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Abstract

This paper develops rare event simulation methods for the estimation of portfolio credit
risk — the risk of losses to a portfolio resulting from defaults of assets in the portfolio. Portfolio
credit risk is measured through probabilities of large losses, which are typically due to defaults
of many obligors (sources of credit risk) to which a portfolio is exposed. An essential element
of a portfolio view of credit risk is a model of dependence between these sources of credit
risk: large losses occur rarely and are most likely to result from systematic risk factors that
affect multiple obligors. As a consequence, estimating portfolio credit risk poses a challenge
both because of the rare-event property of large losses and the dependence between defaults.
To address this problem, we develop an importance sampling technique within the widely
used Gaussian copula model of dependence. We focus on difficulties arising in multifactor
models — that is, models in which multiple factors may be common to multiple obligors,
resulting in complex dependence between defaults. Our importance sampling procedure shifts
the mean of the common factor to increase the frequency of large losses. In multifactor models,
different combinations of factor outcomes and defaults can produce large losses, so our method
combines multiple importance sampling distributions, each associated with a shift in the mean
of common factors. We characterize “optimal” mean shifts. Finding these points is both
a combinatorial problem and a convex optimization problem, so we address computational
aspects of this step as well. We establish asymptotic optimality results for our method, showing
that — unlike standard simulation — it remains efficient as the event of interest becomes rarer.

1 Introduction

The risk in a portfolio depends not only on the risk in each element of the portfolio, but also
on the dependence between these sources of risk. The types of dependence mechanisms used in
credit risk modeling often lead to models for which Monte Carlo methods are the only practical
computational tool. However, estimating risk usually involves estimating small probabilities of
rare but significant events, and crude Monte Carlo methods are generally inefficient in estimating
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such probabilities. Efficient simulation then requires variance reduction techniques specifically
designed for rare-event simulation.

Importance sampling (IS) is commonly used to increase efficiency in rare-event simulation. It
involves changing the probability distributions used to simulate a model in order to increase the
frequency with which the event of interest is observed. To correct for the change in distribution,
each replication is weighted by a likelihood ratio. The critical step in developing an IS method
is finding an effective change of distribution. Indeed, a poor choice of distribution — even one
that increases the probability of the rare event — may increase variance and may even produce
infinite variance. Moreover, the poor performance of an IS method may be hard to detect from a
small number of samples.

We address rare-event simulation problems within the Gaussian copula model of portfolio
credit risk. This model originated with J.P. Morgan’s CreditMetrics system (Gupton, Finger, and
Bhatia [9]) and is now widely used in practice. In this model, the default of an obligor is triggered
when an associated latent variable exceeds a pre-specified threshold. The dependence across
obligors is captured by the correlations between the latent variables, which have a multivariate
normal distribution.

Applications of IS in this setting include Avranitis and Gregory [2], Kalkbrener, Lotter, and
Overbeck [11], Merino and Nyfeler [13], and Morokoff [14], but these are largely heuristic in the
sense that they provide no theoretical support. Glasserman and Li [7] develop and analyze a
two-step IS method for this problem that utilizes the conditional independence of defaults in the
Gaussian copula model. The first step samples common factors driving the latent variables from
a multivariate normal distribution with a shifted mean. Conditional on the common factors, the
individual obligors become independent and the second step increases their default probabilities.
Glasserman and Li [7] establish asymptotic optimality results for this method when applied to
single-factor homogeneous portfolios; i.e., models in which all obligors are identical and in which
they become independent conditional on a single underlying normal random variable. In this
context, the new factor mean used for IS is a scalar.

In a single-factor homogeneous model, there is a single direction in which shifting the un-
derlying factor increases default probabilities, so the only question is how far to shift the mean.
Glasserman and Li [7] select the mean by maximizing a bound on the product of the conditional
loss distribution and the density of the common factor. This step relies on the logconcavity of
the bound, a property that does not extend widely to more general models. Moreover, in a multi-
factor heterogeneous model there may be many combinations and directions of factor shifts that
increase conditional default probabilities, and this potentially necessitates the use of a mixture of
IS distributions, each associated with a different shift of mean.

In this paper, we therefore develop an alternative approach for selecting shifts in factor means,
building on insights gleaned from the large deviations analysis in Glasserman, Kang, and Sha-
habuddin [6] (henceforth, GKS). When applied to a single-factor homogeneous model, this method
is somewhat coarser than that in Glasserman and Li [7], though asymptotically equivalent. How-
ever, this method lends itself much more readily to the selection of multiple mean shifts for

2



multifactor heterogeneous models. The new method divides the space of factor outcomes into
sets that lead to the default of different combinations of obligors; the possible mean shifts are
the minimal points in these sets. Each of these minimal points corresponds to the “most likely”
factor outcome leading to the default of a particular set of obligors. Finding the appropriate
sets of factor outcomes is a combinatorial problem and finding each minimal point is a quadratic
programming problem. We therefore investigate methods to accelerate implementation.

From the general perspective of rare-event simulation, the main contribution of this paper lies
in the handling of complex dependence between defaults. Moreover, the techniques we use for
characterizing, calculating and reducing the large number of potential mean shifts is potentially
applicable to other applications.

The rest of this paper is organized as follows. Section 2 describes the portfolio credit risk
problem and introduces our IS procedure. Section 3 analyzes the IS algorithm in two limiting
regimes and establishes asymptotic optimality; most proofs are deferred to an online appendix
[5]. Section 4 gives simple examples to motivate the use of a mixture of IS distributions — i.e.,
multiple mean shifts. Section 5 analyzes two optimization problems associated with the choice of
IS distribution, where we also deferred some proofs to the online appendix. Section 6 presents
numerical results.

2 Portfolio Credit Risk and Importance Sampling

2.1 The Problem

We consider the distribution of losses from default over a fixed horizon. We are interested in
the estimation of the probability that the credit loss of a portfolio exceeds a given threshold.
The default of each obligor is triggered if a latent variable associated with the obligor exceeds
a threshold determined from its marginal default probability. The latent variables are linear
combinations of factor variables representing idiosyncratic risk and common risks of all obligors.
We use the following notation:

m = the number of obligors to which the portfolio is exposed;

Yk = default indicator (= 1 for default, = 0 otherwise) for the k-th obligor;

pk = marginal probability that the k-th obligor defaults;

`k = loss resulting from default of the k-th obligor;

Lm = `1Y1 + · · ·+ `mYm = total loss from defaults.

We are interested in the estimation of P(Lm > x) for a given threshold x when the event {Lm > x}
is rare. (For easy reference, we refer to the event {Lm > x} as a large loss event.) The loss
amount due to a default of the k-th obligor, `k, can be stochastic. We assume that the `k’s are
bounded by a common upper bound and, for stochastic `k’s, that they are independent of all other
random variables. We denote E[`k] = ck. Dependence among the default indicators Yk is given
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by a multifactor Gaussian copula model with a finite number of types. In the Gaussian copula,
the latent variables that trigger default have a multivariate normal distribution. Thus, we set
Yk = 1{Xk > Φ−1(1−pk)}, with Φ the cumulative normal distribution and X1, X2, . . . correlated
standard normal random variables; this makes P(Yk = 1) = pk. Correlations between the latent
variables X1, X2, . . . determine the dependence among the default indicators. In practice, these
correlations are often derived from correlations in asset values or equity returns.

By types, we mean groups of obligors that share a dependence structure, in a sense made
precise in M1:

M1 There are d factors and t types of obligors. {I(m)
1 , . . . , I(m)

t } is a partition of the set of
obligors {1, . . . ,m} into types. If k ∈ I(m)

j , then the k-th obligor is of type j and its latent
variable is given by

Xk = a>j Z + bj εk

where aj ∈ Rd with 0 < ‖aj‖ < 1, Z is a d dimensional standard normal random vector, bj =√
1− a>j aj and εk are independent standard normal random variables. Here, Z represents

a vector of systematic risks (i.e., common factors) and εk represents an idiosyncratic risk of
the k-th obligor. The common factors may be correlated, but we can transform them into
independent random variables by a factorization of their covariance matrix. aj is the vector
of factor loading coefficients of obligors belonging to type j. Let n

(m)
j = |I(m)

j | denote the
number of obligors of type j.

This is the Gaussian copula model of Gupton, Finger, and Bhatia [9] with a factor structure
in the correlation of the latent variables, and with the added condition that the obligors can be
grouped into types. We think of the number of types as substantially smaller than the number
of obligors. (Later, in fact, we will let the number of obligors increase while the number of types
remains fixed.) Depending on how the factor loading vectors are determined, the assumption
that multiple obligors share the same type may involve an approximation and even a restriction.
Clustering techniques may be useful in selecting factor loading vectors for a finite number of types.

2.2 Importance Sampling

IS is a standard approach to variance reduction in Monte Carlo methods. Suppose we have to
estimate Ef [h(W )] where f is the density function of a random variable W and h is a measurable
function with respect to the underlying probability space. Let g be another density function such
that g(w) > 0 if f(w) > 0. Then the expectation can be rewritten as

Ef [h(W )] =
∫

h(w)f(w)dw =
∫

h(w)
f(w)
g(w)

g(w)dw = Eg

[
h(W )

f(W )
g(W )

]
.

