is devoted to identifying
this structure. We consider models with a finite number of types of obligors. Each type is
characterized by a vector of factor loadings (coefficients) on the factors in the Gaussian
copula. Each loading vector determines a half-space of directions along which moving
the factors increases the conditional default probabilities for obligors of that type. The
default probabilities determine how far the factors must move for defaults of that type to
become “likely”; and the exposures determine which combinations of types must default
to reach a loss threshold. This structure determines a region of factor outcomes in which
a large loss (exceeding a specified threshold) becomes “likely.” The points in this region
closest to the origin determine the rate of decrease of the tail of the loss distribution.

Identifying the rate of decrease of the tail of the loss distribution—and understanding
whether the tail is exponential or polynomial—is useful in developing approximations.
Our investigation is also useful for the design and analysis of efficient Monte Carlo
methods for rare event simulation. Glasserman and Li (2005) analyze an importance
sampling method in the setting of single-factor models. The formulation considered here
suggests a different algorithm that explicitly takes account of the added complexity of
the multifactor case and the presence of multiple types of obligors. We use the tools
developed here in Glasserman et al. (2005) to establish the asymptotic optimality of this
method.

Several authors (Martin et al. 2001; Gordy 2002; Dembo et al. 2004) have developed
saddlepoint and other tail approximations for loss distributions when defaults are in-
dependent. These approximations apply as well to conditional loss distributions when
defaults are conditionally independent, but then extending them to the unconditional
loss distribution requires, in principle, integrating out the conditioning variables. (An
exception is Gordy [2002], who works in the more tractable mixed Poisson setting.) Our
analysis applies directly to the unconditional loss distribution; indeed, we find that the
decay rate of the tail of the loss distribution is dominated by the effect of the condi-
tioning variables (the factors in the Gaussian copula). Thus, our results are qualitatively
different from those derived from independent defaults. The decay rate we find in the
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large threshold limit is consistent with that in Lucas et al. (2001), but their limit applies
to an approximation to the loss distribution whereas we deal with the distribution itself.

The rest of this paper is organized as follows. Section 2 introduces notation and states
our two main results: large-deviations limits for the loss distribution in the rare-default
and large-threshold limits. Section 3 proves the first result and Section 4 proves the second.
Each of these proofs is divided in two parts—the proof of an upper bound and the proof
of a lower bound.

2. NOTATION AND MAIN RESULTS

We consider the distribution of losses from default in a fixed portfolio over a fixed horizon.
We use the following notation:

m = the number of obligors to which the portfolio is exposed;
Yk = default indicator (= 1 for default, = 0 otherwise) for the k-th obligor;
pk = marginal probability that the k-th obligor defaults;
ck = loss resulting from default of the k-th obligor;

Lm = c1Y1 + · · · + cmYm = total loss from defaults.

The loss ck will in some cases be assumed deterministic and in others allowed to be a
random variable. Dependence among the default indicators Yk is given by a multifactor
Gaussian copula model with a finite number of types. We set Yk = 1{Xk > �−1(1 − pk)},
with � the cumulative normal distribution and X1, X2, . . . correlated standard normal
random variables so that P(Yk = 1) = pk. Correlations between these latent variables
determine the dependence among the default indicators. In practice, these correlations
are often derived from correlations in asset values or equity returns. The assumption of
a finite number of types is specified as follows:

M1 There are d factors and t types of obligors. {I (m)
1 , . . . , I (m)

t } is a partition of the
set of obligors {1, . . . , m} into types. If k ∈ I (m)

j , then the k-th obligor is of type
j and its latent variable is given by

Xk = a�
j Z + b jεk

where a j ∈ Rd with 0 < ‖aj‖ < 1, Z is a d dimensional standard normal ran-

dom vector, b j =
√

1 − a�
j a j and εk are independent standard normal random

variables. Let n(m)
j = |I (m)

j | denote the number of obligors of type j. We assume

that for each j = 1, . . . , t, r j = limm→∞ 1
m n(m)

j > 0.

We consider asymptotics of P(Lm > xm) for large m, allowing the loss threshold xm to
increase with the size of the portfolio. We consider two limiting regimes:

Small default probability limit: small pk’s and moderate xm;
Large loss threshold limit: large xm and moderate pk’s.

As mentioned in the Introduction, these two regimes exhibit qualitatively different be-
havior, with the large-threshold limit reflecting a heavier tail. This distinction results from
the greater impact of dependence (through the Gaussian copula) in the second case.
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We close this section with some notational conventions:

� [v]i denotes the i-th component of the vector v;
� ‖v‖ =

√
v�v for a vector v;

� e = (1, . . . , 1)� ∈ Rd ;
� f (x) ∼ g(x) means lim x→∞ f (x)/g(x) = 1;
� φ(·) and �(·) are a density function and a cdf of standard normal random variable,

respectively.

2.1. Small Default Probability Regime

We specify the parameters of the small default probability regime by imposing the
assumptions in M2 in addition to those in M1:

M2 1. The default loss, ck, is deterministic and 0 < ck ≤ c̄ < ∞ for k = 1, . . . , m.
2. If the k-th obligor is of type j then its default probability is given by pk =

p(m)
j � �(−s j

√
m) where sj > 0. The conditional default probability (given

the factors Z) of the same obligor is given by

pk(Z) = p(m)
j (Z) = �

(
a�

j Z + �−1
(

p(m)
j

)
b j

)
= �

(
a�

j Z − s j
√

m

b j

)
.(2.1)

3. For each type j = 1, . . . , t,

Cj � lim
m→∞

1
m

∑
k∈I (m)

j

ck < ∞ and

C � lim
m→∞

1
m

m∑
k=1

ck =
t∑

j=1

lim
m→∞

1
m

∑
k∈I (m)

j

ck =
t∑

j=1

Cj .

4. The total loss from defaults and the portfolio default threshold are

Lm =
m∑

k=1

ckY (m)
k and xm = q

m∑
k=1

ck

where Y (m)
k = 1{Xk > �−1(1 − p(m)

j )} and 0 < q < 1. We impose a mild
restriction on the possible values of q; q is not a value in the finite
set, { 1

C

∑
j∈J Cj : J ⊂ {1, . . . , t}}.

Using the fact that �(−t) ∼ φ(t)/t as t → ∞, it follows that the default probabilities in
M2-2 satisfy p(m)

j = exp(−s2
j m/2 + o(m)). So, this assumption specifies that the default

probabilities decrease exponentially in m and the last assumption implies that the loss
threshold xm is O(m). The particular parametrization in M2-2 is convenient because of
the simplification it provides in (2.1).

Now we introduce a central concept in analysis of the small default probability model
that we call the q-minimal index set. These are sets of obligor types. We say that J is a
q-minimal index set if J ⊂ {1, . . . , t} and

max
J ′�J

∑
j∈J ′

Cj < qC ≤
∑
j∈J

Cj .(2.2)
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Thus, if all obligors of types in J default, the loss exceeds qC (which is the limit of xm/m),
but the default of all obligors of any subset of types does not suffice to reach the threshold.
Note that the inequality qC ≤ ∑

j∈J Cj is in fact strict because of the restriction on q. We
define Mq to be the family of all q-minimal index sets. Note the following two simplest
and most extreme cases:

� q <
min j Cj

C : Mq = {{1}, {2}, . . . , {t}} and the default of any type suffices;
� q > 1 − min j Cj

C : Mq = {{1, 2, . . . , t}} and defaults of all types are required.

For each type j ∈ {1, . . . , t}, we define the halfspace

G j �
{
z ∈ Rd : a�

j z ≥ s j
}

and set

GJ �
⋂
j∈J

G j = {
z ∈ Rd : a�

j z ≥ s j for all j ∈ J
}
, J ∈ Mq ,

and

GMq �
⋃

J∈Mq

GJ .

Our analysis relies heavily on such sets, so some explanation of their role may be
helpful. Factor outcomes z for which a�

j z is large make the type j conditional default
probability p(m)

j (z) large; see (2.1). The set Gj should therefore be interpreted as the set of
factor outcomes that make defaults of type j “likely.” The factor outcomes in GJ make
defaults “likely” for all obligor types in the set J , and GMq is the set of factor outcomes
that make it “likely” that the portfolio loss will exceed qC through the default of some
collection of types.

EXAMPLE 2.1. To illustrate, we consider a simple example. There are four obligor
types with C1 = 2, C2 = 2, C3 = 3, and C4 = 3, so C = 10. Set q = 0.45. Then Mq =
{{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. Figure 2.1 shows the coefficient vector for each type
(indicated by arrows) and the resulting sets Gj, j = 1, 2, 3, 4. G{1,3} is indicated by
slanted lines and G{2,4} is indicated by crossed lines. GMq = G{1,3} ∪ G{2,4} since G{2,3} ⊂
G{1,3}, G{1,4} ⊂ G{2,4}, and G{3,4} = ∅.

Under a standard multivariate normal distribution, the “most likely” point in a set is the
point closest to the origin. (These are points P{1,3}, P{2,3}, P{1,4}, and P{2,4} in Figure 2.1
for the associated sets.) With this in mind, we define γJ as the unique solution of the
following linearly constrained problem:

γJ �
{

argmin {‖z‖ : z ∈ GJ } if GJ �= ∅
(∞, . . . , ∞)� if GJ = ∅.

(2.3)

Define

γ∗ � argmin{‖γJ ‖ : J ∈ Mq}(2.4)

where, if a tie occurs, we choose the arbitrary minimal one. (This is the point P(1,3) in
Figure 2.1.) Note that γ∗ = (∞, . . . , ∞)� and ‖γ∗‖ = ∞ if GJ = ∅ for all J ∈ Mq , by
definition. Now we are ready to state the large deviations result for the small default prob-
ability regime. It says, roughly, that the rate of decrease of the tail of the loss distribution
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FIGURE 2.1. Illustration of the halfspaces associated with obligor types

is determined by the “most likely” factor outcome leading to large losses. The proof is
given in Section 3.3.

THEOREM 2.1. If the assumptions M1 and M2 are satisfied, then

lim
m→∞

1
m

log P(Lm > xm) = −1
2
‖γ∗‖2.

