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RISK HORIZON AND REBALANCING HORIZON IN PORTFOLIO RISK
MEASUREMENT

PAUL GLASSERMAN

Columbia Business School

This paper analyzes portfolio risk and volatility in the presence of constraints on
portfolio rebalancing frequency. This investigation is motivated by the incremental risk
charge (IRC) introduced by the Basel Committee on Banking Supervision. In contrast
to the standard market risk measure based on a 10-day value-at-risk calculated at
99% confidence, the IRC considers more extreme losses and is measured over a 1-
year horizon. More importantly, whereas 10-day VaR is ordinarily calculated with a
portfolio’s holdings held fixed, the IRC assumes a portfolio is managed dynamically to
a target level of risk, with constraints on rebalancing frequency. The IRC uses discrete
rebalancing intervals (e.g., monthly or quarterly) as a rough measure of potential
illiquidity in underlying assets. We analyze the effect of these rebalancing intervals on
the portfolio’s profit and loss distribution over a risk-measurement horizon. We derive
limiting results, as the rebalancing frequency increases, for the difference between
discretely and continuously rebalanced portfolios; we use these to approximate the
loss distribution for the discretely rebalanced portfolio relative to the continuously
rebalanced portfolio. Our analysis leads to explicit measures of the impact of discrete
rebalancing under a simple model of asset dynamics.

KEY WORDS: risk management, portfolio rebalancing, liquidity.

1. INTRODUCTION

In 2007, the Basel Committee on Banking Supervision proposed a new measure of market
risk known as the incremental risk charge, or IRC; the proposal was updated in January
2009 and is expected to take effect in 2010. The IRC is incremental to the current Basel
standard for market risk, which is based on a 99% value-at-risk (VaR) measured over a
10-day horizon. The standard VaR measure was designed to capture the risk in short-
term fluctuations of highly liquid securities; but, over time, banks have come to include
less liquid assets in their trading books. The IRC arose in response to this changing
composition of bank portfolios and as part of a broader attempt to equalize capital
charges for similar risks held in banking and trading books. The proposal is detailed
in reports of the Basel Committee (2007, 2009); for perspectives from the industry, see
Duncan et al. (2009), Sebton et al. (2007), and Smillie and Epperlein (2007). For general
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background on risk capital, see, for example, Crouhy, Galai, and Mark (2000) and
McNeil, Frey, and Embrechts (2005).

The Basel principles for calculating the IRC include the following key elements:

◦ a 99.9% VaR,
◦ measured over a 1-year time horizon,
◦ assuming the portfolio is managed to a target level or risk,
◦ incorporating “liquidity horizons” for less liquid assets.

The first two features are stringent but otherwise straightforward extensions of the
traditional 10-day 99% VaR; the last two features are novel. A standard 10-day VaR
calculation uses a “buy and hold” assumption under which a portfolio is held fixed
throughout the VaR horizon while market prices change. The IRC recognizes the im-
plausibility of this assumption over a 1-year horizon and allows the portfolio composition
to change within the VaR interval. The notion of a target level of risk precludes a calcu-
lation in which a portfolio is artificially assumed to move to safe assets following losses;
instead, the portfolio must be rebalanced to reflect a level of risk representative of the
bank’s trading. The last feature of the IRC limits the frequency of rebalancing to capture
potential illiquidity in the underlying assets. A typical rebalancing frequency is monthly
or quarterly.

The purpose of this paper is to analyze these features of the proposed risk measure,
with particular emphasis on the impact of the liquidity intervals nested within the longer
risk horizon. The IRC provides the motivation for this investigation, but we see these
features of the IRC as having broader applicability—any prescription for measuring
portfolio risk over a moderately long horizon must address the question of how the
portfolio evolves over the horizon; a target level of risk with constraints on rebalancing
frequency provides a natural framework. Moreover, guidelines put forward by the Basel
Committee often influence risk measurement and risk management even beyond the
domain of bank supervision.

We analyze the impact of rebalancing frequency in a simple model in which the
underlying assets evolve as correlated geometric Brownian motions. We model the target
level of risk through a fixed level of portfolio volatility achieved through a fixed set
of portfolio weights. We then analyze the difference between a continuously rebalanced
portfolio and a portfolio with the same target weights that is rebalanced only periodically.
This is a stylized model that does not capture effects like downgrades or defaults, but it
leads to explicit characterizations of the impact of discrete rebalancing.