One can then sample W from g and use h(W )f(W )/g(W ) as an unbiased estimator of the original
expectation. The objective is to choose g so that the variance of the new estimator is much smaller
than that of the original estimator. We consider an IS method that is effective for the estimation
of default probabilities when defaults are rare. One way is to develop an asymptotically optimal
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method to simulate a sequence of probabilities P(Lm > xm) in which parameters change in such
a manner that the default becomes rare as m approaches infinity. (More discussion of asymptotic
optimality is given after Theorem 2.) Then we apply this asymptotically optimal method to cases
of finite m and expect a large reduction of variance.

We exploit the conditional independence property by adopting a two-step IS. Glasserman and
Li [7] show that IS applied only to the idiosyncratic risk, εk, of each obligor is not sufficient to
get an asymptotic optimality unless the dependence among obligors is sufficiently weak. So they
suggest a two-step IS method combining a change of measure on the common factors, Z, and
conditional on Z, IS on the default probabilities.

2.2.1 Importance Sampling Conditional on Common Factors

Once we condition on Z, the loss Lm becomes a sum of independent random variables for which
there is a standard way of finding an asymptotically optimal importance sampling procedure for
estimating the chance of the rare event {Lm > x}. The development below is similar to the one
in Glasserman and Li [7] except that we allow `k to be random instead of constant. Define

Λk(λ) = log E
[
eλ`k

]
.

The change of measure for the second step of the IS is defined by a conditional change of measure
given Z. Conditional on Z, the default events are independent Bernoulli random variables and
the conditional default probability of the k-th obligor (of type j) is given by

pk(Z) = P(Yk = 1|Z) = P(Xk > Φ−1(1− pk)|Z) = Φ

(
a>j Z + Φ−1 (pk)

bj

)
. (1)

We change these probabilities to “exponentially twisted” probabilities, pk,θ(Z) given by

pk,θ(Z) =
pk(Z)eΛk(θ)

1 + pk(Z)
(
eΛk(θ) − 1

) (2)

for some θ ≥ 0. (For a detailed discussion on exponential twisting (2), refer to §3.1 in Glasserman
and Li [7].) The conditional likelihood ratio associated with this change of default probabilities
is given by

m∏

k=1

(
pk(Z)
pk,θ(Z)

)Yk
(

1− pk(Z)
1− pk,θ(Z)

)1−Yk

= e−
∑m

k=1 YkΛk(θ)+mψm(θ,Z) (3)

where ψm(θ, z) is the conditional cumulant generating function divided by m,

ψm(θ, z) , 1
m

log E
[
eθLm

∣∣∣Z = z
]

(4)

=
1
m

m∑

k=1

log
(
1 + pk(z)

(
eΛk(θ) − 1

))
.
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For given Z and Yk’s, we apply another conditional IS for the `k’s. This step is an exponential
twisting of `k by θYk, i.e. if f`k

(l) is the original density function for `k, then the new density
function is given by

f`k,θ(l) = f`k
(l)eθYkl−Λk(θYk). (5)

Hence the likelihood ratio given Z and Yk’s is given by

m∏

k=1

f`k
(`k)

f`k,θ(`k)
=

m∏

k=1

e−θYk`k+Λk(Ykθ) = e−θ
∑m

k=1 Yk`k+
∑m

k=1 Λk(Ykθ). (6)

Note that for deterministic `k, (6) is a constant, 1. Since Yk is binary and Λk(0) = 0, we have
YkΛk(θ) = Λk(Ykθ), w.p. 1. So the product of the two likelihood ratios, (3) and (6), simplifies to

e−θLm+mψm(θ,Z).

Now we choose θ to reduce the variance of the new estimator of P(Lm > x|Z). An upper
bound of the second moment of this estimator is

Ẽ
[
1{Lm > x}e−2θLm+2mψm(θ,Z) | Z

]
≤ Ẽ

[
1{Lm > x}e−2θx+2mψm(θ,Z) | Z

]
≤ e−2θx+2mψm(θ,Z)

where Ẽ is an expectation under the new measure. We minimize this (conditionally) deterministic
upper bound and choose θ as

θm(z) , argmin
θ≥0

{−θx + mψm(θ, z)} . (7)

So the likelihood ratio that we use for the conditional IS is given by

e−θm(Z)Lm+mψm(θm(Z),Z). (8)

2.2.2 Importance Sampling for Common Factors

Now consider IS for common factors. We limit ourselves to changes in the mean of the common
factor distribution. Glasserman and Li [7] suggest that a solution to

max
z

P(Lm > x|Z = z)e−z>z/2 (9)

should be an effective choice of mean for the new multivariate normal distribution. However, it
is difficult to solve this problem exactly. So, instead, they use an upper bound exp(−θm(z)x +
mψm(θm(z), z)) as a surrogate for P(Lm > x|Z = z) and then solve

max
z

{
−θm(z)x + mψm(θm(z), z)− 1

2
z>z

}
. (10)

Glasserman and Li [7] proved that this approach is asymptotically optimal for the homogeneous
single factor case. However, the result does not generalize to the multifactor case because the
function −θm(z)x+mψm(θm(z), z) may not have a dominating hyperplane at the maximum point
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of (10) for general portfolios, which is crucial in their approach. This condition is used to ensure
that a single shift in the mean of the factors produces effective variance reduction; when the
condition fails, we are led to consider a mixture of distributions with multiple mean shifts. See
Sadowsky and Bucklew [16] for related observations and results.

This leads to the problem of choosing the mean shifts for the mixture. As a heuristic, one
might consider using all local maxima of (10) as candidates. However, in Section 4, we give
an example in which the dominating hyperplane requirement fails, but for which (10) has a
unique local (and, in fact, global) maximum. Thus, any method based on mixtures of local
maxima would reduce to that of Glasserman and Li [7] in this case. As a general IS procedure,
Avramidis [1] proposes the use of local maxima in the case of a multimodal importance function.
Since he considered the unconditional importance function (without the conditional IS step in
Section 2.2.1), the size of the relevant optimization problem (with m + d variables) is too large
to be handled efficiently. Moreover, the unconditional importance function is not only non-
differentiable but also discontinuous, further complicating the optimization. If instead we were to
apply Avramidis’s [1] method for IS on the common factors, we would still need an approximation
or a surrogate for P(Lm > x|Z = z)e−z>z/2, which itself is a challenging problem. Using (10) as
a surrogate would in some cases result in a single maximum, as noted above.

We therefore develop a different approach that applies directly to the multifactor setting. Our
approach identifies regions in the factor space where large portfolio losses are more likely to occur.
Under some limiting regimes, these regions can be identified by polyhedra in the factor space that
do not include the origin. Our importance sampling change of measure uses a mixture of normals
in which each component of the mixture shifts the mean of Z to the closest point to the origin
in one of the polyhedra. This approach separates consideration of the credit exposures from the
dependence mechanism and default probabilities.

We adopt the Constant Approximation in §5.1 of Glasserman and Li [7] for our explanation.
In this approximation, Lm and P(Lm > x|Z = z) are replaced by E[Lm|Z = z] and 1{E[Lm|Z =
z] > x}, respectively. Then (9) becomes

min{z>z : E[Lm|Z = z] > x}. (11)

To analyze this further, we define aggregated credit exposures,

Cj , 1
m

∑

k∈I(m)
j

E[`k] for j = 1, . . . , t and C , 1
m

m∑

k=1

E[`k] =
t∑

j=1

Cj .

For simplicity, suppose (temporarily) that pk = pj for all k ∈ I(m)
j , meaning that obligors of the

same type have the same default probability. Using (1), we get

1
m

E[Lm|Z = z] =
1
m

m∑

k=1

E[`k]Φ

(
a>j z + Φ−1(pk)

bj

)
=

t∑

j=1

CjΦ

(
a>j z + Φ−1(pj)

bj

)
.

If we set q as the loss percentage threshold in which we are interested (that is, q = x
mC ), then
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{z : E[Lm|Z = z] > x} becomes


z :

t∑

j=1

CjΦ

(
a>j z + Φ−1(pj)

bj

)
> qC



 . (12)

Our goal is to characterize this set when the default probabilities pj are small or when the fraction
q is close to 1.

As a building block for the case of multiple types, observe that in the case of a single type, j,
(12) reduces to

Gj ,
{
z : a>j z > Φ−1(1− pj) + bjΦ−1(q)

}
. (13)

(In our implementation, we will tune the right side of the inequality defining Gj and set

G
(m)
j ,

{
z ∈ Rd : a>j z ≥ α

(m)
1 Φ−1(1− pj) + α

(m)
2 bjΦ−1(q)

}
, (14)

where α
(m)
1 and α

(m)
2 are two sequences satisfying 0 ≤ α

(m)
1 < 1 and 0 ≤ α

(m)
2 < 1 with α

(m)
1 → 1

and α
(m)
2 → 1 as m →∞. We will also allow different default probabilities for obligors of the same

type, so we set pj = max
k∈I(m)

j

pk. In this subsection, for simplicity, we explain our approach

using (13) instead of (14).)
In our asymptotic analysis, we introduce two limiting regimes called the small default prob-

abilities (SDP) case and the large loss threshold (LLT) case; see Section 3.1 and 3.2 for precise
definitions of these regimes. In the SDP regime the default probabilities pj decrease to 0 while the
loss threshold q is fixed; this parameterization makes Φ−1(1− pj) dominate the right side of the
inequality in (13). In the LLT regime, the loss threshold q increases toward 1 while the default
probabilities are fixed, so Φ−1(q) dominates the inequality in (13).