2.2. Large Loss Threshold Regime

We now consider asymptotics as the loss threshold xm grows at a faster rate while the
default probabilities remain fixed. We also allow random recovery, so the loss resulting
from the default of an obligor is random. We add M3 to M1 to specify the parameters:

M3 1. The marginal default probabilities satisfy 0 < p
¯

≤ pk ≤ p̄ < 1 for k =
1, . . . , m.

2. If the k-th obligor is of type j then its conditional default probability is
given by

pk(Z) = �

(
a�

j Z + �−1(pk)

b j

)
.

3. The maximum loss for obligor k is lk and 0 < l
¯
≤ lk ≤ l < ∞ for k =

1, . . . , m. The actual loss upon the default of obligor k is lkUk, with Uk

a [u
¯
, 1]-valued random variable and u

¯
a constant satisfying 0 < u

¯
≤ 1. For

each obligor type j , {Uk}k∈I (m)
j

is an iid sequence from a distribution with



LARGE DEVIATIONS IN MULTIFACTOR PORTFOLIO CREDIT RISK 351

mean u∗
j. These loss random variables are independent of Z and {εk}. We

assume that 1
m

∑
k∈I (m)

j
lk converges for all j. We use uk to denote the mean

of Uk; this is u∗
j if the k-th obligor is of type j.

4. The total loss from defaults and the portfolio default threshold are

Lm =
m∑

k=1

lkUkYk and xm = qm

m∑
k=1

lkuk

where Yk = 1{Xk > �−1(1 − pk)} and qm = �(s
√

log m) for some 0 <

s < 1.

In the last of these conditions, we have qm ↑ 1 and the rate of increase is such that 1 − qm

is roughly m−s2/2; see the discussion following M2. The specific parametrization in M3-4
leads to some simplification in the analysis, but the key feature is the order of magnitude
of 1 − qm. For any rate of decrease of 1 − qm that is faster than 1/m (e.g., 1 − qm ∼ m−3/2

or 1 − qm ∼ e−m), it is shown in Kang (2005) that a result similar to Theorem 2.2 holds
under additional conditions on the model parameters.

Let

G �
t⋂

j=1

{
z ∈ Rd : a�

j z ≥ sb j
}

and let γ be the unique solution of the following linearly constrained problem

γ �
{

argmin {‖z‖ : z ∈ G} if G �= ∅
(∞, . . . , ∞)� if G = ∅.

(2.5)

Now we can state the large deviations result for large loss threshold regime. The proof
will be given in Section 4.3.

THEOREM 2.2. If the assumptions M1 and M3 are satisfied, then

lim
m→∞

1
log m

log P(Lm > xm) = −1
2

‖γ‖2 .

Observe that in Theorem 2.2 we normalize by log m, indicating that the probability
decays like m−‖γ‖2/2, whereas in Theorem 2.1 we normalize by m, indicating that the
probability decays like exp(−m‖γ∗‖2/2).

3. ANALYSIS OF THE SMALL DEFAULT PROBABILITY REGIME

In this section, we assume the conditions M1 and M2. For each obligor type j = 1, . . . , t,
define

G(m,ε)
j �

{
z ∈ Rd : a�

j z ≥ (1 − εm)s j
√

m
}

=
{

z ∈ Rd : p(m)
j (z) = �

(
a�

j z − s j
√

m

b j

)
≥ �

(
− s j

b j
εm

√
m

)}
,

and then
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G(m,ε)
J �

⋂
j∈J

G(m,ε)
j for J ∈ Mq and G(m,ε) �

⋃
J∈Mq

G(m,ε)
J

where εm > 0 satisfies εm → 0 and εm
√

m → ∞. One possible choice is εm = m−1/3.
The assumption that ‖a j‖ > 0 implies aj �= 0. If all aj ≥ 0, then G(m,ε)

J �= ∅ for all J ⊂
{1, . . . , t}. However, if some of the coefficient vectors aj have negative components, then
these sets may be empty. Hence we define a subfamily of Mq ,

Sq �
{
J ∈ Mq : G(m,ε)

J �= ∅ for all m
}
.

EXAMPLE 3.1. (Continued.) We can re-interpret Figure 2.1 as depicting the
sets G(m,ε)

j , j = 1, 2, 3, 4. As before, Mq = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}, so tak-
ing into consideration the sets with nonempty intersection we find that Sq = {{1, 3},
{1, 4}, {2, 3}, {2, 4}}. (Shortly, it can be easily seen that G(m,ε)

{2,3} and G(m,ε)
{1,4} are contained in

G(m,ε)
{1,3} and G(m,ε)

{2,4} , respectively, and our treatments on index sets {1, 3} and {2, 4} have

also effects on any index sets whose G(m,ε)
J is included in G(m,ε)

{1,3} ∪ G(m,ε)
{2,4} . So it is sufficient

to consider only the two dominating index sets. However, we will not investigate this any
more in this paper because the asymptotics is insensitive to the choice of Sq .)

The next lemma and corollary give conditions under which G(m,ε)
J and GJ are

nonempty.

LEMMA 3.1. Suppose that f (·) is a function such that limm→∞ f (m) = ∞, g j ∈ R and
a real sequence {ηm} satisfies limm→∞ ηm = 0. For any J ⊂ {1, . . . , t},

GJ = {
z : a�

j z ≥ s j for all j ∈ J
} �= ∅

if and only if{
z : a�

j z ≥ g j + (1 − ηm)s j f (m) for all j ∈ J
} �= ∅ for all m.

Proof . Consider the “only if” direction. Suppose z∗ ∈ GJ �= ∅ and fix m. Because
a�

j z∗ ≥ sj > 0 for each j ∈ J , we can choose λm > 0 sufficiently large that a�
j (λmz∗) ≥ gj +

(1 − ηm)sj f (m) for all j ∈ J . For the “if” direction, noting that limm→∞(1 − ηm)sjf (m) =
∞ for all j ∈ J is sufficient. �

COROLLARY 3.1. G(m,ε)
J �= ∅ for all m if and only if GJ �= ∅.

Proof . By taking f (m) = √
m, g j = 0, and ηm = εm, Lemma 3.1 gives the result. �

Now for each J ∈ Sq , we define µ
(m,ε)
J as the unique solution of the following linearly

constrained problem:

µ
(m,ε)
J � argmin

{
‖z‖ : z ∈ G(m,ε)

J

}
.(3.1)

We consider a useful convergence property of 1√
m µ

(m,ε)
J .

LEMMA 3.2. Assume that aj �= 0, hj > 0, and v (m)
j → 0 as m → ∞ for all j = 1, . . . , t.

For any J ⊂ {1, . . . , t} such that {z : a�
j z ≥ h j + v (m)

j , j ∈ J } �= ∅ for all m,{
z : a�

j z ≥ h j for all j ∈ J
} �= ∅
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and

z(m)
J = argmin

{‖z‖ : a�
j z ≥ h j + v (m)

j for all j ∈ J
}

converges to

z∞
J = argmin

{‖z‖ : a�
j z ≥ h j for all j ∈ J

}
as m → ∞ . Furthermore, z∞

J �= 0.

Proof . Fix arbitrary J . Define, for h = (h1, . . . , ht)�,

P(h) = {
z : a�

j z ≥ h j for all j ∈ J
}
.

Let v(m) be the vector with j-th component v (m)
j . Since v(m) → 0, there exists an m such

that h +v(m) > 0. So z(m)
J multiplied by a large positive scalar lies in P(h), which proves

the first claim. Again since v(m) → 0, there exists an M such that for m >M,

P(h + e) ⊂ P
(
h + v(m)).

Set z0 = argmin{‖z‖ : z ∈ P(h + e)} and B � {z : ‖z‖ ≤ ‖z0‖}. Now for m > M, z0 ∈
P(h + v(m)) implies ‖z(m)

J ‖ ≤ ‖z0‖ and hence z(m)
J ∈ P(h + v(m)) ∩ B. If we extend the pa-

rameter m to a continuous one on [0, 1] (e.g., by linear interpolation of v′(1/m) = v(m)

and v′(0) = 0), then we can apply the Maximum Theorem (e.g., Theorem 9.17 of Sun-
daram [1996]) since ‖ · ‖ is strictly convex and P(h + v(m)) ∩ B is a compact and convex-
valued continuous correspondence. Hence we get z(m)

J → z∞
J . Finally z∞

J is nonzero since
a�

j 0 = 0 < hj. �

To connect Lemma 3.2 to the definitions of µ
(m,ε)
J , first note that for any hj > 0 and J ,

1
f (m)

argmin
{‖z‖ : a�

j z ≥ h j f (m) for all j ∈ J
}

= argmin
{‖z‖ : a�

j z ≥ h j for all j ∈ J
}

(3.2)

where f (·) is any positive-valued function. Consider a J satisfying GJ �= ∅. For
this J , min{‖z‖ : a�

j z ≥ s j for all j ∈ J } < ∞ and by Corollary 3.1, G(m,ε)
J is nonempty

and µ
(m,ε)
J is well-defined for any m. Furthermore,

γJ = argmin
{‖z‖ : a�

j z ≥ s j for all j ∈ J
}

by (2.3)

= lim
m→∞

1√
m

µ
(m,ε)
J by (3.2) with f (·) = √· and Lemma 3.2.

(3.3)

For future reference we record an implication of (3.3):

‖γJ ‖ = lim
m→∞

1√
m

∥∥µ
(m,ε)
J

∥∥ < ∞ for all J satisfying GJ �= ∅.(3.4)

3.1. Upper Bound Computation

LEMMA 3.3. If Sq �= ∅, then for each J ∈ Sq ,

min
{
µ

(m,ε)
J

�
z : z ∈ G(m,ε)

J
} = ∥∥µ

(m,ε)
J

∥∥2
(3.5)



354 P. GLASSERMAN, W. KANG, AND P. SHAHABUDDIN

Proof . G(m,ε)
J = ⋂

j∈J G(m,ε)
j is a convex polyhedron and the definition of µ

(m,ε)
J im-

plies that {
z ∈ Rd : ‖z‖ ≤ ∥∥µ

(m,ε)
J

∥∥} ∩ G(m,ε)
J = {

µ
(m,ε)
J

}
.