Our analysis is based on letting the rebalancing frequency increase, through which
we derive several results. We establish a central limit theorem for the relative difference
between the two portfolio distributions at a fixed horizon (the risk horizon of, e.g., 1
year) and a corresponding limit for the absolute difference as a mixture of normals. We
show that the relative error is asymptotically independent of the level of the continu-
ously rebalanced portfolio. We then use this result to derive an asymptotic “volatility
adjustment” to correct for the effect of discrete rebalancing; somewhat surprisingly, this
correction involves the asymptotic covariance between the relative error and the (log of
the) continuous portfolio, despite their asymptotic independence. Next, we examine the
relation between the discrete and continuous portfolios in the extreme tails, motivated by
the 99.9% confidence level specified in the IRC. We show that, conditional on a large loss
in the continuously rebalanced portfolio, the distribution of the discretely rebalanced
portfolio is asymptotically concentrated at a point. We use this to derive an approxima-
tion to the extreme VaR and combine it with the volatility adjustment derived through
the central limit theorem. Our approximations to the loss distribution are applicable to



RISK HORIZON AND REBALANCING HORIZON IN PORTFOLIO RISK MEASUREMENT 217

expected shortfall and other tail risk measures, in addition to VaR. Most of our results
are formulated in a setting that contrasts fully continuous rebalancing with fully discrete
rebalancing at fixed intervals, but we also discuss extensions to settings in which different
subportfolios are rebalanced at different frequencies.

Discretely rebalanced portfolios arise in models of transaction costs and discrete
hedging, including Bertsimas, Kogan, and Lo (2000), Boyle and Emanuel (1980), Duffie
and Sun (1990), Leland (1985), and Morton and Pliska (1995). Gordy and Howells
(2006) compare the effect of alternative rebalancing assumptions on the procyclicality of
capital requirements. Guasoni, Huberman, and Wang (2007) analyze the effect of discrete
rebalancing on the measurement of tracking error and portfolio alpha. Dufresne (2004)
compares the distributions of discretely and continuously weighted averages of asset
prices. The distribution of the difference between a diffusion process and its discrete-
time approximation has also received extensive study in the simulation literature, as
in Kurtz and Protter (1991). We will comment further on connections and differences
between our analysis and earlier work after presenting our first main result. As discussed
earlier, the rebalancing constraints in the IRC serve as a rough way to capture potential
illiquidity in measuring portfolio risk. Bangia et al. (1998) and Jorion (2006) calculate
liquidity-adjusted VaR using information on bid-ask spreads. The two approaches could
potentially be aligned by using a measure of market impact to set rebalancing frequencies,
along the lines in Dubil (2003).

Our analysis considers only the impact of rebalancing frequency and does not address
other aspects of the IRC and the effect of illiquidity. For example, one concern in
discussions of the IRC is “double counting” of risk when a bank calculates both a
specific risk charge and the IRC. Other points of discussion include the justification for
adding a 1-year VaR number to a standard 10-day VaR, as well as the limitations of VaR
more generally; see Finger (2009) for an overview and commentary. We also stress that
our analysis is limited to a simple model of asset dynamics and portfolio rebalancing.
The benefit of working with a simple model is that it leads to explicit results that may
provide a useful benchmark and suggest directions for further investigation.

The rest of the paper is organized as follows. Section 2 describes the modeling frame-
work for our investigation and introduces notation. Section 3 establishes the central limit
theorem for the relative difference between the discrete and continuous portfolios and
derives an explicit expression for the limiting variance parameter in terms of underlying
asset volatilities, correlations, and portfolio weights. Section 4 uses this to derive our
adjustment to portfolio volatility—an adjustment that corrects the volatility for discrete
rebalancing. Section 5 proves a conditional limit theorem for the loss in the discrete
portfolio conditional on a large loss in the continuous portfolio. This section also reports
numerical results to evaluate the quality of various approximations to the tail of the loss
distribution. Section 6 considers the extension to subportfolios rebalanced at different
frequencies, and Section 7 concludes the paper.