For the LLT regime, with the loss threshold q close to 100%, the event {E[Lm|Z] > qC}
requires that the common factors increase the chances of default for all obligor types. This occurs
when z is in

⋂t
j=1 Gj ; and the asymptotic analysis in GKS confirms that the rate of decrease

of the probability of this set does indeed determine the rate of decrease of the probability that
Lm > qC. Hence, the unique solution of min{z>z : z ∈ ⋂t

j=1 Gj} gives an asymptotically optimal
conditional mean shift for the factors.

Whereas in the LLT regime all types of obligors default, in the SDP regime defaults of different
combinations of types may result in losses that exceed the threshold. This makes the SDP regime
trickier. The boundaries of {z : E[Lm|Z = z] > qC} can look very different, depending on the
value of q, and they are quite complicated for some q values; see Figure 2, for example. We
approach this case by dividing {z : E[Lm|Z = z] > qC} into tractable regions. Each region is
characterized by an intersection of Gj ’s over a subset of types; roughly speaking, the subsets
are chosen so that defaults of obligors of those types produce losses exceeding the threshold. We
choose these sets to be minimal, in the sense that no subset would produce sufficiently large losses.
Choosing minimal sets ensures that we shift the factor mean as little as necessary; shifting the
mean too far can produce an increase in variance.
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In more detail, we define J to be a q-minimal index set if J ⊂ {1, · · · , t} and

max
J ′$J

∑

j∈J ′
Cj < qC ≤

∑

j∈J
Cj . (15)

These are the minimal combinations of types whose sum of Cj ’s are larger than the threshold
qC. In the SDP limit, the union (over all q-minimal index sets J ) of the sets

⋂
j∈J Gj includes

{z : E[Lm|Z = z] > qC}, and each
⋂

j∈J Gj covers some portion of the boundary of {z : E[Lm|Z =
z] > qC}. Hence, a large deviation perspective on efficient IS suggests the use of a mixture of
mean shifts given by argmin{z>z : z ∈ ⋂

j∈J Gj}, with J ranging over all q-minimal index sets.
A factor outcome z in

⋂
j∈J Gj facilitates the defaults of obligors of types in J , so this set of z

approximates


z :

∑

j∈J
CjΦ

(
a>j z + Φ−1(pj)

bj

)
> qC



 . (16)

The dominance of Φ−1(1 − pj) on the right side of the inequality in (13) under the SDP regime
makes Gj insensitive to q, resulting in the asymptotic equivalence of (16) and

⋂
j∈J Gj . These

are main ideas of the asymptotic analysis of the SDP regime.

Example 1 To build a simple visual example, we take E[`k] ≡ 1, pk ≡ 0.01, and we consider four
types in R2: a>1 = (0.85, 0), a>2 = (0.25, 0), a>3 = (0, 0.85), and a>4 = (0, 0.25). Each type has
the same number of obligors. Figure 1 depicts the surface of 1

C E[Lm|Z = z]. Figure 2 shows the
contours (level curves) of 1

C E[Lm|Z = z], which are comparable to {z : E[Lm|Z = z] = qC} for the
loss thresholds q. The four Gj ’s for each q level are two horizontal and two vertical hyperplains
with different z1- and z2-intercepts, respectively. In Figure 2, the level curves corresponding
to q = 0.8 and 0.9 seem to be covered well by intersections of one horizontal and one vertical
hyperplane, since the only q-minimal index set is {1, 2, 3, 4}. Different q values define different
Gj ’s. For q = 0.1 and 0.2, the corresponding level curves seem to be unions of one horizontal and
one vertical hyperplanes, since q-minimal index sets are {1}, {2}, {3}, and {4}. As the above
discussion suggests, the level curves corresponding to intermediate q levels show complicated
boundaries because of multiple q-minimal index sets. We expect that unions of intersections of
Gj ’s would cover the {z : E[Lm|Z = z] > qC} regions.

Define Mq as the family of all q-minimal index sets and

G
(m)
J ,

⋂

j∈J
G

(m)
j for J ∈Mq and G(m) ,

⋃

J∈Mq

G
(m)
J .

The condition ‖aj‖ > 0 in M1 implies aj 6= 0. If all aj ≥ 0, then G
(m)
J 6= ∅ for any J ⊂ {1, · · · , t}.

However, if some components of aj are negative, these sets may be empty. Because we need to
define the new IS distribution using these minimal index sets, smaller Mq is desirable for efficient
implementation. Hence, we introduce a sufficient subfamily of Mq which includes minimal index
sets enough to define an efficient IS distribution. We denote it by Sq. It satisfies
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Figure 1: 3D plot of 1
C E[Lm|Z = z].
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Figure 2: Contours of 1
C E[Lm|Z = z].

Feasibility: For each J ∈ Sq, G
(m)
J 6= ∅ for all m;

Covering property:
⋃
J∈Sq

G
(m)
J = G(m) for all m .

The choice of Sq may not be unique (see Example 2), but the asymptotic optimality of IS does
not depend on this choice. For each J ∈ Sq, we define µ

(m)
J as the unique solution of the following

linearly constrained quadratic optimization problem:

µ
(m)
J , argmin

{
‖z‖ : z ∈ G

(m)
J

}
. (17)

The importance sampling approach uses a mixture of N(µ(m)
J , I) for J ∈ Sq as a new measure.

Example 2 To illustrate, we consider a simple example (d = 2 and t = 4 case) from GKS [6].
There are four obligor types with C1 = 2, C2 = 2, C3 = 3, and C4 = 3, so C = 10. Set q = 0.45.
Then Mq = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. Figure 3 shows the coefficient vector for each
type (indicated by arrows) and the resulting sets G

(m)
j , j = 1, 2, 3, 4. G

(m)
{1,3} is indicated by

slanted lines and G
(m)
{2,4} is indicated by crossed lines. G(m) = G

(m)
{1,3}∪G

(m)
{2,4} since G

(m)
{2,3} ⊂ G

(m)
{1,3},

G
(m)
{1,4} ⊂ G

(m)
{2,4}, and G

(m)
{3,4} = ∅. The point PJ denotes µ

(m)
J for each J ∈ Mq and G

(m)
J 6= ∅.

One minimal Sq is {{1, 3}, {2, 4}}. Hence P{1,3} and P{2,4} can define the change of measure on
common factors. Note that any subfamily of Mq containing both {1, 3} and {2, 4} is valid as an
Sq.

2.2.3 Importance Sampling Procedure

Now we are in a position to state the complete importance sampling procedure. As mentioned
before, instead of choosing a single mean shift, we come up with a set of mean shifts µ

(m)
J for

J ∈ Sq. Let (µ1, . . . , µK) denote these mean shifts. We then use a mixture of normal random
vectors with mean vectors µi. We assign weight λi to the ith mean, with

∑K
i=1 λi = 1.

10



(0,0)


P
{1,3}

P
{2,4}


G
2


(m)


G
1


(m)

G
3


(m)

G
4


(m)


P
{2,3}


P
{1,4}


G
{2,4}


(m)


G
{1,3}


(m)


Figure 3: Illustration of the halfspaces associated with obligor types

Mixed Importance Sampling (MIS)

Choosing the Means for Factor Shifting: This step is executed once in the beginning.

1. Find Sq by solving (15). Set K = |Sq|.
2. Find µ

(m)
J by solving (17) for each J ∈ Sq. µ1, . . . ,µK denote the vectors found.

3. Choose the weights λ1, . . . , λK for K ≥ 1. We choose the number of replications, n,
and λi’s so that λi · n is an integer for all i.

Main Loop: Repeat for replications r = 1, . . . , λi · n, and for i = 1, . . . , K

1. Sample Z from N(µi, I).

2. Find θm(Z) by solving (7).

3. For k = 1, . . . ,m, compute the twisted conditional default probabilities pk,θm(Z)(Z) by
(2) and then sample Yk from Bernoulli distribution with pk,θm(Z)(Z).

4. For k with Yk = 1, generate the loss `k under the twisted conditional distribution given
by (5). If the loss is deterministic, set `k = ck.

5. Calculate
I

(i)
r = 1{Lm > x}e−θm(Z)Lm+mψm(θm(Z),Z)

(∑K
i=1 λi exp

(
µi
>Z− 1

2µi
>µi

))−1
.

Return the estimate 1
n

∑K
i=1

∑λi·n
r=1 I

(i)
r

There is some flexibility in choosing the λi’ s. We compared the performance of various rules in-

cluding uniform weights and a rule minimizing an upper bound of
(∑K

i=1 λi exp
(
µi
>Z− 1

2µi
>µi

))−1
.
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However, we did not find any significant difference. So we use the uniform weights λi = 1/K in
our implementation.