Then there is a separating plane and for this case it is uniquely given by

µ
(m,ε)
J

�
z = µ

(m,ε)
J

�
µ

(m,ε)
J .

See Theorem 11.3 in Rockafellar (1997). So

G(m,ε)
J ⊂ {

z : µ
(m,ε)
J

�
z ≥ µ

(m,ε)
J

�
µ

(m,ε)
J

}
which concludes the proof. �

As is often the case for large deviations results, we introduce a change of measure as
in the proof. We select a measure under which the rare event is no longer rare, so that the
rate of decrease of the original probability is given by the rate of decrease of the likelihood
ratio relating the original to the new probability. The particular change of measure we
introduce is intended to approximate the “the most likely” way (or ways) for the rare
event to occur. It involves shifting the factor mean to increase the default probabilities of
sets of types and then increasing the conditional default probabilities given the factors.
(See Glasserman and Li [2005] for an application of these ideas in the simpler setting of
a single-factor homogeneous model.)

Define a sequence of changes of measure using two likelihood ratios. The first one is
the likelihood ratio relating the d-dimensional standard normal distribution to a mixture
of N(µ(m,ε)

J , Id ),J ∈ Sq with weights λJ ’s, for each m. The weights can be any λJ > 0

for all J ∈ Sq with
∑

J∈Sq
λJ = 1. This likelihood ratio is given explicitly by (M(m,ε)

Z )−1,
which is defined by

M (m,ε)
Z �




∑
J∈Sq

λJ exp
(

µ
(m,ε)
J

�
Z − 1

2
µ

(m,ε)
J

�
µ

(m,ε)
J

)
if Sq �= ∅

1 if Sq = ∅.

Note that the sum is over the subfamily Sq .

EXAMPLE 3.2. (Continued.) As before, with the interpretation of Figure 2.1 as depict-
ing the sets G(m,ε)

j , j = 1, 2, 3, 4,Sq = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}. The minimal points
for each index sets in Sq are P{1,3}, P{1,4}, P{2,3}, and P{2,4}. These four points are used
as µ

(m,ε)
J ’s to define the mixture of shifted normal distributions.

The second part of the change of measure is defined by a conditional likelihood given
Z. First we define a conditional cumulant generating function divided by m,

ψm(θ, z) � 1
m

log E[eθ Lm | Z = z]

= 1
m

t∑
j=1

∑
k∈I (m)

j

log
(
1 + p(m)

j (z)(eθck − 1)
)
.

(3.6)
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Then, given Z, we set up the conditional likelihood ratio associated with the change of
default probabilities by

e−θm(Z)Lm+mψm(θm(Z),Z)

where

θm(z) � argmin
θ≥0

{−θxm + mψm(θ, z)}.(3.7)

The new conditional default probability is an exponentially tilted one from Yk by the
amount θm(Z).

The likelihood ratio for the combined change of measure is given by

dP
dPm

= e−θm(Z)Lm+mψm(θm(Z),Z)(M (m,ε)
Z

)−1
.

We write Em for expectation under the probability measure Pm, under which Z is dis-
tributed by the mixture defined above and Yk is a default indicator with the exponentially
tilted conditional default probability.

The approach we used for the upper bound computation is to express the default
probability by

P(Lm > xm) = Em
[
1{Lm > xm}e−θm(Z)Lm+mψm(θm(Z),Z)

(
M (m,ε)

Z

)−1]
by the definition of Pm

≤ Em
[
e−θm(Z)xm+mψm(θm(Z),Z)

(
M (m,ε)

Z

)−1]
dropping the indicator

= Em
[
e−θm(Z)xm+mψm(θm(Z),Z)

(
M (m,ε)

Z

)−1
1(G(m,ε))c (Z

)]
+ Em

[
e−θm(Z)xm+mψm(θm(Z),Z)

(
M (m,ε)

Z

)−1
1G(m,ε) (Z)

]
≤ Em

[
e−θxm+mψm(θ,Z)

(
M (m,ε)

Z

)−1
1(G(m,ε))c (Z

)]
by definition (3.7)(3.8)

+ Em
[(

M (m,ε)
Z

)−1
1G(m,ε) (Z)

]
by definition (3.7), because θm(Z) ≥ 0(3.9)

where θ is an arbitrary positive real number. We then find the upper bounds on both the
terms in (3.8) and (3.9).

For ease of reference we state the following lemma whose proof can be found on page
7 in Dembo and Zeitouni (1998);

LEMMA 3.4. Let N be a fixed integer. Then, for every ai
ε ≥ 0,

lim sup
ε→0

ε log

(
N∑

i=1

ai
ε

)
= max

1≤i≤N
lim sup

ε→0
ε log ai

ε .

Using Lemma 3.3, we prove the following lemma.

LEMMA 3.5. If Sq �= ∅, then

lim sup
m→∞

1
m

log Em
[(

M (m,ε)
Z

)−1
1G(m,ε) (Z)

] ≤ −1
2
‖γ∗‖2.
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Proof .

Em
[(

M (m,ε)
Z

)−1
1G(m,ε) (Z)

]
= Em

[(
M (m,ε)

Z

)−1
1⋃

J∈Sq G(m,ε)
J

(Z)
]

≤ Em

[(
M (m,ε)

Z

)−1 ∑
J∈Sq

1G(m,ε)
J

(Z)
]

=
∑
J∈Sq

Em





 ∑

J ′∈Sq

λJ ′ exp
(
µ

(m,ε)
J ′

�
Z − 1

2
µ

(m,ε)
J ′

�
µ

(m,ε)
J ′

)


−1

1G(m,ε)
J

(Z)




≤
∑
J∈Sq

Em

[
1

λJ
exp

(
− µ

(m,ε)
J

�
Z + 1

2
µ

(m,ε)
J

�
µ

(m,ε)
J

)
1G(m,ε)

J
(Z)

]
.

Hence we have

lim sup
m→∞

1
m

log Em
[(

M (m,ε)
Z

)−1
1G(m,ε) (Z)

]

≤ lim sup
m→∞

1
m

log


 ∑

J∈Sq

Em

[
1

λJ
exp

(
−µ

(m,ε)
J

�
Z + 1

2
µ

(m,ε)
J

�
µ

(m,ε)
J

)
1G(m,ε)

J
(Z)

]


= max
J∈Sq

{
lim sup

m→∞
1
m

log Em

[
exp

(
−µ

(m,ε)
J

�
Z + 1

2
µ

(m,ε)
J

�
µ

(m,ε)
J

)
1G(m,ε)

J
(Z)

]}

by Lemma3.4.

For each J ∈ Sq ,

lim sup
m→∞

1
m

log Em
[
e−µ

(m,ε)
J

�
Z+ 1

2 µ
(m,ε)
J

�
µ

(m,ε)
J 1G(m,ε)

J
(Z)

]
≤ lim

m→∞
1

2m

∥∥µ
(m,ε)
J

∥∥2 + lim sup
m→∞

1
m

log Em

[
e−µ

(m,ε)
J

�
Z1G(m,ε)

J
(Z)

]

≤ 1
2
‖γJ ‖2 + lim sup

m→∞
1
m

log Em

[
e−‖µ(m,ε)

J ‖2
1G(m,ε)

J
(Z)

]
by (3.4) and Lemma 3.3

≤ 1
2
‖γJ ‖2 + lim sup

m→∞
1
m

log e−‖µ(m,ε)
J ‖2

= 1
2
‖γJ ‖2 − lim

m→∞
1
m

∥∥µ
(m,ε)
J

∥∥2

= −1
2
‖γJ ‖2 by (3.4).

Hence

lim sup
m→∞

1
m

log Em
[(

M (m,ε)
Z

)−1
1G(m,ε) (Z)

] ≤ max
J∈Sq

{
−1

2
‖γJ ‖2

}

= −1
2
‖γ∗‖2, by (2.4). �
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Define K ⊂ {1, . . . , t} to be a cutset of Mq if K ∩ J �= ∅ for all J ∈ Mq and K is
minimal—that is, for any K′ � K, there exists a J ∈ Mq such that K′ ∩ J = ∅. We
denote the family of all cutsets by Cq .

Now we construct a covering of (G(m,ε))c.

LEMMA 3.6. (
G(m,ε))c ⊂

⋃
K∈Cq

⋂
j∈K

(
G(m,ε)

j

)c
.

Proof . Suppose

z ∈ (
G(m,ε))c =

⋂
J∈Mq

⋃
j∈J

(
G(m,ε)

j

)c
.

Then for eachJ ∈ Mq , there exists a jJ ∈ J such that z ∈ (G(m,ε)
jJ )c. Now { jJ : J ∈ Mq}

is a cut of Mq , (that is, jJ ∈ { jJ ′ : J ′ ∈ Mq} ∩ J �= ∅ for all J ∈ Mq ) and it contains a
cutset K. For this cutset K,

z ∈
⋂

J∈Mq

(
G(m,ε)

jJ

)c ⊂
⋂
j∈K

(
G(m,ε)

j

)c

and this completes the proof. �

By Lemma 3.6 it is clear that

1(G(m,ε))c ≤
∑
K∈Cq

1⋂
j∈K(G(m,ε)

j )c .(3.10)

Now observe that for each K ∈ Cq , z ∈ ⋂
l∈K(G(m,ε)

l )c implies

p(m)
j (z)

(
eθck − 1

) ≤




�

(
− s j

b j
εm

√
m

) (
eθ c̄ − 1

)
if j ∈ K, i.e. z ∈ (

G(m,ε)
j

)c

eθck − 1 if j /∈ K
(3.11)

and using this, we also have for z ∈ ⋂
l∈K(G(m,ε)

l )c,

emψm(θ,z) =
t∏

j=1

∏
k∈I (m)

j

(
1 + p(m)

j (z)
(
eθck − 1

))

≤
∏
j∈K

∏
k∈I (m)

j

(
1 + �

(
− s j

b j
εm

√
m

) (
eθ c̄ − 1

)) ×
∏
j /∈K

∏
k∈I (m)

j

eθck .
(3.12)

Then this deterministic upper bound (3.12) gives

1
m

log E′
m

[
emψm(θ,Z)1⋂

j∈K(G(m,ε)
j )c (Z)

]

≤ 1
m

∑
j∈K

n(m)
j log

(
1 + �

(
− s j

b j
εm

√
m

) (
eθ c̄ − 1

)) + θ
∑
j /∈K

1
m

∑
k∈I (m)

j

ck

→ θ
∑
j /∈K

Cj as m → ∞(3.13)

where {E′
m}∞m=1 are expectations under {P′

m}∞m=1, an arbitrary sequence of probability
measures. This implies



358 P. GLASSERMAN, W. KANG, AND P. SHAHABUDDIN

LEMMA 3.7.

lim sup
m→∞

1
m

log Em
[
e−θxm+mψm(θ,Z)(M (m,ε)

Z

)−1
1(G(m,ε))c (Z)

] ≤ θ

(
max
K∈Cq

{∑
j /∈K

Cj

}
− qC

)
.