2. MODEL DYNAMICS

We begin by describing the evolution of the assets in the portfolios we consider. A d-
dimensional standard Brownian motion W = (W1, . . . , Wd)� drives the prices of d assets
with dynamics

d Si (t)
Si (t)

= μi dt +
d∑

j=1

σi j dWj (t), i = 1, . . . , d.
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The drifts μi and volatility coefficients σ ij are constants. The covariance matrix � of the
instantaneous returns has entries

�i j =
d∑

k=1

σikσ jk, i , j = 1, . . . , d.

Given these asset dynamics, the portfolio is described by a fixed vector w =
(w1, . . . , wd)� of weights. The weights sum to 1, but some could be negative, reflect-
ing short positions. The weights could be the result of a portfolio optimization problem,
but we will simply take them as given. In the absence of liquidity constraints, the portfolio
is continuously rebalanced to maintain the portfolio weights, so the value V evolves as

dV(t)
V(t)

=
d∑

i=1

wi
d Si (t)
Si (t)

,

which we write as

dV(t)
V(t)

= μw dt +
d∑

i=1

wiσ
�
i dW(t),

by defining μw = ∑
iwiμi and letting σ i = (σ i1, . . . , σ id)�. The portfolio’s volatility is

σw =
√

w��w .

Indeed, we could write the dynamics of the continuously rebalanced portfolio as

dV(t)
V(t)

= μw dt + σw dW̃(t)

by introducing the scalar Brownian motion W̃(t) = ∑
i , j wiσi j Wj (t)/σw . If we define

σ̄ j =
d∑

i=1

wiσi j , j = 1, . . . , d,(2.1)

then we also have σw = ‖σ̄‖.
Now introduce a risk horizon T (e.g., 1 year) and a liquidity or rebalancing horizon

�t = T/N (e.g., 1 month with N = 12). The discretely rebalanced portfolio V̂ evolves
from n�t to (n + 1)�t according to

V̂((n + 1)�t) = V̂(n�t)

(
d∑

i=1

wi
Si ((n + 1)�t)

Si (n�t)

)
.

In other words, the discretely rebalanced portfolio grows according to the weighted
average of the holding period returns of the individual assets. We adopt the normalization
V(0) = V̂(0) = 1.

Write V̂n = V̂(n�t), Vn = V(n�t), and �W(n) = W((n + 1)�t) − W(n�t). The
following easily verified representation of the difference between the two portfolio values
will be useful:

V̂N − VN = VN

N∑
n=1

(
V̂n

Vn
− V̂n−1

Vn−1

)
.(2.2)
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The key to our analysis will be approximating the increments in (2.2) using, for n =
1, . . . , N,

εn = 1
2

⎛
⎝ d∑

i=1

wi
(
σ�

i �W(n)
)2 −

(
d∑

i=1

wiσ
�
i �W(n)

)2
⎞
⎠ − θ�t,(2.3)

where

θ = 1
2

(
d∑

i=1

wi‖σi‖2 − σ 2
w

)
= 1

2

(
d∑

i=1

wi‖σi‖2 − ‖σ̄‖2

)
,(2.4)

recalling (2.1). These terms satisfy E[εn] = 0. In fact,

E
[(

σ�
i �W(n)

)2] = ‖σi‖2�t and E

⎡
⎣
(

d∑
i=1

wiσ
�
i �W(n)

)2
⎤
⎦ = σ 2

w�t,(2.5)

so εn may be expressed as the difference of two terms, each having mean zero.
Our investigation focuses on the simple model of asset dynamics and portfolio weights

described earlier. In practice, both the portfolio strategy and asset dynamics are likely to
be more complex. The benefit of working with a simple model is that it leads to explicit
results that can provide a useful benchmark for evaluating the effect of rebalancing
frequency. For risk management purposes, the objective is not necessarily to reproduce
a detailed trading strategy but, in the case of the IRC, to capture the notion of a target
level of risk. In our setting, that target is captured by σ w.

3. ASYMPTOTIC ERROR

In this section, we analyze the difference V̂N − VN between the discretely rebalanced and
continuously rebalanced portfolios as the number of rebalancing dates N grows, with
the risk horizon T held fixed. We identify the limiting distributions of the absolute and
relative errors. Our analysis builds on the representation in (2.2). The first step is to
approximate the sum in (2.2) with the sum of the εn defined in (2.3). The proof of the
following result (and most others) is deferred to the Appendix.