In MIS, we defined the µ1, . . . ,µK by setting K = |Sq| and µi = µJ under an appropriate
order on J ’s in Sq. However, if µ

(m)
J = µ

(m)
J ′ for two different minimal index sets J and J ′, the

definition of the IS mixture distribution allows the addition of the two associated weights. That
is, even though |{µ(m)

J : J ∈ Sq}| < |Sq| in most cases, the two IS distributions defined by µ
(m)
J ’s

for J ∈ Sq and {µ(m)
J : J ∈ Sq} coincide if the weights are added appropriately. By Lemma 1 in

Section 5.1, we may focus on the characterization of {µ(m)
J : J ⊂ {1, . . . , t}, |J | ≤ d,G

(m)
J 6= ∅}

instead of Sq. This will greatly reduce the computational burden in choosing the µi’s.

3 Analysis of Importance Sampling Estimators

In this section, we show that MIS remains efficient as the default event becomes rarer if we
choose the parameters α

(m)
1 and α

(m)
2 appropriately. As in Glasserman and Li [7], we consider

two limiting parametric regimes which result in small default probabilities of portfolios:

- Small default probability limit: small pk’s and moderate x values;

- Large loss threshold limit: large x value and moderate pk’s.

More specifically, we consider a sequence of portfolios {Lm}∞m=1 and we show the MIS is asymp-
totically optimal in the two regimes. First, we add a regularity condition on the limiting behavior
of the number of obligors of each type.

M1 (Continued) We assume that for each j = 1, . . . , t, limm→∞
n

(m)
j

m = rj > 0 .

The aggregated losses Cj and C will be redefined as limits as the size of the portfolio increases.

3.1 Small Default Probabilities Regime

We specify the small default probability regime by imposing the assumptions in M2 in addition
to those in M1.

M2 1. The default loss, `k, is deterministic and equal to ck, 0 < ck ≤ c < ∞ for k = 1, . . . , m.

2. If the k-th obligor is of type j then its default probability is given by pk = p
(m)
j ,

Φ(−sj
√

m) where sj > 0. Hence the conditional default probability (given the factors
Z) of the same obligor is given by

pk(Z) = p
(m)
j (Z) = Φ


a>j Z + Φ−1

(
p
(m)
j

)

bj


 = Φ

(
a>j Z− sj

√
m

bj

)
.

3. For each type j = 1, . . . , t,

Cj , lim
m→∞

1
m

∑

k∈I(m)
j

ck < ∞ and

12



C , lim
m→∞

1
m

m∑

k=1

ck =
t∑

j=1

lim
m→∞


 1

m

∑

k∈I(m)
j

ck


 =

t∑

j=1

Cj .

4. The total loss from defaults and the portfolio default threshold are

Lm =
m∑

k=1

ckY
(m)
k and x ≡ xm = q

m∑

k=1

ck

where Y
(m)
k = 1{

Xk>Φ−1
(
1−p

(m)
j

)} and 0 < q < 1. Note that
∑m

k=1 ck is the maximum

possible loss and thus we are interested in the loss exceeding a fraction q of this. We
impose a mild restriction on the possible values of q; q is not a value in the finite set,{

1
C

∑
j∈J Cj : J ⊂ {1, · · · , t}

}
.

We apply the original definition of q-minimal index set with these Cj and C. For each J ∈Mq,
we define a polyhedron,

GJ ,
{
z ∈ Rd : a>j z ≥ sj for all j ∈ J

}

and define γJ as the unique solution of the following linearly constrained problem:

γJ ,
{

argmin {‖z‖ : z ∈ GJ } if GJ 6= ∅
(∞, . . . ,∞)> if GJ = ∅ .

(18)

Define

γ∗ , argmin
{∥∥γJ

∥∥ : J ∈Mq

}
, (19)

breaking ties arbitrarily, if necessary. Note that γ∗ = (∞, . . . ,∞)> and ‖γ∗‖ = ∞ if GJ = ∅ for
all J ∈Mq by definition. The following large deviations result was proved in GKS [6].

Theorem 1 If the assumptions M1 and M2 are satisfied, then

lim
m→∞

1
m

log P (Lm > xm) = −1
2
‖γ∗‖2 .

In this paper, we consider only the case ‖γ∗‖ < ∞ and make this explicit by imposing

Assumption 1 ‖γ∗‖ < ∞.

Note that Assumption 1 is equivalent to requiring that there exist at least one minimal index
set J ∈ Mq such that GJ 6= ∅. If the assumption is violated, it may be possible to consider a
faster-growing parameterization to get a finite limit and then devise a similar importance sampling
estimator to the current one. We do not study this case further in this paper. Note also that sj

decides the vanishing rate of the default probability of type j and p
(m)
j = exp(−s2

jm/2 + o(m)).
Furthermore γ∗ depends on all sj which parameterize the regime as well as on the factor loading
vectors aj .
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We denote the likelihood ratio used in MIS, corresponding only to the change of measure on

the common factors, by
(
M

(m)
Z

)−1
where

M
(m)
Z ,

∑

J∈Sq

λJ exp
(

µ
(m)
J

>
Z− 1

2
µ

(m)
J

>
µ

(m)
J

)

and
∑
J∈Sq

λJ = 1. Note that the sum is over the sufficient subfamily Sq. However, as we

noted before, any other IS method having the same distribution as M
(m)
Z will be asymptotically

optimal. Each summand in M
(m)
Z corresponds to a group of types whose default suffices to produce

a portfolio loss exceeding the threshold.
Note that Λk(λ) = ckλ since we are assuming `k to be deterministic. The second part of MIS

is the conditional IS exploiting the conditional independence structure. The cumulant generating
function given by (4) can be written as

ψm(θ, z) =
1
m

t∑

j=1

∑

k∈I(m)
j

log
(
1 + p

(m)
j (z)

(
eθck − 1

))
.

The likelihood ratio for the combined change of measure is given by the product of two changes
of measures

dP

dPm
= e−θm(Z)Lm+mψm(θm(Z),Z)

(
M

(m)
Z

)−1
.

We write Em for expectation under the probability measure Pm (i.e. under IS distribution), under
which Z is distributed by the mixture defined above and Yk is a default indicator with conditional
default probability pk,θm(Z)(Z). We also write E for expectation under the original probability
measure P, under which Z is d-dimensional standard normal random variable and Yk is a default
indicator with default probability pk.

Note that, in this analysis, we restrict MIS to instances with homogeneous marginal default
probabilities of obligors belonging to the same type.

We have the following result on the second moment of the IS estimator of P(Lm > xm) which is
denoted by M2(xm, θm(Z)). The proof can be found in the online appendix (GKS [5]). Combining
this bound with the lower bound from the large deviations analysis (i.e., Theorem 1), we conclude
the asymptotic optimality of our IS estimator.

Theorem 2 Suppose the assumptions M1 and M2 hold and Sq 6= ∅. Define εm > 0 such that
εm → 0 and εm

√
m → ∞ as m → ∞. If we apply MIS with α

(m)
1 = 1 − εm and 0 ≤ α

(m)
2 < 1,

then
lim sup
m→∞

1
m

log M2(xm, θm(Z)) ≤ −‖γ∗‖2 .

Hence

2 lim
m→∞

1
m

log P (Lm > xm) = lim
m→∞

1
m

log M2(xm, θm(Z)),

and thus we have asymptotic optimality of the two-step IS estimator obtained by MIS.
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Note that one possible choice for α
(m)
2 is 0. The “asymptotic optimality” can be interpreted

as the following: there is a positive constant c (in fact, c = 1
2‖γ∗‖2) for which P(Lm > xm) =

exp(−c · m + o(m)) and M2(xm, θm(Z)) = exp(−2c · m + o(m)). This means that the second
moment of the estimator decreases at twice the exponential rate of the loss probability itself.
This is the fastest possible rate for any unbiased estimator because of Jensen’s inequality. For
naive simulation, the second moment decreases as exp(−c ·m+o(m)). In the rare event simulation
literature, estimators achieving this rate are called asymptotically optimal.

3.2 Large Loss Threshold Regime

Next, we consider the case of increasing loss threshold while the default probability of each obligor
remains fixed. We also allow for random recovery and hence the loss resulting from the default
of an obligor to be random. We add M3 to M1 to specify the parameters.

M3 1. The marginal default probabilities satisfy 0 < p ≤ pk ≤ p < 1 for k = 1, . . . , m.

2. The maximum loss for obligor k is lk and 0 < l ≤ lk ≤ l < ∞ for k = 1, . . . ,m. Set
`k = lkUk where Uk is a [u, 1]-valued random variable and u is a constant satisfying
0 < u ≤ 1. For each obligor type j, {Uk}k∈I(m)

j

is an iid sequence from a distribution

with mean u∗j . We use uk to denote the mean of Uk; this is u∗j if the k-th obligor is of
type j. Hence ck = lkuk. These loss random variables are independent of Z and {εk}.
We assume that 1

m

∑
k∈I(m)

j

lk converges for all j as m →∞.