Proof . First introduce an intermediate change of measure:

dP
dP′

m
= e−θm(Z)Lm+mψm(θm(Z),Z).

Note that (
M (m,ε)

Z

)−1 dP
dP′

m
= dP

dPm
and hence

Em
[(

M (m,ε)
Z

)−1
Y

] = E′
m[Y] for any random variable Y.(3.14)

lim sup
m→∞

1
m

log Em
[
e−θxm+mψm(θ,Z)(M (m,ε)

Z

)−1
1(G(m,ε))c (Z)

]

≤ lim sup
m→∞

1
m

log


∑

K∈Cq

Em

[
e−θxm+mψm(θ,Z)(M (m,ε)

Z

)−1
1⋂

j∈K(G(m,ε)
j )c (Z)

] by (3.10)

= max
K∈Cq

{
lim sup

m→∞
1
m

log Em

[
e−θxm+mψm(θ,Z)(M (m,ε)

Z

)−1
1⋂

j∈K(G(m,ε)
j )c (Z)

]}
by Lemma 3.4

≤ max
K∈Cq

{
−θqC + lim sup

m→∞
1
m

log Em
[
emψm(θ,Z)(M (m,ε)

Z

)−1
1⋂

j∈K(G(m,ε)
j )c (Z)

]}

= max
K∈Cq

{
−θqC + lim sup

m→∞
1
m

log E′
m

[
emψm(θ,Z)1⋂

j∈K(G(m,ε)
j )c (Z)

]}
by (3.14)

≤ θ

(
max
K∈Cq

{∑
j /∈K

Cj

}
− qC

)
by (3.13).

Note that Lemma 3.7 holds even if Sq = ∅ (and hence G(m,ε) = ∅). �

The sign of this upper bound is determined by the next lemma:

LEMMA 3.8.

max
K∈Cq

{∑
j /∈K

Cj

}
< qC.

Proof . Suppose that for some K ∈ Cq ,
∑

j /∈K Cj = ∑
j∈Kc Cj ≥ qC where Kc =

{1, . . . , t}\K. Then by the definition of a q-minimal index set, there exists a J ∈ Mq

such that J ⊂ Kc. Furthermore K ∩ J ⊂ K ∩ Kc = ∅, which contradicts the assump-
tion that K ∈ Cq . �

Now we get the following conclusion:

THEOREM 3.1. Suppose the assumptions M1 and M2. Then

lim sup
m→∞

1
m

log P(Lm > xm) ≤ −1
2
‖γ∗‖2.
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Proof . First assume that Sq �= ∅. Then ‖γ∗‖ < ∞ and for any θ > 0,

P(Lm > xm) ≤ Em
[
e−θxm+mψm(θ,Z)

(
M (m,ε)

Z

)−1
1(G(m,ε))c (Z)

]
+ Em

[(
M (m,ε)

Z

)−1
1G(m,ε)

]
by (3.8) and (3.9). Considering sufficiently large θ , Lemmas 3.4, 3.5, 3.7, and 3.8 together
imply

lim sup
m→∞

1
m

log P(Lm > xm)

≤ max

{
θ

(
max
K∈Cq

{∑
j /∈K

Cj

}
− qC

)
, −1

2
‖γ∗‖2

}

= −1
2
‖γ∗‖2.

If Sq = ∅, then similarly

P(Lm > xm)

= Em
[
1{Lm > xm}e−θm(Z)Lm+mψm(θm(Z),Z)]

≤ Em
[
e−θm(Z)xm+mψm(θm(Z),Z)]

≤ Em
[
e−θxm+mψm(θ,Z)].

If Sq = ∅ then (M(m,ε)
Z )−1 = 1, G(m,ε) = ∅ and ‖γ∗‖ = ∞. Lemma 3.7 then implies

lim sup
m→∞

1
m

log P(Lm > xm) ≤ θ

(
max
K∈Cq

{∑
j /∈K

Cj

}
− qC

)

→ −∞ = −1
2
‖γ∗‖2 as θ → ∞.

By combining these two cases, we complete the proof. �

3.2. Lower Bound Computations

3.2.1. Lower Bounds for Partial Portfolios. To develop a lower bound on the tail of the
loss distribution for the full portfolio, we consider losses in subsets of the full portfolio.
We use ρ for the threshold ratio for a partial portfolio instead of q, the threshold ratio for
the full portfolio. We take 0 < ρ < 1. Consider any set of types J satisfying GJ �= ∅ and
consider the partial portfolio restricted to types in J . The size of the partial portfolio is

n(m)
J �

∑
j∈J

n(m)
j =

∑
j∈J

∣∣I (m)
j

∣∣,
the corresponding loss for the partial portfolio is

L(m)
J �

∑
j∈J

∑
k∈I (m)

j

ckY(m)
k

and we set the partial threshold at

x(m)
J � ρ

∑
j∈J

∑
k∈I (m)

j

ck.
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Recall that if obligor k is of type j, then its conditional default probability is given by
p(m)

j (z), as defined in (2.1). For any ε > 0 with (1 + ε)ρ < 1, set

H(m)
j (ε) �

{
z ∈ Rd : a�

j z ≥ b j�
−1((1 + ε)ρ) + s j

√
m

}
, j ∈ J .

Note that by Lemma 3.1, H(m)
j (ε) �= ∅ for all m. For notational convenience, we set

H(m)
J (ε) �

⋂
j∈J

H(m)
j (ε).

For each j ∈ J , z ∈ H(m)
j (ε) implies

∑
k∈I (m)

j

ck�

(
a�

j z − s j
√

m

b j

)
≥ (1 + ε)ρ

∑
k∈I (m)

j

ck.

Hence for z ∈ H(m)
J (ε)

E
[
L(m)
J

∣∣ Z = z
] =

∑
j∈J

∑
k∈I (m)

j

ck�

(
a�

j z − s j
√

m

b j

)
≥ (1 + ε)ρ

∑
j∈J

∑
k∈I (m)

j

ck

≥ (1 + ε)x(m)
J .(3.15)

We define ν
(m)
J (ε) to be the unique solution of

ν
(m)
J (ε) � argmin

{‖z‖ : z ∈ H(m)
J (ε)

}
.

LEMMA 3.9. For each ε >0 with (1+2 ε)ρ <1 and any set of typesJ satisfying GJ �= ∅,
there exists a δ > 0 such that

B(m)
J (ε, δ) �

{
z ∈ Rd : ν

(m)
J (2ε) ≤ z ≤ ν

(m)
J (2ε) + δe

} ⊂ H(m)
J (ε) for all m.

Proof . Because �(·) has compact range, it is uniformly continuous, so there exists a δ′

> 0 such that |x − y| ≤ δ′ implies |�(x) − �(y)|≤ ερ. Let ā = max{|[a j ]i | : 1 ≤ j ≤ t, 1 ≤
i ≤ d} and b

¯
= min{b1, . . . , bt}. The assumption 0 < ‖aj‖ < 1 implies ā > 0 and b

¯
> 0.

Set

δ = δ′b
¯

dā
.

Then for any j ∈ J and any z ∈ B(m)
J (ε, δ),∣∣∣∣∣a�

j z − s j
√

m

b j
− a�

j ν
(m)
J (2ε) − s j

√
m

b j

∣∣∣∣∣
=

∣∣∣∣∣a�
j

(
z − ν

(m)
J (2ε)

)
b j

∣∣∣∣∣ ≤
d∑

i=1

∣∣∣∣∣ [a j ]i · [
z − ν

(m)
J (2ε)

]
i

b j

∣∣∣∣∣ ≤ dāδ

b
¯

= δ′

and hence ∣∣∣∣∣�
(

a�
j z − s j

√
m

b j

)
− �

(
a�

j ν
(m)
J (2ε) − s j

√
m

b j

)∣∣∣∣∣ ≤ ερ.
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So

�

(
a�

j z − s j
√

m

b j

)
≥ �

(
a�

j ν
(m)
J (2ε) − s j

√
m

b j

)
− ερ

≥ (1 + 2ε)ρ − ερ = (1 + ε)ρ,

which completes the proof. �

We will also need the following convergence property:

LEMMA 3.10. A sequence of events {Am}∞m=1 and a sequence of positive integers nm

with limm→∞nm = ∞ are given. Suppose that, given Am, the X (m)
k , k = 1, . . . , nm, are

conditionally independent random variables of conditional mean 0 for which

lim sup
m→∞

1
(nm)2

nm∑
k=1

Var
(
X(m)

k

∣∣ Am
) = 0.

Set

Sm = 1
nm

nm∑
k=1

X(m)
k .

Then for any ε > 0,

lim
m→∞ P( |Sm| > ε| Am) = 0.

Note that X (m)
k and X (l)

k (m �= l) may have different distributions.

Proof . By the conditional independence of X (m)
k and the fact that E[Sm | Am] ≡ 0,

Var(Sm | Am) = 1
(nm)2

Var

(
nm∑

k=1

X(m)
k

∣∣∣∣Am

)

= 1
(nm)2

nm∑
k=1

Var
(
X(m)

k

∣∣ Am
) → 0 as m → ∞.