PROPOSITION 3.1.

E

⎡
⎣
(

V̂N − VN

VN
−

N∑
n=1

εn

)2
⎤
⎦ = O(�t2).

This result underlies most of our analysis: it states that the relative difference between
the discretely and continuously rebalanced portfolio values is nearly equal to a sum of
independent errors defined through the squares of the Brownian increments driving the
underlying asset returns.
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3.1. The Limit Theorem

We now come to the main result of this section. To state it, we set

σ 2
L = Var

⎡
⎣1

2

⎛
⎝ d∑

i=1

wi
(
σ�

i Z
)2 −

(
d∑

i=1

wiσ
�
i Z

)2
⎞
⎠
⎤
⎦(3.1)

with Z ∼ N(0, I) in Rd . From the definition of εn in (2.3), we find that Var[εn ] = σ 2
L�t2.

THEOREM 3.2. As N → ∞,

√
N

(
V̂N − V(T),

V̂N − V(T)
V(T)

)
⇒ (V(T)X, X),(3.2)

where X ∼ N(0, σ 2
LT2) is independent of V(T), and “⇒” denotes convergence in distribu-

tion.

Proof. For each N, the εn, n = 1, . . . , N, are i.i.d. with mean zero and variance σ 2
L�t2.

Also, E|εn|3 = O(�t3). Thus, by the Lyapunov central limit theorem (as in, for example,
theorem 7.1.2 of Chung 1974),

√
N

N∑
n=1

εn ⇒ N
(
0, σ 2

LT2).(3.3)

Let

XN =
√

N

(
V̂N − V(T)

V(T)

)
;(3.4)

then, by Proposition 3.1, XN − √
N
∑N

n=1 εn ⇒ 0, and, by theorem 4.4.6 of Chung (1974),
XN inherits the limiting distribution in (3.3).

For any j , k, m = 1, . . . , d, E[�Wj(n)�Wk(n)�Wm(n)] = 0; it then follows from the
fact that εn is a quadratic function of the components of �W(n) that E[εn�Wm(n)] =
0, m = 1, . . . , d. In other words, εn is uncorrelated with the components of �W(n). The
pairs (�W(n), εn), n = 1, 2, . . . , N, are i.i.d. in Rd+1, so the convergence in (3.3) extends
to

1√
N

(
N∑

n=1

�W(n)√
�t

,

N∑
n=1

εn

σL�t

)
⇒ N(0, I)(3.5)

in Rd+1. But then, by the Cramér-Wold device (Billingsley 1968, p. 49), (W(T), XN) is
also asymptotically multivariate normal with independent components. Because V(T) is
a continuous function of W(T), we also have (V(T), XN)⇒(V(T), X), with asymptotic
independence, from which we get the convergence of (V(T)XN , XN) in the statement of
the theorem. �

The convergence in (3.5) can be strengthened to a functional central limit theorem,{( [Nt]∑
n=1

�W(n),
[Nt]∑
n=1

εn

σL
√

�t

)
, t ∈ [0, T]

}
⇒ {(W(t), W̃(t)), t ∈ [0, T]}
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where W̃ is a one-dimensional Brownian motion independent of W, [Nt] denotes the
integer part of Nt (see Billingsley 1968, p. 68). We may also write (3.2) as

√
N

(
V̂N − V(T),

V̂N − V(T)
V(T)

)
⇒ (V(T)σL

√
TW̃(T), σL

√
TW̃(T)),

with W̃ a Brownian motion independent of V. This says neither more nor less than (3.2)—
any normal random variable may be represented as the level of a Brownian motion at
a fixed time—but it is suggestive of the following interpretation: asymptotically, the
rebalancing errors are driven by a Brownian motion that is independent of the Brownian
motion driving the underlying assets.