3. The portfolio loss threshold is given by

x ≡ xm = qm

m∑

k=1

ck

where qm = Φ(s
√

log m) for some 0 < s < 1. Note that unlike the previous section
qm → 1 as m →∞.

Let

G ,
t⋂

j=1

{
z ∈ Rd : a>j z ≥ sbj

}

and let γ be the unique solution of the following linearly constrained problem:

γ ,
{

argmin {‖z‖ : z ∈ G} if G 6= ∅
(∞, . . . ,∞)> if G = ∅ .

(20)

The following large deviations result in GKS [6] provides a lower bound on the asymptotic effi-
ciency of any IS estimator.

Theorem 3 If the assumptions M1 and M3 are satisfied, then

lim
m→∞

1
log m

log P (Lm > xm) = −1
2
‖γ‖2 .
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Notice the difference between denominators in Theorem 1 and Theorem 3. The probability in
Theorem 1 decreases exponentially fast in m while one in Theorem 3 decreases at a polynomial
rate. To guarantee the existence of meaningful factor shifting, we assume, as in Section 3.1, that

Assumption 2 ‖γ‖ < ∞, or equivalently, G 6= ∅.

Note that the vector γ depends on s , bj , and the factor loading vectors.

We use the symbol Λ(·) to denote the cumulant generating function of Uk as well as `k. Since
we use Uk only in this section, there should be no confusion. Denote the cumulant generating
function of Uk of type j (whose mean uk = u∗j ) by

Λj(λ) , log E
[
eλUk

]
. (21)

Thus E[eθ`k ] = Λj(θlk). Λj(·) is twice continuously differentiable on R because Uk is bounded.
(See, e.g., pp.72-73 of Durrett [4]. Λj(·) is in fact an analytic function.) Also, Λj(0) = 0,
Λ′j(0) = E[Uk] = uk = u∗j > 0.

We construct a sequence of two-step IS distributions. Since qm → 1 as m →∞, qm > 1−minj Cj

C

for all sufficiently large m. Then Sqm = {{1, . . . , t}} for these large m. Hence, to simplify the
notation, if we define

µ(m) , argmin
{
‖z‖ : z ∈ G

(m)
{1,...,t}

}
= µ

(m)
{1,...,t}, (22)

then we can completely specify the mixture IS distribution. (In fact, the IS distribution is defined
by a single shift under this large loss threshold regime.) The likelihood ratio of the common factor

shift is given by
(
M

(m)
Z

)−1
where

M
(m)
Z = exp

(
µ(m)>Z− 1

2
µ(m)>µ(m)

)
.

From the definition, the shifting of the factor mean to µ(m) increases the default chance of every
obligor. The conditional IS part is given by (8) where ψm(θ, z) is

ψm(θ, z) =
1
m

t∑

j=1

∑

k∈I(m)
j

log
(
1 + pk(z)

(
eΛj(θlk) − 1

))
. (23)

Then the combined likelihood ratio is given by

dP

dPm
= e−θm(Z)Lm+mψm(θm(Z),Z)

(
M

(m)
Z

)−1
.

Under the probability measure Pm (i.e. under the IS distribution), Z is distributed by N
(
µ(m), Id

)
,

Yk is a default indicator with a conditional default probability pk,θm(Z), and `k (= lkUk) is sampled
from the exponentially tilted distribution given by (5).

Remarks: The valid range of x is 1
2

∑m
k=1 lkuk < x < Φ(

√
log m)

∑m
k=1 lkuk from the restriction

of 0 < s < 1. However, we apply MIS to instances having thresholds less than 1
2

∑m
k=1 lkuk by
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allowing negative s values when we solve (22). If the threshold value x is small enough, then s

will be a large negative value so that 0 ∈ G(m) and µ(m) = 0. This coincides with the intuition
that we do not need to shift the common factors if x is small.

The following theorem establishes the asymptotic optimality of the IS estimator of P(Lm >

xm). The proof may be found in the online appendix (GKS [5]).

Theorem 4 Suppose the assumptions M1 and M3 hold and we apply MIS with α
(m)
2 = 1− 1√

log m

and α
(m)
1 → 1 as m →∞. If G 6= ∅, then

lim sup
m→∞

1
log m

log M2(xm, θm(Z)) ≤ −‖γ‖2 .

Hence

2 lim
m→∞

1
log m

log P (Lm > xm) = lim
m→∞

1
log m

log M2(xm, θm(Z)),

which proves the asymptotic optimality of the two-step IS estimator obtained by MIS.

3.3 Choices of α
(m)
1 and α

(m)
2

Finally, note that MIS satisfies both Theorems 2 and 4 if we set α
(m)
1 = 1 − εm and α

(m)
2 =

1− 1√
log m

where εm is defined as in Theorem 2. However, we still have some flexibility in choosing
εm. We use one of the following two parameterizations of (14) in our numerical examples:

α
(m)
1 = 1−m−1/3 and α

(m)
2 = 1− 1√

log m
(24)

or

α
(m)
1 = 1−m−1/β(b) and α

(m)
2 = 0 (25)

where β(b) , max{3, 15 · 1
t

∑t
j=1 bj}. The dependence on bj ’s for (25) prevents µ

(m)
J from

increasing too much for the types having small ‖aj‖ values. (24) can be used for both limiting
regimes while (25) guarantees the asymptotic optimality only for the small default probability
regime.

Even though both parameterizations are asymptotically optimal, notice the different advan-
tages of two parameterizations: (24) utilizes more information on q; by using (25), we can exploit
the independence from q values, which reduces the amount of computation if we estimate the
credit risk at several q levels or if we estimate newly structured portfolios under the same de-
pendence structure (see Section 5.1). However, we do not have a general rule for how best to
choose them. The structure of dependence, the range of marginal default probabilities, and the
loss threshold affect the performance of these parameterizations. We restrict our choices to the
two given above. For any class of problems, we try both parameterizations and choose the better
one.
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4 The Necessity of Mixture Distributions for Factor Shifting: A

Simple Example

To illustrate the importance of using a mixture of factor shifts, we consider a simple, if rather
extreme, example. We consider the following Gaussian copula model with 1000 obligors, two
factors, two types, and non-negative, orthogonal factor loading coefficient vectors:

X2k−1 = 0.7Z1 +
√

0.51 ε2k−1

X2k = 0.65Z2 +
√

0.5775 ε2k

(26)

for k = 1, . . . , 1000. Here, Z1, Z2 and the εk’s are independent N(0, 1) random variables. We
assume the marginal default probabilities and potential loss amounts are at the same level of pk ≡
5% and `k ≡ 1. We restrict the dimension of common factors to 2 to make the visualization easy,
and we choose orthogonal factor loadings to exploit the effects of multiple factors. Furthermore
we perturb the data to make the example asymmetric, since some algorithms based on a single
factor model may have simple remedies for symmetric multifactor problems.

We are interested in the computation of the probability of 30% loss of the total credit exposure:

P

( ∑

1≤k≤1000

1
{
Xk > Φ−1(0.95)

}
> 0.3 · 1000

)
,

i.e., q = 0.3 in the notation of Section 2. Note that q < 0.5 = C1 = C2 and recall (14). We
get G

(m)
1 = {(z1, z2) ∈ R2 : z1 ≥ 1.7834} and G

(m)
2 = {(z1, z2) ∈ R2 : z2 ≥ 1.8977} which are

computed by (14) with (24). In this case, Sq = {{1}, {2}}, µ
(m)
{1} = (1.7834, 0), and µ

(m)
{2} =

(0, 1.8977). MIS suggests a mixture of µ
(m)
{1} and µ

(m)
{2} .
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Figure 4: Level curves of Fx(z).
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Figure 5: 3D plot of Fx(z).

As a candidate for a single mean shift, we choose a point minimizing the upper bound (10)
of zero-variance IS distribution as done in Glasserman and Li [7]. Figures 4 and 6 show the level
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The unique maximum points are located near
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point.
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Figure 7: 3D plot of − log(−Fx(z) + 1
2z
>z).

curves of Fx(z) and − log(−Fx(z)+ 1
2z
>z), respectively, where Fx(z) = −θm(z)x+mψm(θm(z), z).

Figures 5 and 7 are their 3D counterparts. (Figure 6 is drawn to identify locations of local maxima.
To magnify the shape of the function near maximum, we apply the logarithmic transformation.)
Because of the small difference in the factor loading coefficients, there exists a unique maximum
of (10). It is given by µ = (2.5051, 0.4343). Notice that, from these figures and Figure 8 as well,
we observe that there is no tangent plane at µ dominating Fx(z), which is a key condition to
get a good bound on second moments of IS estimators in Glasserman and Li [7]. Furthermore, if
exp(−Fx(z)+ 1

2z
>z) is used as a proxy of the zero-variance IS distribution, any heuristic mixture

approach using all modal points of the proxy suggests the same single shift as above since there
is no other local maximum except the global maximum point. In Figures 4 and 6, the differences
in heights between any two neighboring level curves are equal. Along any radial direction from
the origin, − log(−Fx(z) + 1

2z
>z) in Figure 6 increases initially and then decreases although the

downward slope is very small (See also Figure 7). Therefore, a unique maximum exists along each
radial direction. Furthermore, the profile curve in Figure 8 shows that there is a unique maximum
of − log(−Fx(z) + 1

2z
>z) among the radial maxima, given by µ mentioned above. Figures 4 and

5 also show that the surface of Fx(z) resembles a quarter of an inverted bell. Hence the tangent
plane of Fx(z) at µ does not dominate a part of Fx(z) near (0,2).