Then using Chebyshev’s inequality, for any ε > 0,

P(|Sm| > ε | Am) ≤ E
[
S2

m

∣∣ Am]

ε2
= Var(Sm | Am)

ε2
→ 0 as m → ∞. �

To apply this lemma to our setting, we center the loss from obligor k by setting

X(m)
k � ck

(
Y(m)

k − p(m)
k (Z)

)
where, as before, p(m)

k (z) = E[Y(m)
k | Z = z]. Let {z(m)} be an arbitrary sequence in Rd . For

each m, the random variables X(m)
k , k ∈ ⋃

j∈J I (m)
j , satisfy the conditions of Lemma 3.10

with Am = {Z = z(m)} and nm = n(m)
J because

� the Y (m)
k ’s are conditionally independent (given Z);

� E[X(m)
k | Z = z(m)] = 0,

� and

lim sup
m→∞

1(
n(m)
J

)2

∑
j∈J

∑
k∈I (m)

j

Var
(
X(m)

k

∣∣ Z = z(m)) ≤ lim sup
m→∞

1

n(m)
J

c̄2 = 0
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since

Var
(
X(m)

k

∣∣ Z = z(m)) ≤ 1
4

c2
k ≤ c̄2.

If we define

S(m)
J � 1

n(m)
J

∑
j∈J

∑
k∈I (m)

j

X(m)
k

= 1

n(m)
J

∑
j∈J

∑
k∈I (m)

j

ck
(
Y(m)

k − p(m)
k (Z)

)
,

then Lemma 3.10 implies that for any ε > 0,

lim
m→∞ P

(∣∣S(m)
J

∣∣ ≤ ε
∣∣ Z = z(m)) = 1.(3.16)

Now fix an arbitrary bB ∈ [0, δe]. The set B(m)
J (ε, δ) varies according to m but

writing B(m)
J (ε, δ) = ν

(m)
J (2ε) + [0, δe] enables us to fix elements relatively within B(m)

J (ε, δ).

Set z(m)
B = ν

(m)
J (2ε) + bB. Then

P

(
S(m)
J > − ε

n(m)
J

x(m)
J

∣∣∣∣∣ Z = z(m)
B

)

= P


 L(m)

J −
∑
j∈J

∑
k∈I (m)

j

ck p(m)
k (Z) > −εx(m)

J

∣∣∣∣∣∣∣ Z = z(m)
B




= P
(
L(m)
J > E

[
L(m)
J

∣∣ Z
] − εx(m)

J
∣∣ Z = z(m)

B

)
≤ P

(
L(m)
J > x(m)

J
∣∣ Z = z(m)

B

)
because (3.15) and Lemma 3.9 imply that

E
[
L(m)
J

∣∣ Z
] − εx(m)

J ≥ x(m)
J on

{
Z ∈ B(m)

J (ε, δ)
}
.

So

P
(
L(m)
J > x(m)

J
∣∣ Z = z(m)

B

)
≥ P

(
S(m)
J > − ε

n(m)
J

x(m)
J

∣∣∣∣∣ Z = z(m)
B

)

≥ P
(

S(m)
J > −1

2
εC∗

∣∣∣∣ Z = z(m)
B

)
for all sufficiently large m

≥ P
(∣∣S(m)

J
∣∣ <

1
2
εC∗

∣∣∣∣ Z = z(m)
B

)

→ 1 by (3.16)(3.17)

where

C∗ = lim
m→∞

1

n(m)
J

x(m)
J =

ρ
∑
j∈J

Cj

∑
j∈J

r j
> 0.
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By the dominated convergence theorem,

lim
m→∞

∫
b∈[0,δe]

P
(
L(m)
J > x(m)

J
∣∣ Z = ν

(m)
J (2ε) + b

)
db

=
∫

b∈[0,δe]
lim

m→∞ P
(
L(m)
J > x(m)

J
∣∣ Z = ν

(m)
J (2ε) + b

)
db

=
∫

b∈[0,δe]
1 db by (3.17)

= δd .(3.18)

For 1 ≤ i ≤ d, set

ν
(m)
i = max

{∣∣[ν(m)
J (2ε)

]
i

∣∣, ∣∣[ν(m)
J (2ε)

]
i + δ

∣∣}.
The standard normal probability density function φ has the property that for any con-
stants −∞ < α < β < ∞,

min
α≤x≤β

φ(x) = φ(max{|α|, |β|}).(3.19)

Thus,

P
(
L(m)
J > x(m)

J
)

≥ P
(
L(m)
J > x(m)

J , Z ∈ B(m)
J (ε, δ)

)
=

∫
b∈[0,δe]

P
(
L(m)
J > x(m)

J
∣∣ Z = ν

(m)
J (2ε) + b

) d∏
i=1

φ
([

ν
(m)
J (2ε)

]
i + bi

)
db

≥
∫

b∈[0,δe]
P
(
L(m)
J > x(m)

J
∣∣ Z = ν

(m)
J (2ε) + b

)
db ×

d∏
i=1

φ
(
ν

(m)
i

)
,(3.20)

using (3.19) for the last inequality.
To analyze the last factor in (3.20), we recall the definition of H(m)

j (ε) and find that

lim
m→∞

1√
m

ν
(m)
J (2ε)

= lim
m→∞ argmin

{
‖z‖ : a�

j z ≥ b j�
−1((1 + 2ε)ρ)√

m
+ s j for all j ∈ J

}
by (3.2)

= lim
m→∞ argmin

{‖z‖ : a�
j z ≥ s j for all j ∈ J

}
by Lemma 3.2

= γJ . by (2.3)

This implies

lim
m→∞

1√
m

ν
(m)
i = lim

m→∞ max
{

1√
m

∣∣[ν(m)
J (2ε)

]
i

∣∣, 1√
m

∣∣[ν(m)
J (2ε)

]
i + δ

∣∣}

= lim
m→∞

1√
m

∣∣[ν(m)
J (2ε)

]
i

∣∣ = |[γJ ]i |,

which in turn implies

lim
m→∞

1
m

log

(
d∏

i=1

φ
(
ν

(m)
i

)) = −1
2
‖γJ ‖2.(3.21)
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So,

lim inf
m→∞

1
m

log P
(
L(m)
J > x(m)

J
)

≥ lim inf
m→∞

1
m

log

(∫
b∈[0,δe]

P
(
L(m)
J > x(m)

J
∣∣ Z = ν

(m)
J (2ε) + b

)
db ×

d∏
i=1

φ
(
ν

(m)
i

))
by (3.20)

≥ lim inf
m→∞

1
m

log
(∫

b∈[0,δe]
P
(
L(m)
J > x(m)

J
∣∣ Z = ν

(m)
J (2ε) + b

)
db

)

+ lim inf
m→∞

1
m

log

(
d∏

i=1

φ
(
ν

(m)
i

))

= lim
m→∞

1
m

log(δd ) − 1
2
‖γJ ‖2 by (3.18) and (3.21)

= −1
2
‖γJ ‖2.

We summarize the result as the following theorem.

THEOREM 3.2. If the assumptions M1 and M2 are satisfied and 0 < ρ < 1, then for
any J satisfying GJ �= ∅,

lim inf
m→∞

1
m

log P
(
L(m)
J > x(m)

J
) ≥ −1

2
‖γJ ‖2.

Note that γJ does not depend on ρ.

3.2.2. A Lower Bound for the Full Portfolio. We now build on the lower bound for the
partial portfolio to get a lower bound on the full portfolio. Consider J∗ ∈ Sq satisfying

γJ∗ = γ∗,(3.22)

with γ∗ as defined in (2.4). Because the loss in the full portfolio is at least as large as that
in any partial portfolio, we have

P(Lm > xm) ≥ P

( ∑
j∈J∗

∑
k∈I (m)

j

ckY(m)
k > xm

)
(3.23)

with, as before, xm = q
∑m

k=1 ck.
By the restriction on q, qC <

∑
j∈J∗ Cj and there exists a δ > 0 such that (1 + δ)qC <∑

j∈J∗ Cj . Define

ρ = (1 + δ)qC∑
j∈J∗

Cj

which is less than 1. If we use this new threshold ratio, then the partial portfolio loss and
partial threshold for J∗ are

L(m)
J∗ =

∑
j∈J∗

∑
k∈I (m)

j

ckY(m)
k and x(m)

J∗ = ρ
∑
j∈J∗

∑
k∈I (m)

j

ck.

LEMMA 3.11. There exists an M such that for all m >M,{
L(m)
J∗ > x(m)

J∗

} ⊂ {
L(m)
J∗ > xm

}
.
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Proof . Because

lim
m→∞

1
m

x(m)
J∗ = (1 + δ)qC = (1 + δ) lim

m→∞
1
m

xm,

if we set x∗ = (1 + δ
2 )qC, then there exist M1 and M2 such that

1
m

x(m)
J∗ > x∗ for all m > M1 since x∗ < lim

m→∞
1
m

x(m)
J∗

and
1
m

xm < x∗ for all m > M2 since x∗ > lim
m→∞

1
m

xm.

Take M = max{M1, M2}. Then m >M implies x(m)
J∗ > xm and hence{

L(m)
J∗ > x(m)

J∗

} ⊂ {
L(m)
J∗ > xm

}
. �

Now 0 < ρ < 1 and GJ∗ �= ∅ from J∗ ∈ Sq satisfies the conditions of Theorem 3.2 and
we get

lim inf
m→∞

1
m

log P
(
L(m)
J∗ > xm

) ≥ lim inf
m→∞

1
m

log P
(
L(m)
J∗ > x(m)

J∗

)
by Lemma 3.11

≥ −1
2
‖γJ∗‖2 by Theorem 3.2

= −1
2
‖γ∗‖2 by (3.22).

Combining this with (3.23), we finally get the asymptotic lower bound for the full
portfolio.

THEOREM 3.3. If the assumptions M1 and M2 are satisfied and Sq �= ∅, then

lim inf
m→∞

1
m

log P(Lm > xm) ≥ −1
2
‖γ∗‖2.

3.3. Proof of Theorem 2.1

We can conclude the proof of Theorem 2.1.

Proof . If Sq �= ∅, then combining Theorems 3.1 and 3.3 gives

−1
2
‖γ∗‖2 ≤ lim inf

m→∞
1
m

log P(Lm > xm), by Theorem 3.3

≤ lim sup
m→∞

1
m

log P(Lm > xm)

≤ −1
2
‖γ∗‖2, by Theorem 3.1.