Related results arise in other contexts. Kurtz and Protter (1991) identify the law of
the error of the Euler scheme for discretizing stochastic differential equations, and they
characterize the limiting error through a stochastic differential equation driven by a
Brownian motion independent of the original driving Brownian motion. Jacod and
Protter (1998) extend this analysis to Lévy-driven processes, and Detemple, Garcia,
and Rindisbacher (2006) use it to compare alternative discretization methods. Related
ideas arise in the convergence of GARCH models to continuous-time limits, as in Duan
(1997). Boyle and Emanuel (1980) and, in a more general setting, Bertsimas, Kogan, and
Lo (2000), analyze the hedging error that results from applying a continuous-time delta-
hedging strategy at discrete dates. Boyle and Emanuel (1980) show that the hedging error
is uncorrelated with the return on the underlying stock over a single period; Bertsimas,
Kogan, and Lo (2000) find the limiting distribution of the hedging error over multiple
periods and note that the hedging error is asymptotically independent of the price of the
underlying asset. Related results are derived by Leland (1985) in the context of option
pricing with transaction costs.

A feature of our setting is that it allows an explicit representation of the limiting
variance parameter σ 2

L. For this, we write (2.3) as

εn = 1
2

(
�W(n)� B�W(n) − E[�W(n)� B�W(n)]

)
= 1

2

(
�W(n)� B�W(n) − Tr(B)�t

)
,

(3.6)

where B is the symmetric matrix with entries

Bjk =
d∑

i=1

wiσi jσik −
d∑

i=1

wiσi j

d∑
�=1

w�σ�k.(3.7)

We may also write the matrix B as

B =
d∑

i=1

wiσiσ
�
i − σ̄ σ̄�,(3.8)

with σ̄ = ∑
i wiσi , as in (2.1).

PROPOSITION 3.3. The variance parameter σ 2
L is given by

σ 2
L = 1

2
Tr(B2) = 1

2

(
w�(� ◦ �)w − 2w����w + (w��w)2) ,
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where ◦ denote elementwise multiplication and � is a diagonal matrix with �ii = wi, i =
1, . . . , d.

The matrix B reflects the dispersion in the weights w and volatilities σ ij. This can
be seen in (3.7), which is the difference between a weighted average of products and
a product of weighted averages. Representing σ 2

L in terms of B (Tr(B2) is the square
of the Frobenius norm of B) thus provides some insight into the parameters affecting
σ 2

L. However, B depends on the way we factor the covariance matrix � (through the
volatilities σ ij), which is somewhat arbitrary. In contrast, the alternative representation
in Proposition 3.3 depends only on w and � and thus shows that σ 2

L is invariant with
respect to the choice of factorization of �.

While the limiting distribution of the relative difference between the two portfolios (the
second component of (3.2)) is normal, Theorem 3.2 shows that the limiting distribution
of the absolute difference (the first component) is a lognormal mixture of normals. As a
further illustration of the explicit nature of this limit, we record some of its moments.

PROPOSITION 3.4. The limiting distribution of the scaled difference
√

N(V̂N − V(T)) has
variance σ 2

LT exp(2μw T + σ 2
w T), kurtosis 3 exp(4σ 2

w T), and all odd moments equal to zero.

Proof. The independent product XV(T) has all odd moments equal to zero because X
has this property, and both X and V(T) have finite moments of all orders. The variance of
the product is then σ 2

LT · E[V(T)2], and E[V(T)2] = exp(2μw T + σ 2
w T). For the kurtosis,

we need to calculate

EV(T)4 X4

(EV(T)2 X2)2
= EV(T)4 EX4

(EV(T)2 EX2)2
= 3

EV(T)4

(EV(T)2)2
,

using first the independence of V(T) and X and then the fact that, as a normal random
variable, X has a kurtosis of 3. The fourth moment of V(T) is

e4μw T−2σ 2
w T E[exp(4σ̄�W(T))] = e4μw T+6σ 2

w T. �

3.2. Example

To illustrate the convergence in Theorem 3.2, we provide a numerical example. We
consider a portfolio of 10 assets, although these could alternatively be interpreted as
subportfolios of different types of assets. The individual asset volatilities range from
2.5% to 13.75% in increments of 1.25%, and all pairwise correlations of distinct assets
are equal to 0.2. The mean rate of return on the i th asset is μi = .05 + ‖σ i‖/4. We
choose portfolio weights by maximizing the portfolio growth rate μw − σ 2

w/2 (which is
equivalent to choosing optimal weights with log utility). This yields the weights

(−5.3865, −0.7930, 0.4545, 0.8673, 1.0025, 1.0306, 1.0142, 0.9792, 0.9373, 0.8937).