We compare three methods, all of which provide unbiased estimators:

MIS: Shift the factor mean to µ
(m)
{1} and µ

(m)
{2} with equal chance.

MC1: Two step IS algorithm of Glasserman and Li [7] with a single mean shifting to µ.

CMC: Crude Monte Carlo simulation.
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Figure 8: A profile curve of Fx(z) − 1
2z
>z from a view-direction (1,1,0). This profile combined

with Figure 6 shows the uniqueness of the maximum point.

Figure 9 summarizes the results. The variance of MC1 does not stabilize as the number of
replications increases. This observation can be explained by the following reasoning: if we apply
MC1, then (i) the obligors with (0,0.65)-factor loadings hardly default; (ii) when any obligor with
(0,0.65)-factor loadings does default (which rarely happens), it adds a large term to the estimates
of both the probability and the variance. This explains the sudden jumps in the sample variance
and the estimate of the default probability as the number of replications increases; the jumps are
caused by the rare events large likelihood ratio values. In general, rare events with large likelihood
ratio values are rarely generated in the actual simulation runs. Therefore, the theoretically large
variance is prone to being underestimated in the simulation. By the same reasoning, estimates of
the probability will tend to be too low without a very large number of replications.

This example shows the importance of mixture IS distributions characterized in Section 3.
Similar results were observed in Glasserman and Wang [8] for the sample mean of i.i.d. random
variables. Dupuis and Wang [3] develop an adaptive IS method to address this type of problem.

For large q (in the sense of q > 1 − minj Cj

C ), it seems that the tangent plane at µ almost
dominates Fx(z) and a single shift of common factor mean could work well. We include Figures
10–13 to show the dramatic changes of the function shapes as q increases to 0.8.

In this case, using (14) and (24), G
(m)
1 = {(z1, z2) ∈ R2 : z1 ≥ 2.6467} and G

(m)
2 = {(z1, z2) ∈

R2 : z2 ≥ 2.8871}. Also Sq = {{1, 2}} and G
(m)
{1,2} = {(z1, z2) ∈ R2 : z1 ≥ 2.6467, z2 ≥ 2.8871}. So

µ
(m)
{1,2} = argmin

z∈G
(m)
{1,2}

‖z‖ = (2.6467, 2.8871) by (17). MIS now involves a single mean shift to

µ
(m)
{1,2}. MC1 shifts the mean of common factors to (3.3030 3.3838). Figure 14 summarizes the

results. As expected, the two methods, MC1 and MIS, are well-behaved and MC1 produces
smaller variance. Crude Monte Carlo could not generate any sample whose loss exceeds 80% of
the total credit exposure.
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Figure 9: Accumulated estimates of portfolio default probability and sample variance from a
single run of 105 replications for three methods, with q = 0.3. We use common random numbers
across the three methods for comparison. The average sample variance of MIS is 6.5× 10−4.
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Figure 11: 3D plot of Fx(z).

5 Computational Issues in the Implementation

Choosing the factor mean vectors involves optimization procedures. In this section, we address
algorithms used to solve these problems. Furthermore, we focus on the enumeration of the set
{µ(m)

J : J ∈ Sq} instead of Sq; the latter possibly consists of exponentially many elements. The
issue here is how to find the candidate IS distributions as fast as possible when the number of
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The unique maximum point is (3.3030 3.3838).
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Figure 14: Accumulated estimates of portfolio default probability and sample variance from a
single run of 105 replications for two methods, with q = 0.8. We use common random numbers
across the two methods for comparison.

types, t, and the dimension of factors, d, are fixed. We also characterize the single factor case
completely. In this section, we use the notation dj = α

(m)
1 Φ−1(1− pj) + α

(m)
2 bjΦ−1(q), which is a

constant for each j. Recall that G
(m)
j = {z : a>j z ≥ dj}.
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5.1 Reduction of the Number of Candidate IS Distributions

When implementing the IS algorithm, finding Sq could take a long time or |Sq| could be pro-
hibitively large to run the simulation efficiently. For a given problem instance, the tractability
(the size of Sq) depends on the value q. Furthermore, using a simple enumeration, a small q like
q < 2 · minj Cj/C allows an efficient implementation since |Sq| ≤

(
t
2

)
. The other easy cases are

for large q values like q > 1− 2 ·minj Cj/C, which has |Sq| ≤ t. However, in the worst case, the
size of Sq will be

(
t

[t/2]

)
, where the application of MIS is intractable for instances with a large

number of types. (This worst case can be obtained by setting all Cj ’s to be the same, aj > 0 and
q just above 0.5.) To avoid this difficulty, we need to devise a method that does not involve an
enumeration of the index sets in Sq. The key observation is the following lemma, proved in the
online appendix (GKS [5]).

Lemma 1 For any J ∈ Sq satisfying GJ 6= ∅, there exists a J ′ ⊂ J with |J ′| ≤ d such that

µ
(m)
J = µ

(m)
J ′ .

From this lemma, we have the following upper bound:

Lemma 2 For an instance with d factors and t (≥ d) types,
∣∣∣
{

µ
(m)
J : J ∈ Sq

}∣∣∣ ≤
(

t

d

)
+

(
t

d− 1

)
+ · · ·+ t < td

holds for all m.

Proof: The right side of inequality is the number of ways choosing d or fewer constraints out of
t possible constraints. Combining this with Lemma 1, we complete the proof.

Define V , {µ(m)
J : J ⊂ {1, . . . , t}, |J | ≤ d, GJ 6= ∅}. Clearly we have {µ(m)

J : J ∈ Sq} ⊂ V
by Lemma 1. Note that the upper bound in Lemma 2 is also an upper bound on |V|. By adjusting
the associated weights, the polynomially bounded number of mean vectors for the mixture IS
distribution may allow an efficient implementation for the factor models described by a moderate
number of factors and types.

Our approach will be to first restrict the candidate mean vectors to V, and to then use that set
to find {µ(m)

J : J ∈ Sq}. Write V = {v1, . . . ,vn} and define H(v) , {j ∈ {1, . . . , t} : a>j v ≥ dj}
for v ∈ V. H(v) is the maximal index set satisfying v = µ

(m)
H(v). For each v ∈ V, consider all

the minimal constraint sets producing v as unique optimal solution; denote this family by F(v)
= {F : F ⊂ H(v),v = µ

(m)
F ,v 6= µ

(m)
F\{j} for all j ∈ F}. Note that |F | ≤ d for each F ∈ F(v)

by Lemma 1 and hence the cardinality of
⋃

v∈V F(v) has the same upper bound as the one in
Lemma 2. Because we search V by probing all index sets of cardinality less than or equal to d,
we get F(v)’s as by-products of the search.

For any index set A and B with B ⊂ A, define the following knapsack problem:

f∗({Cj}t
j=1, q, A,B) = max

∑

j∈A\B
Cjxj
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(SSP) : s.t.
∑

j∈A\B
Cjxj ≤

∑

j∈A

Cj − qC

xj ∈ {0, 1} for all j ∈ A \B .

The procedure identifying {µ(m)
J : J ∈ Sq} is as follows:

1: Identify V by solving the norm minimization problems (17) associated with all possible
combinations of type indices, J ⊂ {1, . . . , t}, |J | ≤ d.

2: For each v ∈ V,
For each F ∈ F(v),
• Solve (SSP) with A = H(v) and B = F ;
• If f∗({Cj}t

j=1, q,H(v), F ) >
∑

j∈H(v) Cj − qC −mini∈F Ci,
then include v in among the mean shift vectors for IS.

End
End

The validity of this procedure is shown in the online appendix (GKS [5]). Additionally, we
include a more explicit procedure for the single factor case in the online appendix. We assume
that all Cj ’s are positive integers, which is a necessary assumption for knapsack problems. This
integrality assumption would not cause any difficulty in applications since, in practice, exposures
in a large portfolio are denominated in multiples of a base amount (e.g. one million dollars) for
risk management purposes.