If Sq = ∅, then by Theorem 3.1,

lim
m→∞

1
m

log P(Lm > xm) ≤ lim sup
m→∞

1
m

log P(Lm > xm)

≤ −1
2
‖γ∗‖2 = −∞. �
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4. ANALYSIS OF LARGE LOSS THRESHOLD REGIME

Recall that, in this regime, we are assuming the conditions M1 and M3 in Section 2. The
analysis in this section is quite parallel to small default probability regime and we omit
some of it which can be deduced easily from the counterparts in Section 3.

Let us define

G(m,ε)
j �

{
z ∈ Rd : a�

j z ≥ sb j (1 − εm)
√

log m − �−1( p̄)
}

for j = 1, . . . , t

=
{

z ∈ Rd : �

(
a�

j z + �−1( p̄)

b j

)
≥ �((1 − εm)s

√
log m)

}

where εm = 1√
log m

. We also set

G(m,ε) �
t⋂

j=1

G(m,ε)
j .

Note that as we mentioned in Section 2.1, these sets may be empty because of the negative
factor-loading components. The Corollary 3.1 shows that G �= ∅ is equivalent to G(m,ε) �= ∅
for all m. Now we define µ(m,ε) be the unique solution of the following linearly constrained
problem:

µ(m,ε) � argmin
{‖z‖ : z ∈ G(m,ε)}.(4.1)

Furthermore, with
√

log m and µ(m,ε) instead of
√

m and µ
(m,ε)
J , the same arguments

as those used for (3.3) also show that the limit of 1√
log m

µ(m,ε) exists and coincide by (3.2)

and Lemma 3.2. Hence we have

γ = lim
m→∞

1√
log m

µ(m,ε).(4.2)

4.1. Upper Bound Computation

Each Uk is [u
¯
, 1]-valued. Denote the cumulant generating function of Uk of type j

(whose mean uk = u∗
j ) by

� j (λ) � log E[eλUk ].(4.3)

�j(·) is twice continuously differentiable on R because Uk is bounded. (See e.g., pp. 72–73
of Durrett (1996). Actually �j(·) is an analytic function.) � j (0) = 0, �′

j (0) = E[Uk] =
uk = u∗

j > 0.
Let us define a sequence of changes of measure using two likelihood ratios. The first

one is a likelihood ratio of d-dimensional standard normal distribution and N(µ(m,ε), Id ).
This ratio is given explicitly by (M(m,ε)

Z )−1 where

M (m,ε)
Z �

{
eµ(m,ε)�Z− 1

2 µ(m,ε)�µ(m,ε)
if G �= ∅

1 if G = ∅.

The second one is given by

e−θm(Z)Lm+mψm(θm(Z),Z)

where θm(Z) is given by (3.7) and the conditional cumulant generating function divided
by m is given by
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ψm(θ, z) = 1
m

log E
[
eθ Lm

∣∣ Z = z
]

= 1
m

m∑
k=1

log E
[
eθlkUkYk

∣∣ Z = z
]

by conditional independence

= 1
m

m∑
k=1

log E
[
E
[
eθlkUkYk

∣∣ Uk, Z = z
] ∣∣ Z = z

]

= 1
m

m∑
k=1

log E
[
1 + pk(z)(eθlkUk − 1)

∣∣ Z = z
]

= 1
m

m∑
k=1

log
(
1 + pk(z)

(
E
[
eθlkUk

∣∣ Z = z
] − 1

))

= 1
m

m∑
k=1

log
(
1 + pk(z)

(
E
[
eθlkUk

] − 1
))

by independence of Uk and Z

= 1
m

t∑
j=1

∑
k∈I (m)

j

log
(
1 + pk(z)

(
e� j (θlk) − 1

))
.(4.4)

That is, given Z, we tilt Lm exponentially. We can decompose this change of measure
into the one for Yk given Z and another one for Uk given Z and Yk. But the aggregated
representation is sufficient for this paper. The final combined likelihood ratios are given
by

dP
dPm

= e−θm(Z)Lm+mψm(θm(Z),Z)(M (m,ε)
Z

)−1
.

From now on, Em denotes the expectation under the probability measure Pm, under which
Z is distributed by N(µ(m,ε), Id ), Yk is a Bernoulli random variable with the exponentially
tilted conditional default probability, and Uk is also twisted exponentially.

LEMMA 4.1. If G �= ∅, then

min
{
µ(m,ε)�z : z ∈ G(m,ε)} = ‖µ(m,ε)‖2(4.5)

Proof . The proof steps are exactly parallel to those of Lemma 3.3. �

Using Lemma 4.1, we prove the following lemma.

LEMMA 4.2. If G �= ∅, then

lim sup
m→∞

1
log m

log Em
[(

M (m,ε)
Z

)−1
1G(m,ε) (Z)

] ≤ −1
2
‖γ‖2.
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Proof .

lim sup
m→∞

1
log m

log Em
[
e−µ(m,ε)�Z+ 1

2 µ(m,ε)�µ(m,ε)
1G(m,ε) (Z)

]
≤ lim

m→∞
1

2 log m
‖µ(m,ε)‖2 + lim sup

m→∞
1

log m
log Em

[
e−µ(m,ε)�Z1G(m,ε) (Z)

]
≤ 1

2
‖γ‖2 + lim sup

m→∞
1

log m
log Em

[
e−‖µ(m,ε)‖2

1G(m,ε) (Z)
]

by Lemma 4.1 and (4.2)

= 1
2
‖γ‖2 + lim sup

m→∞
1

log m
log e−‖µ(m,ε)‖2

Pm
(
G(m,ε))

= 1
2
‖γ‖2 − lim

m→∞
1

log m

∥∥µ(m,ε)
∥∥2 + lim sup

m→∞
1

log m
log Pm

(
G(m,ε))

≤ −1
2
‖γ‖2. �

LEMMA 4.3. If �j(·) is given by (4.3), then there exists a positive constant D such that

log
(
1 + α

(
e� j (θ) − 1

)) ≤ αukθ + Dθ2

for all θ ∈ [0, 1] and α ∈ [0, 1].

Proof . Set f (θ ; α) = log(1 + α(e� j (θ ) − 1)) − αukθ. f (0; α) = 0. We compute Tay-
lor’s expansion of θ at 0.

f ′(θ ; α) = α�′
j (θ )e� j (θ )

1 + α
(
e� j (θ) − 1

) − αuk

and f ′(0; α) = 0. For θ ∈ [0, 1],

f (θ ; α) = f (0; α) + f ′(0; α)θ + 1
2

f (2)(tθ ; α)θ2

= 1
2

f (2)(tθ ; α)θ2

≤ Dθ2

where tθ ∈ [0, θ ] and

D � 1
2

sup{| f (2)(t; α)| : t ∈ [0, 1], α ∈ [0, 1]}.

D < ∞ since f (2)(t; α) is continuous on [0, 1] × [0, 1]. f (θ ; α) ≤ Dθ2 shows the
inequality. �

LEMMA 4.4. For sufficiently large m,

qm − �((1 − εm)s
√

log m) ≥ m−(1−εm)2s2/2

√
2πs

√
log m

(
1
2

− m−s2εm(2−εm)/2
)

.

Proof . Using the inequalities

x
x2 + 1

e−x2/2

√
2π

≤ 1 − �(x) ≤ 1
x

e−x2/2

√
2π

,(4.6)
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qm − �((1 − εm)s
√

log m)

= �(s
√

log m) − �((1 − εm)s
√

log m)

≥ 1√
2π

(
(1 − εm)s

√
log m

((1 − εm)s
√

log m)2 + 1
e−((1−εm)s

√
log m)2/2 − 1

s
√

log m
e−(s

√
log m)2/2

)

≥ 1√
2π

(
1

2s
√

log m
e−(1−εm)2s2 log m/2 − 1

s
√

log m
e−s2 log m/2

)

= 1√
2πs

√
log m

(
1
2

m−(1−εm)2s2/2 − m−s2/2
)

= m−(1−εm)2s2/2

√
2πs

√
log m

(
1
2

− m−s2εm(2−εm)/2
)

. �

Now we consider a covering
⋃t

j=1(G(m,ε)
j )c of (G(m,ε))c. It is clear that

1(G(m,ε))c ≤
t∑

j=1

1(G(m,ε)
j )c .(4.7)

We set

θm � m−1+ s2
2 .

Note that limm→∞ θm = 0. From now on, {E′
m}∞m=1 are expectations under an arbitrary

sequence of probability measures {P′
m}∞m=1 unless they are specified otherwise.

Now observe that for z ∈ (G(m,ε)
j )c, with qε

m � �((1 − εm)s
√

log m),

−θmqm

∑
k∈I (m)

j

lkuk +
∑

k∈I (m)
j

log
(
1 + pk(z)

(
e� j (θmlk) − 1

))

≤
∑

k∈I (m)
j

(
−θmqmlkuk + log

(
1 + �

(
a�

j z + �−1( p̄)

b j

) (
e� j (θmlk) − 1

)))
by pk ≤ p̄

≤
∑

k∈I (m)
j

( −θmqmlkuk + log
(
1 + qε

m

(
e� j (θmlk) − 1

)))
by z ∈ (

G(m,ε)
j

)c

≤
∑

k∈I (m)
j

( −θmqmlkuk + qε
muklkθm + Dl

2
θ2

m

)
for large m by Lemma 4.3

= −θmn(m)
j


(

qm − qε
m

) 1

n(m)
j

∑
k∈I (m)

j

lkuk − Dl
2
θm




≤ −θmn(m)
j

((
qm − qε

m

)
l
¯
· u

¯
− Dl

2
θm

)
(4.8)

where the last inequality follows because qm − qε
m > 0, lk ≥ l

¯
, and Uk ≥ u

¯
.