We measure the portfolio’s leverage as the ratio of the total long position (the sum of the
positive weights) divided by the initial capital (the sum of all the weights, which is simply
1). This yields a leverage ratio of 7.2. The resulting portfolio volatility is σ w = 35.51%
with a mean rate of return μw = 18.24%.
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TABLE 3.1
Numerical Illustration of Convergence of Relative and Absolute Differences as the

Number of Rebalancing Dates N Increases

Relative difference XN Absolute difference
√

N(V̂N − VN)

N SD Skewness Kurtosis SD Skewness Kurtosis Correlation

2 0.079 −2.48 16.6 0.102 −3.41 28.1 −0.003
4 0.078 −1.49 7.3 0.100 −2.56 18.8 0.002
12 0.077 −0.75 3.9 0.099 −1.57 10.6 0.000
52 0.077 −0.35 3.2 0.098 −0.77 6.5 0.001
100 0.077 −0.25 3.1 0.098 −0.57 5.7 −0.002
∞ 0.0766 0 3 0.0978 0 4.97 0

Note: The last row shows theoretical values for the limit.

FIGURE 3.1. QQ plots of XN/σ LT at N = 2 (left), N = 4 (middle), and N = 100 (right),
illustrating the convergence to normality.

Table 3.1 illustrates the convergence of moments as the number of rebalancing dates N
increases, based on simulation estimates. The first three columns of results show estimates
of the standard deviation, skewness, and kurtosis of the relative difference XN between
the discrete and continuous portfolios; the next three columns show estimates for the
difference V̂N − V(T); and the last column shows estimates of the correlation between XN

and log V(T). The values in the table are estimated from 1 million replications; the last
row shows theoretical values under the limiting distributions. The standard deviations
(for both the relative and absolute differences) and correlations are very close to the
limiting values, even at small values of N. As one might expect, the higher moments are
initially much farther from the values under the limiting distribution. As we will see later,
this is at least partly because of the relatively high leverage ratio in this example.

Figure 3.1 illustrates the convergence to normality of the relative rebalancing er-
ror XN , scaled by its limiting standard deviation σ LT. The figure shows QQ-plots at
N = 2 (left), N = 4 (middle), and N = 100 (right), based on 1 million replications of
each. (The observations would fall on a straight line if the samples conformed exactly
to a normal distribution.) In this leveraged example, the distribution is initially quite
negatively skewed and shows a heavy left tail, indicating a high likelihood of significant
underperformance by the discretely rebalanced portfolio. The convergence to normality
for large N is reflected in the right panel.
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FIGURE 3.2. Scatter plots of XN versus log (V(T)) at N = 2 (left), N = 4 (middle), and
N = 100 (right), illustrating asymptotic independence.

FIGURE 3.3. Histograms of XN/σ LT at N = 12 for the original (left) and reduced-
leverage (right) portfolios.

Figure 3.2 shows scatter plots of XN against log V(T). At N = 2, dependence between
the two is evident, despite the low correlation reported in Table 3.1. The pattern in the
leftmost panel of the figure reflects the quadratic relation between the increments of the
rebalancing error and the asset returns. The asymptotic independence is reflected in the
scatter plot in the rightmost panel, which shows results for N = 100.

As a further illustration, we compare results with a modification of this portfolio. We
adjust the model parameters to keep the overall mean and volatility μw and σ w unchanged
while reducing leverage. We accomplish this by scaling each asset volatility by a factor of
four, reducing each μi by 0.0167, and changing the weights to

(−0.8036, −0.0137, 0.1855, 0.2424, 0.2542, 0.2498, 0.2396, 0.2274, 0.2151).

(These weights maximize μw − cσ 2
w/2 with c = 1.029 chosen to produce the same values of

μw and σ w that we previously obtained with c = 1.) The correlation matrix is unchanged,
and the overall structure of the model is close to that of the previous example, but the
resulting leverage ratio is 1.8 rather than 7.2.