The knapsack problem (SSP) has a special structure and is called a subset sum problem,
which is NP-complete, and we can show that (SSP) is also NP-complete (see the online ap-
pendix (GKS [5])). However subset sum problems have fully polynomial time approximation
algorithms (running in time O(min{n · 1

ε , n + 1
ε2

log(1
ε )}) and space O(n + 1

ε ) to achieve an ac-
curacy ε (0 < ε < 1), where n is the number of variables in the subset sum problem). Fur-
thermore, knapsack problems arising in practice can usually be solved very quickly. (See, e.g.,
Chapter 4 of Kellerer, Pferschy, and Pisinger [12].) For example, using the code available at
http://www.diku.dk/∼pisinger/subsum.c, we measured the time spent to solve 106 subset
sum problems. Each instance consists of 100 randomly generated weights (i.e. |A \ B| = 100 in
(SSP)) with knapsack weights 1 ≤ Cj ≤ 104. All 106 problems were solved in 21.88 seconds. (All
experiments in this paper were executed using a notebook computer with a 1.7GHz Intel Pentium
M CPU and 512MB of RAM.) This number of problems, 106, is roughly the upper bound of the
cardinality of V for a factor model having 100 types and three factors. In solving a subset sum
problem, the range of knapsack weights are most crucial for the running time of the algorithm.
The ranges in our test cases imply that the potential loss amount of each obligor will take its
value among multiples of up to 104 of some base amount. In practice, we expect the relevant
ranges to be narrower than this.

If we choose α
(m)
2 = 0 in (14), then V, H(v), and F(v) do not depend on the value of q. Hence

they do not change unless the dependence structure changes. This implies that if we keep this
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information between the changes of the dependence structure, then we just need to solve multiple
subset sum problems to find the mixture IS distribution for a newly structured portfolio. Table 1
shows the average cardinalities of {µ(m)

J : J ∈ Sq} and V for 30 randomly generated 20- or 25-type
instances with factor spaces in R4 or R5 (i.e., factor dimension 4 or 5). (See Section 6.1 for more
detailed specifications of this random generation of instances.) The values of the upper bound on
|V| in Lemma 2 are 6195, 21699, 15275, and 68405, respectively. However we just need to keep
a smaller size (at most 2000 on average) of V to get {µ(m)

J : J ∈ Sq}. The computing time of V
takes about 28, 100, 65, and 300 seconds for each instance, respectively, if we use the MATLAB
function quadprog for the norm minimization (17). (By a specialized algorithm in Section 5.2,
the time can be reduced to 0.3, 1, 1, and 6 seconds for each instance, respectively.) And the total
times in solving nine subset sum problems to find {µ(m)

J : J ∈ Sq}’s for q = 0.1, 0.2, . . . , 0.9 from
V are at most 0.2, 0.5, 0.4, and 1.5 seconds, respectively, and this short solving time makes our
approach more attractive. Furthermore, the cardinalities of {µ(m)

J : J ∈ Sq} are much smaller
than the theoretical upper bound. This fact implies that we can implement the IS efficiently.

Table 1: The average number of minimum norm points in Rd. nq denotes the average of |{µ(m)
J :

J ∈ Sq}|.
Types d Bound |V| n0.1 n0.2 n0.3 n0.4 n0.5 n0.6 n0.7 n0.8 n0.9

20 4 6195 574.6 16.9 36.1 48.5 52.2 44.5 29.6 14.3 3.9 0.2
20 5 21699 932.2 25.0 57.0 78.8 84.4 69.0 44.2 19.5 4.9 0.4
25 4 15275 1224.9 33.5 65.7 90.5 91.7 74.6 44.1 16.0 2.4 0.2
25 5 68405 2036.5 39.7 96.3 138.4 157.1 137.7 79.8 28.2 3.1 0.0

5.2 Quadratic Optimization

To implement the IS algorithms, we need to solve (17). These problems are norm minimizations
over a polyhedron, min{‖z‖ : a>j z ≥ dj , j ∈ J }. We can apply general quadratic programming
(QP) algorithms to these problems. They have strictly convex quadratic objective functions and
linear inequality constraints. These features allow very fast and robust convergence of algorithms
when we apply general QP algorithms (see, e.g., Nocedal and Wright [15]). In implementation,
we can use any available code (e.g., the MATLAB function quadprog). However, we can exploit
the hierarchy of QP problems further. That is, we characterize V by solving a QP for each J ⊂
{1, . . . , t}, |J | ≤ d. This strategy allows us to solve νJ = argmin{‖z‖ : a>j z = dj for all j ∈ J }
instead of the original inequality constrained QP. This equality constrained problem can be solved
by simple Gaussian eliminations.

In general, ‖νJ ‖ ≥ ‖µJ ‖, so we have to detect the case of ‖νJ ‖ > ‖µJ ‖. Consider the
following procedure.
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Set L = ∅
For i = 1 to d

For all J ⊂ {1, . . . , t} of |J | = i

• Find νJ
• Check the existence of J ′ ∈ L for which J ′ ⊂ J and νJ ′ ≤ νJ
• If no such J ′ exists, then add J to L.

End
End

Note that there exists a J ′ ⊂ J such that νJ ′ = µJ if ‖νJ ‖ > ‖µJ ‖. Furthermore,
νJ ′ = µJ ′ . Since the enumeration is done in increasing order of |J |, νJ ′ will be found in the list
L (because |J ′| < |J |). Hence, J is discarded correctly. This procedures substantially reduces
the amount of time required to identify V.

5.3 Approximate Importance Sampling on Common Factors

For an instance with a large number of common factors, MIS may be computationally intractable.
We now present an approximate approach for handling such cases.

Until now, we considered the issue of finding the exact IS distributions induced by the given
t types in Rd. In Section 5.1, we reformulated this original problem as a problem of identifying V
by additional subset sum problems with negligible computing effort. This uses a crude procedure
to find V — enumerating all possible combinations of d or fewer types at a time. The number
of such combinations is polynomial of order td. For large t and d, this enumeration could be
prohibitive. (Notice, however, that the characterization of V is required only once unless the
dependence structure changes, by setting α

(m)
2 = 0. Hence even a rather long computation time

in this step could be acceptable.) To reduce the computing burden, we have to reduce t or d.
To reduce the number of types one may consider clustering ideas as in Hastie, Tibshirani, and
Friedman [10]. We focus on the reduction of the number of factors.

Assume {aj}t
j=1 ⊂ RD. We want to reduce factor dimension from D to d (< D). We suggest

the use of Principal Components Analysis (PCA). By applying PCA (without mean adjusting)
to [a1 · · ·at]>, we can choose the best subspace of RD to explain the variations among factor
loading vectors under the restriction of subspace dimension d. Then, using the projections of
the factor loading vectors onto this subspace, we compute {µ′J : J ∈ S ′q} ⊂ Rd by solving
the convex quadratic optimization (17) and the more tractable subset sum problems in Rd with
t types. Here, we use S ′q to emphasize that these factor shifting mean vectors come from the
approximation. We can also reduce the number of types by aggregating two types if their projected
factor loading vectors are close to each other, since the marginal default probabilities are allowed
to vary within a type. Using the orthonormal basis on the subspace constructed by PCA, we can
recover {µJ : J ∈ S ′q} ⊂ RD corresponding to {µ′J : J ∈ S ′q}.

Because we get a set of factor shifting mean vectors, we can construct the IS distribution
based on these approximate mean vectors. Thus we use {µJ : J ∈ S ′q} to shift the common
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factors and to compute the likelihood ratios, but we use the exact factor loadings, {aj}T
j=1, in the

evaluation of latent variables for each obligor. This makes the IS procedure with approximate
mean shifting vectors unbiased. We expect variance reduction because we consider the most
important d dimensions of factor loadings.

6 Numerical Examples

We do experiments on two settings of parameters.

• We apply MIS to a factor model of small size — 25 types and 5 factors. For this parameter
regime, we use (25), which does not depend on q. The data for the test cases are generated
uniformly over specified ranges and the factor loading matrices are highly dense. This
example is not particularly realistic from financial view point, because in practice we would
expect the factor loadings to be fairly sparse. However we test this case as a challenging
example to validate the efficiency of our method.

• We apply MIS to structured factor models with sparse factor loadings: 100 types and 21
or 22 factors. For these problems, because t and d are too large to apply the original MIS,
we apply the approximate IS method in Section 5.3 with the choice of (24). This example
seems more realistic than the previous one. The leading columns in the loading matrix
can be regarded as marketwide factors, or geographic factors associated with the economic
environment in a country or region.

The number of obligors is 1000 and the number of replications is 10000 in both settings. We relax
the restrictions imposed in M2-2 (the same default probabilities within each group) and M3-3
(the range of s) in these experiments. For the results, we report two efficiency measures: variance
ratio (V.R.) and efficiency ratio (E.R.). The V.R. is measured by dividing the variance of the crude
Monte Carlo estimator by that of the MIS estimator. Since the sample variance estimate of crude
Monte Carlo estimator is not always stable for large loss events, we replace it with p̂(1− p̂), where
p̂ is the estimate of the probability of the large losses produced by MIS. The E.R. is calculated
in a similar way to V.R., except that each variance estimate is multiplied by the CPU time spent
computing the corresponding probability estimate. By including the computing time, E.R. gives a
more applicable measure than V.R., in general. However, E.R. depends significantly on particular
implementations of the algorithm and can vary widely across different implementations. Hence,
we also consider the V.R. a meaningful measure of the performance of the IS estimators.