Then for any sequence of nonnegative random variables {Ym}∞m=1 with

ym � 1
log m

log E′
m[Ym] satisfying lim sup

m→∞
ym < ∞,(4.9)
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we have, with βε
m � 1

2 − m−s2εm(2−εm)/2,

1
log m

log E′
m

[
Ym · e

−θmqm
∑

k∈I(m)
j

lkuk+
∑

k∈I(m)
j

log(1+pk(Z)(e� j (θmlk)−1))
1(G(m,ε)

j )c (Z)
]

≤ 1
log m

log E′
m

[
Ym · e−θmn(m)

j ((qm−qε
m)l

¯
·u
¯
−Dl

2
θm)1(G(m,ε)

j )c (Z)
]

by (4.8)

≤ ym + 1
log m

log
(
e−θmn(m)

j ((qm−qε
m)l

¯
·u
¯
−Dl

2
θm))

= ym − θmn(m)
j

log m

((
qm − qε

m

)
l
¯
· u

¯
− Dl

2
θm

)

≤ ym − θmn(m)
j

log m

(
m−(1−εm)2s2/2

√
2πs

√
log m

βε
m · l

¯
· u

¯
− Dl

2
θm

)
by Lemma 4.4

= ym −
(

n(m)
j

m

)
θmm1−(1−εm)2s2/2

log m
√

2πs
√

log m

(
βε

m · l
¯
· u

¯
− Dl

2
θm

√
2πs

√
log m

m−(1−εm)2s2/2

)

= ym −
(

n(m)
j

m

)
mεm(2−εm)s2/2

√
2πs(log m)3/2

(
βε

m · l
¯
· u

¯
− Dl

2
√

2πs
√

log m
m1−s2+εm(2−εm)s2/2

)

→ lim sup
m→∞

ym − r j
∞√
2πs

((
1
2

− 0
)

l
¯
· u

¯
− Dl

2√
2πs · 0

)
= −∞ as m → ∞(4.10)

where the last convergence is understood as a lim sup. Note that

log

(
mεm(2−εm)s2/2

(log m)3/2

)
= s2

2
1√

log m

(
2 − 1√

log m

)
log m − 3

2
log(log m)

= s2

2

(
2 − 1√

log m

) √
log m − 3

2
log(log m)

∼ s2
√

log m − 3
2

log(log m) → ∞,

log
(
m−s2εm(2−εm)/2) = − s2

2
1√

log m

(
2 − 1√

log m

)
log m

= − s2

2

(
2 − 1√

log m

) √
log m → −∞,

and √
log m

m1−s2+εm(2−εm)s2/2
≤

√
log m

m(1−s2)/2
→ 0.
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For each type j and any z ∈ Rd ,

−θmqm

∑
k∈I (m)

j

lkuk +
∑

k∈I (m)
j

log
(
1 + pk(z)

(
e� j (θmlk) − 1

))

≤
∑

k∈I (m)
j

(−θmqmlkuk + ukθmlk + Dl2
kθ

2
m

)
by Lemma 4.3

≤ θm(1 − qm)

( ∑
k∈I (m)

j

lkuk

)
+ n(m)

j Dl
2
θ2

m

≤ θm(1 − qm)n(m)
j l + n(m)

j Dl
2
θ2

m.(4.11)

Define a sequence of nonnegative random variables {Ym}∞m=1 for type j,

Ym �
∏
j ′ �= j

e
−θmqm

∑
k∈I(m)

j ′
lkuk+

∑
k∈I(m)

j ′
log(1+pk(Z)(e� j ′ (θmlk)−1))

.

Then

1
log m

log E′
m[Ym]

≤ 1
log m

log E′
m

[∏
j ′ �= j

eθm(1−qm)n(m)
j ′ l+n(m)

j ′ Dl
2
θ2

m

]
by (4.11)

=
∑
j ′ �= j

n(m)
j ′ l

log m
θm((1 − qm) + Dlθm)

≤ ml
log m

θm((1 − qm) + Dlθm) since
∑
j ′ �= j

n(m)
j ′ ≤ m

≤ l
mθm

log m
1√

2πs
√

log m
e(−s2 log m)/2 + l

2
D

mθ2
m

log m
by (4.6)

≤ l
θmm1−s2/2

√
2πs(log m)3/2

+ l
2
D

mθ2
m

log m

= l
1√

2πs(log m)3/2
+ l

2
D

m−1+s2

log m
� ym → 0.(4.12)

From (4.12), observe that Ym with ym satisfies the condition (4.9) for (4.10) to hold. Hence
for each j,

e−θm xm+mψm(θm,Z)1(G(m,ε)
j )c (Z)

=
t∏

j ′=1

e
−θmqm

∑
k∈I(m)

j ′
lkuk+

∑
k∈I(m)

j ′
log(1+pk(Z)(e� j ′ (θmlk)−1))

1(G(m,ε)
j )c (Z) by (4.4)

= Ym · e
−θmqm

∑
k∈I(m)

j
lkuk+

∑
k∈I(m)

j
log(1+pk(Z)(e� j (θmlk)−1))

1(G(m,ε)
j )c (Z).
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This representation and (4.10) imply

lim sup
m→∞

1
log m

log E′
m

[
e−θm xm+mψm(θm,Z)1(G(m,ε)

j )c (Z)
] = −∞.(4.13)

Then we have the following lemma.

LEMMA 4.5.

lim sup
m→∞

1
log m

log Em
[
e−θm xm+mψm(θm,Z)(M (m,ε)

Z

)−1
1(G(m,ε))c (Z)

] = −∞.

Proof . As in the proof of Lemma 3.7, let us first introduce an intermediate change
of measure:

dP
dP′

m
= e−θm(Z)Lm+mψm(θm(Z),Z)

such that

Em
[(

M (m,ε)
Z

)−1
Y

] = E′
m[Y] for any random variable Y.(4.14)

lim sup
m→∞

1
log m

log Em
[
e−θm xm+mψm(θm,Z)(M (m,ε)

Z

)−1
1(G(m,ε))c (Z)

]

≤ lim sup
m→∞

1
log m

log

(
t∑

j=1

Em[e−θm xm+mψm(θm,Z)(M (m,ε)
Z

)−1
1(G(m,ε)

j )c (Z)
])

by (4.7)

= max
1≤ j≤t

{
lim sup

m→∞
1

log m
log Em

[
e−θm xm+mψm(θm,Z)(M (m,ε)

Z

)−1
1(G(m,ε)

j )c (Z)
]}

by Lemma 3.4

= max
1≤ j≤t

{
lim sup

m→∞
1

log m
log E′

m

[
e−θm xm+mψm(θm,Z)1(G(m,ε)

j )c (Z)
]}

by (4.14)

≤ max
1≤ j≤t

{−∞} by (4.13)

= −∞. �
Note that Lemma 4.5 is still true even if G = ∅. Now we get the following conclusion:

THEOREM 4.1. Suppose the assumptions M1 and M3 hold. Then

lim sup
m→∞

1
log m

log P(Lm > xm) ≤ −1
2
‖γ‖2.

Proof . First consider the case of G �= ∅. Using the definition of θm,

P(Lm > xm)

= Em
[
1{Lm > xm}e−θm(Z)Lm+mψm(θm(Z),Z)(M (m,ε)

Z

)−1]
by the definition of Pm

≤ Em
[
e−θm(Z)xm+mψm(θm(Z),Z)(M (m,ε)

Z

)−1]
dropping the indicator

= Em
[
e−θm(Z)xm+mψm(θm(Z),Z)(M (m,ε)

Z

)−1
1(G(m,ε))c (Z)

]
+ Em

[
e−θm(Z)xm+mψm(θm(Z),Z)(M (m,ε)

Z

)−1
1G(m,ε) (Z)

]
≤ Em

[
e−θm xm+mψm(θm,Z)(M (m,ε)

Z

)−1
1(G(m,ε))c (Z)

]
by definition (3.7)

+ Em
[(

M (m,ε)
Z

)−1
1G(m,ε) (Z)

]
by definition (3.7), because θm(Z) ≥ 0.
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Hence

lim sup
m→∞

1
log m

log P(Lm > xm)

≤ max
{
−∞, −1

2
‖γ‖2

}
by Lemma 4.2 and Lemma 4.5

= −1
2
‖γ‖2.

If G = ∅, then M(m,ε)
Z = 1 and Lemma 4.5 completes the proof. �

4.2. Lower Bound Computation

We start with the homogenization of the default probabilities by replacing them by
lower bound p

¯
. For any conditions on aj and ck,

{Lm > xm} ⊃ {L
¯ m > xm}

where L
¯ m corresponds to the portfolio with uniform default probabilities, p

¯
. So any

lower bounds on the event {L
¯ m > xm} is also valid for {Lm >xm}. Hence from now on

we denote the total default loss corresponding to p
¯

by Lm. Then we compute the lower
bound, which coincides with the upper bound of the previous section. The underlying
idea is very similar to the proof of the small default probability model.

First note that the conditional default probability of the k-th obligor of type j is

pk(z) = P
(
Xk > �−1(1 − p

¯
)
∣∣ Z = z

) = �

(
a�

j z + �−1(p
¯

)

b j

)
.

Define for ξ > 0,

H(m)
j (ξ ) �

{
z ∈ Rd : a�

j z ≥ b j s
√

log m − �−1(p
¯

) + ξsb j
}

for j = 1, . . . , t

= {
z ∈ Rd : a�

j z ≥ b j (1 + ξεm)s
√

log m − �−1(p
¯

)
}

=
{

z ∈ Rd : �

(
a�

j z + �−1(p
¯

)

b j

)
≥ �((1 + ξεm)s

√
log m)

}
(4.15)

where, as before, εm = 1√
log m

. We also define

H(m)(ξ ) �
t⋂

j=1

H(m)
j (ξ ).

Note that G �= ∅ implies the nonemptiness of H(m)(ξ ). We define ν(m)(ξ ) as the unique
solution of

ν(m)(ξ ) � argmin
{‖z‖ : z ∈ H(m)(ξ )

}
.

Now we get a similar result to Lemma 3.9.

LEMMA 4.6. For each ξ > 0, there exists a δ > 0 such that

B(m)(ξ, δ) �
{
z ∈ Rd : ν(m)(2ξ ) ≤ z ≤ ν(m)(2ξ ) + δe

} ⊂ H(m)(ξ ) for all m.
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Proof . Let ā = max{|[a j ]i | : 1 ≤ j ≤ t, 1 ≤ i ≤ d} and b
¯

= min{b1, . . . , bt}. Then the
assumption 0 < ‖aj‖ < 1 implies ā > 0 and b

¯
> 0. Set

δ = ξb
¯
s

dā
.