Figure 3.3 compares histograms of XN/σ LT at N = 12 for the original and modified
models. For the portfolio with lower leverage (on the right), the distribution is closer
to the normal limit and shows slightly positive skewness (estimated at 0.17); for the
more highly leveraged portfolio (on the left), the distribution exhibits negative skewness
(estimated at −0.75). This comparison is indicative of a more general pattern we have
observed in numerical examples: the quality of the normal approximation to the relative
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error XN depends more on the degree of leverage than on the portfolio volatility or mean
return, with high leverage producing negative skewness.

4. A VOLATILITY ADJUSTMENT FOR DISCRETE REBALANCING

4.1. The Discretely Rebalanced Portfolio Distribution

We would like to use Theorem 3.2 to approximate the distribution of V̂N and then to
approximate its VaR or other risk measures (as in, e.g., Artzner et al. 1999; Rockafellar
and Uryasev 2000). By the definition of XN in (3.4), we have

V̂N = V(T)
(

1 + XN√
N

)
.

This represents V̂N as nearly the product of two lognormal random variables, be-
cause V(T) is lognormal, XN is asymptotically normal, and 1 + x/

√
N = exp(x/

√
N) +

O(1/N). (Recall that we have joint convergence in Theorem 3.2.) This suggests using a
lognormal approximation to V̂N. However, we cannot assume that V̂N is positive for fixed
N, so we cannot take its logarithm to calculate a volatility parameter. To get around this
problem, we set

V̄N = V(T) exp(XN/
√

N) = V̂N + Op(1/N).

Then V̄N is positive, and its squared volatility is

Var[log V̄N]
T

= 1
T

Var
[

log V(T) + XN√
N

]
= σ 2

w + Var[XN]
TN

+ 2
Cov[log V(T), XN]

T
√

N
.

(4.1)

For the second term on the far right of (4.1), Proposition 3.1 implies that

Var[XN] → Var[X] = σ 2
LT2,

so

Var[XN]
TN

= σ 2
LT
N

+ o(1/N) = σ 2
L�t + o(�t).

For the last term in (4.1), consistent with the asymptotic independence proved in Theorem
3.2, we have

Cov[log V(T), XN] → 0;

however, the rate of convergence is critical in determining whether the covariance term
is negligible. It is not: the covariance is of order O(1/

√
N), so the contribution of the

covariance term is of the same order as the variance term.

PROPOSITION 4.1.

(i) We have
√

NCov[log V(T), XN] → γLT2,(4.2)
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where

γL = μ���w − μwσ 2
w + σ 4

w − w����w .(4.3)

(ii) E[(V̄N − V̂N)2] = O(N−2) and

N(Var[log V̄N] − Var[log V(T)]) → (
σ 2

L + 2γL
)
T2.

The second part of this proposition asserts that the difference between V̂N and V̄N is
negligible (relative to our approximations) and calculates the limiting volatility of the
positive sequence V̄N, which we may therefore interpret as the limiting volatility of V̂N.
Armed with this limit, we arrive at a volatility adjustment that adjusts the distribution
of V(T) to approximate the distribution of V̂N.

Volatility adjustment: To correct for discrete rebalancing, apply the volatility adjustment

σw → σadj =
√

σ 2
w + (

σ 2
L + 2γL

)
�t.(4.4)

As one would expect, the adjustment vanishes as the rebalancing interval �t shrinks to
zero. Moreover, the adjustment can result in either a larger or smaller volatility because
the sign of γ L and its magnitude relative to σ 2

L are indeterminate.
In a model with transaction costs, Leland (1985) characterizes the price of an option

using the Black–Scholes formula with an adjusted volatility, the adjustment capturing the
effect of discrete hedging. The adjustment in (4.4) is reminiscent of Leland’s adjustment
(as pointed out by Jan Obloj), though there is no evident connection between the terms
in the two expressions. Haug (2007) reviews volatility adjustments to correct for dis-
crete dividends in option pricing. Broadie, Glasserman, and Kou (1997), Hörfelt (2003),
Howison and Steinberg (2007), and Lai, Yao, and AitSahalia (2007) derive continuity
corrections for discretely monitored path-dependent options by adjusting a barrier or
boundary, rather than a volatility. Dufresne (2004) considers adjustments to lognormal
approximations for sums of lognormal approximations.