6.1 MIS for Instances with a Small Number of Factors

We tested 30 randomly generated instances of 1000 obligors belonging to one of 25 types. 60%
of the coefficients of the factor-loading vectors are non-zero. Each nonzero component is drawn
uniformly from [−0.2, 1]. They are then scaled so that ‖aj‖, j = 1, . . . , t, are distributed uniformly
on [0.1, 0.7]. The potential maximum loss amount of each obligor is deterministic and chosen from
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a discrete uniform distribution on {1, 2, . . . , 30}. The marginal default probability for the k-th
obligor is 0.0255 + 0.0245 × sin(16πk/m), so that it lies within (0.1%, 5%). We also randomize
the number of obligors in each type such that they are uniformly distributed, and so that the
number of obligors in one type does not exceed 150% of that of any other type. Because, even for
q = 0.2, the probability that Lm > x vanishes to 10−7 or 10−8, we simulate the portfolio losses
for q = 0.05, 0.075, . . . , 0.175.

Figure 15 depicts the observed pairs — the portfolio loss probability and the estimated V.R.’s
— for each parameter on a logarithmic scale. As the theory predicts, we observe that larger
V.R.’s are achieved by MIS as the defaults become rarer in Figure 15. In Figure 16, we observe
that the E.R.’s are smaller than the V.R.’s because of the additional computations required for
IS. However, we again see a trend of bigger improvement for smaller probabilities.
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Figure 15: Each point shows a portfolio loss
probability and corresponding variance ratio on
log scales. The average number of mean vectors
for each loss level is 17.9, 26.7, 39.7, 52.1, 68.3,
and 79.4, respectively.
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Figure 16: Each point shows a portfolio loss
probability and corresponding efficiency ratio on
log scales.

6.2 MIS for Structured Factor Models with Sparse Factor Loadings

This example is generalized from one given by Glasserman and Li [7]. They tested one 21-factor
case among eight cases in this extended model. The parameters are given by

pk = 0.01 · (1 + sin(16πk/m)), k = 1, . . . , 1000,

`k = 1 +
99
999

(k − 1), k = 1, . . . , 1000
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and the 100 types have the factor loadings are given by the rows of A,

A =




F G

R
. . .

...
F G


 , G =




cG

. . .

cG


 .

Here, F is a column vector of 10 entries, all equal to cF , and G a 10 × 10 matrix. In the 21-
factor model, R is a column vector of 100 entries, all equal to cR; in the 22-factor model, R is a
100×2 matrix in which the first fifty entries of the first column and the last fifty entries of the
second column are equal to cR and all other entries are zero. The 21-factor model thus has a
single “market factor” (affecting all obligors) and the 22-factor model has two orthogonal “market
factors.” Consecutive groups of 10 obligors (1-10, 11-20, · · · ) are of the same type. We consider
different factor loadings: (cR, cF , cG) = (0.8, 0.4, 0.4) is associated with a large market factor case,
(cR, cF , cG) = (0.5, 0.4, 0.4) with a medium market factor, and (cR, cF , cG) = (0.2, 0.4, 0.4) with a
small market factor. We also consider (cR, cF , cG) = (0.25, 0.15, 0.05), suggested by Morokoff [14].
Note that all these models satisfy aj ≥ 0 for all j, which implies that the intersection of all the
halfspaces associated with obligor types is non-empty. Hence these models satisfy Assumption 2.

To apply approximate IS, we apply PCA to A>A. We measure the effectiveness of the PCA
approximation to the full matrix through the usual PCA measure of explained variability. These
values are summarized in Table 2.

Approximate IS works well for both models. Tables 3 – 6 summarize the V.R. and E.R.
estimates for the 21-factor model, and Tables 7 – 10 for the 22-factor model. It seems that the
relatively small improvements for (0.2, 0.4, 0.4) come from the small ratios of explained squared
variations of factor loading coefficients in Table 2.

Table 2: The explained variability (ratio of squared variations) applying PCA to the factor loading
coefficients.

(αR, αF , αG)
(0.8,0.4,0.4) (0.5,0.4,0.4) (0.2,0.4,0.4) (0.25, 0.15,0.05)

Single Dominating Factor in R21 79% 60% 25% 74%
Two Dominating Factors in R22 80% 64% 31% 77%

7 Concluding Remarks

We have proposed an importance sampling procedure for the estimation of portfolio credit risk in
the multifactor Gaussian copula model. Our procedure shifts the mean in the underlying factor
structure to increase the probability of large losses. We established the asymptotic optimality
of the procedure under two limiting parameter regimes, assuming a finite number of types of
obligors. For practical implementation, we considered two relevant optimization problems for
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Table 3: V.R. and E.R. estimates using approximate IS at various loss levels in 21-factor model
with 100 types. The factor loading coefficients are (0.8, 0.4, 0.4).

Loss x(q) P(Lm > x) V.R. Est. E.R. Est.

10000 (20%) 0.0116 25 5
15000 (30%) 0.0053 44 9
20000 (40%) 0.0027 74 14
25000 (50%) 0.0013 126 23
30000 (60%) 0.0006 223 39
35000 (70%) 0.0002 443 74
40000 (80%) 0.0001 1043 167

Table 4: V.R. and E.R. estimates using approximate IS at various loss levels in 21-factor model
with 100 types. The factor loading coefficients are (0.5, 0.4, 0.4).

Loss x(q) P(Lm > x) V.R. Est. E.R. Est.

5000 (10%) 0.0084 34 8
7500 (15%) 0.0025 88 19
10000 (20%) 0.0008 217 44
12500 (25%) 0.0003 494 97
15000 (30%) 0.0001 1133 213

Table 5: V.R. and E.R. estimates using approximate IS at various loss levels in 21-factor model
with 100 types. The factor loading coefficients are (0.2, 0.4, 0.4).

Loss x(q) P(Lm > x) V.R. Est. E.R. Est.

2000 (4%) 0.0132 3 1
2500 (5%) 0.0042 8 2
3000 (6%) 0.0016 18 5
3500 (7%) 0.0006 48 14
4000 (8%) 0.0002 166 44
4500 (9%) 0.0001 74 19

choosing the mean shifts used for the common factors. We also reported numerical examples
showing the variance reductions and efficiency improvements achieved by applying the importance
sampling method. We developed approximations to facilitate the application of the procedure to
problems with a large number of types and common factors, for which the exact procedure may
be computationally intractable.

While the focus of this paper is on a specific problem in the measurement of portfolio credit
risk, the main issue we address also arises in other problems of rare-event simulation. The key
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Table 6: V.R. and E.R. estimates using approximate IS at various loss levels in 21-factor model
with 100 types. The factor loading coefficients are (0.25, 0.15, 0.05).

Loss x(q) P(Lm > x) V.R. Est. E.R. Est.

1000 (2%) 0.0941 3 2
1500 (3%) 0.0237 12 5
2000 (4%) 0.0061 45 17
2500 (5%) 0.0018 145 48
3000 (6%) 0.0005 444 136
3500 (7%) 0.0002 1390 397

Table 7: V.R. and E.R. estimates using approximate IS at various loss levels in 22-factor model
with 100 types. The factor loading coefficients are (0.8, 0.4, 0.4).

Loss x(q) P(Lm > x) V.R. Est. E.R. Est.

10000 (20%) 0.0077 16 3
15000 (30%) 0.0030 61 11
20000 (40%) 0.0012 118 21
25000 (50%) 0.0004 231 39
30000 (60%) 0.0001 600 95

Table 8: V.R. and E.R. estimates using approximate IS at various loss levels in 22-factor model
with 100 types. The factor loading coefficients are (0.5, 0.4, 0.4).

Loss x(q) P(Lm > x) V.R. Est. E.R. Est.

5000 (10%) 0.0050 24 4
7500 (15%) 0.0011 76 13
10000 (20%) 0.0003 223 36
12500 (25%) 0.0001 612 96

Table 9: V.R. and E.R. estimates using approximate IS at various loss levels in 22-factor model
with 100 types. The factor loading coefficients are (0.2, 0.4, 0.4).

Loss x(q) P(Lm > x) V.R. Est. E.R. Est.

2000 (4%) 0.0095 6 1
2500 (5%) 0.0030 16 3
3000 (6%) 0.0010 35 7
3500 (7%) 0.0004 70 13
4000 (8%) 0.0001 290 52

31



Table 10: V.R. and E.R. estimates using approximate IS at various loss levels in 22-factor model
with 100 types. The factor loading coefficients are (0.25, 0.15, 0.05).

Loss x(q) P(Lm > x) V.R. Est. E.R. Est.

1000 (2%) 0.0748 3 1
1500 (3%) 0.0134 13 3
2000 (4%) 0.0027 53 11
2500 (5%) 0.0006 214 41
3000 (6%) 0.0001 852 158

challenge in the multifactor setting we consider is that there are multiple ways the rare event
of interest (large portfolio losses) can occur. In this type of setting, an effective importance
sampling procedure will require using a mixture of distributions, with each component of the
mixture associated with one of the “ways” the rare event occurs. Implementing this general
approach in specific settings requires identifying a potentially large number of such paths to a
rare event, and then characterizing which of these are sufficiently important to get extra weight
under the importance sampling distribution. The techniques developed in this paper to address
these two problems in the credit risk setting are potentially applicable to other problems as well.
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