Then for any z ∈ B(m) (ξ , δ),

a�
j z = a�

j z − a�
j ν(m)(2ξ ) + a�

j ν(m)(2ξ )

≥ −∣∣a�
j z − a�

j ν(m)(2ξ )
∣∣ + b j s

√
log m − �−1(p

¯
) + 2ξsb j

≥ −
d∑

i=1

∣∣[a j ]i · [z − ν(m)(2ξ )]i
∣∣ + b j s

√
log m − �−1(p

¯
) + 2ξsb j

≥ −dāδ + b j s
√

log m − �−1(p
¯

) + 2ξsb j

≥ b j s
√

log m − �−1(p
¯

) + ξsb j + ξs(b j − b
¯
)

≥ b j s
√

log m − �−1(p
¯

) + ξsb j .

So z ∈ H(m)(ξ ). �

By Lemma 4.6, there exists a δ such that B(m)(1, δ) ⊂H(m)(1). Then z ∈ B(m)(1, δ) implies

E[Lm | Z = z] =
m∑

j=1

lkuk�

(
a�

j z + �−1(p
¯

)

b j

)

≥ �((1 + εm)s
√

log m)
m∑

k=1

lkuk.

(4.16)

Now define

X(m)
k � ms2/2

√
log m lk(UkYk − uk pk(Z))(4.17)

where, as before,

pk(z) = E[Yk
∣∣ Z = z] = �

(
a�

j z + �−1(p
¯

)

b j

)
.

Let {z(m)} be an arbitrary sequence in Rd . For each m, by setting Am = {Z = z(m)} and nm =
m, X (m)

k (k = 1, . . . , m) defined by (4.17) satisfies the conditions of Lemma 3.10 because

� the Yk’s are conditionally independent (given Z);
� E[X(m)

k | Z = z(m)] = 0 since Uk is independent of Z and εk,
� and

lim sup
m→∞

1
m2

m∑
k=1

Var
(
X(m)

k

∣∣ Z = z(m)) ≤ lim sup
m→∞

5l
2

4
log m
m1−s2 = 0

since

Var
(
X(m)

k

∣∣ Z = z(m)) ≤ 5
4

l2
kms2

log m.
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Define

Sm � 1
m

m∑
k=1

X(m)
k

= ms2/2
√

log m
m

m∑
k=1

lk(UkYk − uk pk(Z))

= ms2/2
√

log m
m

(Lm − E[Lm | Z]).(4.18)

Lemma 3.10 implies for any ε > 0,

lim
m→∞ P

(|Sm| > ε
∣∣ Z = z(m)) = 0.(4.19)

LEMMA 4.7. For sufficiently large m,

�((1 + εm)s
√

log m) − qm ≥ 1

2
√

2πs
√

log m ms2/2
.

Proof . Using the inequalities (4.6),

�((1 + εm)s
√

log m) − qm

= �((1 + εm)s
√

log m) − �(s
√

log m)

≥ 1√
2π

(
s
√

log m

(s
√

log m)2 + 1
e−(s

√
log m)2/2 − 1

(1 + εm)s
√

log m
e−((1+εm)s

√
log m)2/2

)

≥ 1√
2π

(
1

2s
√

log m
m−s2/2 − 1

s
√

log m
m−(1+εm)2s2/2

)

= m−s2/2

√
2πs

√
log m

(
1
2

− m−εm(2+εm)s2/2
)

∼ m−s2/2

√
2πs

√
log m

(
1
2

)

since

log m−εm(2+εm)s2/2 = − s2√
log m

(1 + εm/2) log m ∼ −s2
√

log m → −∞. �

As before, we fix an arbitrary bB ∈ [0, δe]. The set B(m)(1, δ) varies according to m but
writing B(m)(1, δ) = ν(m)(2) + [0, δe] enables us to fix elements relatively within B(m)(1, δ).
Set z(m)

B = ν(m)(2) + bB. Then on {Z = z(m)
B } for sufficiently large m,
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ms2/2
√

log m
m

(xm − E[Lm | Z])

≤ ms2/2
√

log m
m

(
xm − �((1 + εm)s

√
log m)

m∑
k=1

lkuk

)
by (4.16)

= ms2/2
√

log m(qm − �((1 + εm)s
√

log m))
1
m

m∑
k=1

lkuk

≤ −ms2/2
√

log m

(
1

2
√

2πs
√

log m ms2/2

)
1
m

m∑
k=1

lkuk by Lemma 4.7

= −
(

1

2
√

2πs

)
1
m

m∑
k=1

lkuk(4.20)

→ −1

2
√

2πs
C > 0 as m → ∞(4.21)

where C � limm→∞ 1
m

∑m
k=1 lkuk = limm→∞

∑t
j=1 u∗

j · 1
m

∑
k∈I (m)

j
lk and the assumption

M3-3 assures us of its existence. Note that for ε satisfying 0 < ε < 1
2
√

2πs
C, there ex-

ists an M such that m > M implies

(
1

2
√

2πs

)
1
m

m∑
k=1

lkuk > ε by (4.21).(4.22)

Now using these results, for large m and any ε satisfying 0 < ε < 1
2
√

2πs
C, we get

P
(
Lm > xm

∣∣ Z = z(m)
B

)
= P

(
Lm − E[Lm | Z] > xm − E[Lm | Z]

∣∣ Z = z(m)
B

)

= P

(
Sm >

ms2/2
√

log m
m

(xm − E[Lm | Z])

∣∣∣∣∣ Z = z(m)
B

)
by (4.18)

≥ P

(
Sm > −

(
1

2
√

2πs

)
1
m

m∑
k=1

lkuk

∣∣∣∣∣ Z = z(m)
B

)
by (4.20)

≥ P

(
|Sm| ≤ ε,

(
1

2
√

2πs

)
1
m

m∑
k=1

lkuk > ε

∣∣∣∣∣ Z = z(m)
B

)

= P
(|Sm| ≤ ε

∣∣ Z = z(m)
B

)
by (4.22)

→ 1 as m → ∞ by (4.19).

So we get

lim
m→∞ P

(
Lm > xm

∣∣ Z = z(m)
B

) = 1(4.23)
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and by the dominating convergence theorem and (4.23) as in (3.18),

lim
m→∞

∫
b∈[0,δe]

P
(
Lm > xm

∣∣ Z = ν(m)(2) + b
)

db = δd .(4.24)

For 1 ≤ i ≤ d, set

ν
(m)
i = max

{∣∣[ν(m)(2)
]

i

∣∣, ∣∣[ν(m)(2)
]

i + δ
∣∣}.

Then, replacing L(m)
J , x(m)

J , ν
(m)
J (2ε), and B(m)

J (ε, δ) by Lm, xm, ν(m)(2), and B(m) (1, δ),
respectively, and using (3.19) as in (3.20), we get

P(Lm > xm) ≥
∫

b∈[0,δe]
P( Lm > xm| Z = ν(m)(2)) + b) db ×

d∏
i=1

φ
(
ν

(m)
i

)
.(4.25)

Recalling the definition (4.15) of H(m)
j (ξ ) and modifying steps for (3.21), we get

lim
m→∞

1
log m

log

(
d∏

i=1

φ
(
ν

(m)
i

)) = −1
2
‖γ‖2.(4.26)

Now, in the derivation steps of Theorem 3.2 in Section 3.2.1, we use (4.24), (4.25), and
(4.26) by replacing 1

m , L(m)
J , x(m)

J , and ν
(m)
J (2ε) by 1

log m , Lm, xm, and ν(m)(2), respectively.
Then, we get the following asymptotic lower bound.

THEOREM 4.2. If the assumptions M1 and M3 are satisfied and G �= ∅, then

lim inf
m→∞

1
log m

P(Lm > xm) ≥ −1
2
‖γ‖2.

4.3. Proof of Theorem 2.2

From Theorems 4.1 and 4.2, the proof is almost identical to that of Theorem 2.1 in
Section 3.3.

5. CONCLUDING REMARKS

We have proved logarithmic limits for the loss distribution in the widely used Gaussian
copula model of portfolio credit risk. The two main results of the paper consider two
limiting regimes, one based on increasingly high loss thresholds (which is relevant to value-
at-risk measured at high confidence levels), and one based on small loss probabilities. We
find an interesting qualitative distinction between the two cases in that the rare-default
limit yields an exponential decrease in the tail of the loss distribution whereas the large-
threshold regime yields a power law decay.

We conclude with some observations on this distinction and possible extensions. A
property of the Gaussian copula is that it produces zero extreme tail dependence in the
absence of perfect correlation (see, e.g., Embrechts et al. 2001). This means that random
variables linked through a Gaussian copula become independent in the extremes. In the
setting of small default probabilities, defaults require extreme values of the underlying
factors, so the absence of extreme tail dependence in the Gaussian copula suggests that
defaults become nearly independent as default probabilities decrease; and when obligors
are independent, the tail of the loss distribution decays exponentially. In contrast, in the
large-threshold limit with moderate default probabilities the dependence introduced by
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the Gaussian copula has a dominant effect and produces a heavier tail. This suggests a
qualitative difference in the dependence induced by the Gaussian copula for portfolios of
high-quality and low-quality credits. These observations further suggest that we should
not expect to see the same distinction—exponential versus power law decay—in a model
with, e.g., a t-copula, because the multivariate t distribution has positive extreme tail
dependence.

The market prices of synthetic CDOs tied to indices are often quoted through a Gaus-
sian copula model using “implied correlations.” These are skewed in the sense that more
senior tranches—which are sensitive to defaults of the most highly rated underlying
credits—have higher implied correlations. Higher implied correlations may, in part, off-
set the diminished dependence in the Gaussian copula at low default probabilities.

A question not addressed in this paper is the decay rate for the case ‖γ ‖ = ∞. It may
be possible to introduce a faster-growing normalizing function of m to achieve a finite
limit, but this remains an open problem. As with any asymptotic result, there is also the
question of whether the asymptotics are visible in practice. In Glasserman et al. (2005),
we apply the results developed here to design efficient rare-event simulation techniques.
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