4.2. Examples

To evaluate the accuracy of the volatility adjustment (4.4), we test its performance
through simulation on several examples:

Model 1: We refer to the first example introduced in Section 3.2 as Model 1a and the
modification introduced before Figure 3.3 (with lower leverage) as Model 1b.

Model 2: This model has five assets; as in Model 1, all off-diagonal correlations are
equal to 0.2, and each asset return is of the form μi = 0.05 + ‖σ i‖/2. We test
various levels of volatility and leverage.

2a: Asset volatilities are 10%; portfolio weights are ( − 3, 1, 1, 1, 1).
2b: Asset volatilities are 5%; portfolio weights are ( − 4.5, −4.5, 4, 3, 3).
2c: Asset volatilities are 20%; portfolio weights are ( − 1.5, 1, 0.5, 0.5, 0.5).
2d: Asset volatilities are 2.5%; portfolio weights are ( − 4.5, −4.5, 4, 3, 3).
2e: Asset volatilities are 50%; portfolio weights are (0.2, 0.2, 0.2, 0.2, 0.2).
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TABLE 4.1
Error Reduction Using the Adjustment Across Test Models

Model Leverage σ w μw 2γL/σ 2
L N = 2 N = 4 N = 12

1a 7.2 0.355 18.24% 0 64% 81% 90%
1b 1.8 0.355 18.24% −.1 98% 94% 64%
2a 4 0.326 10% 3.0 70% 85% 93%
2b 10 0.387 7.50% 3.4 63% 82% 91%
2c 2.5 0.369 15% 3.9 61% 81% 93%
2d 10 0.193 6.25% 4.0 91% 94% 86%
2e 1 0.300 30% 0 91% 86% 66%
3a 10 0.302 10% 3.3 77% 90% 98%
3b 10 0.151 7.50% 3.3 95% 97% 73%
4 1 0.316 10.50% 0 99% 99% 99%

Note: The table shows the leverage ratio, volatility σ w, rate of return μw, and ratio
2γL/σ 2

L for each portfolio. The last three columns show the error reduction achieved
by the adjusted volatility at different rebalancing frequencies.

Model 3: For this model, we change the correlation matrix to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.9 0 0 0

0.9 1 0 0 0

0 0 1 0 0

0 0 0 1 0.9

0 0 0 0.9 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The drift vector has the same form as in Model 2, and the portfolio weights
are (−4.5, 4.5, 1, −4.5, 4.5). In Model 3a, all asset volatilities are 10%, and
in Model 3b they are all 5%.

Model 4: This model has 10 uncorrelated assets, � = I, μi = 10.5%, and wi = 10%, i
= 1, . . . , 10, with a portfolio volatility of 31.6%.

Table 4.1 shows results for these portfolios, based on 4 million simulation trials. The
table shows the leverage ratio, volatility σ w, and rate of return μw for each portfolio; it
also shows the ratio 2γL/σ 2

L to indicate the relative magnitude of the two parts of the
adjustment across different examples. The last three columns show the error reduction
achieved by the adjusted volatility at different rebalancing frequencies, N = 2, N = 4,
and N = 12. Merely noting that the adjusted volatility is close to the estimated volatility
of the discrete portfolio would be uninformative, because even σ w will be close to the
discrete volatility as N increases; of greater significance is measuring how much of the
error in σ w is corrected by the volatility adjustment. We measure this error reduction as

1 − |σadj − σ̂N|
|σw − σ̂N| ,

where σ adj is the adjusted volatility in (4.4), and σ̂N is the estimated “volatility” of V̂N.
Thus, a value close to 100% indicates that the volatility adjustment captures nearly all of
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FIGURE 4.1. Density (left) and distribution (right) for Model 4. In both panels, the
lower curve corresponds to the continuously rebalanced portfolio, the upper curve
corresponds to the discretely rebalanced portfolio with N = 4, and the circles are the
result of applying the volatility adjustment to the continuously rebalanced distribution.

the difference in volatility between the discretely and continuously rebalanced portfolios.
We calculate σ̂N by taking the standard deviation of log V̂N across paths. It is possible for
V̂N to take negative values (although this is rare in the examples we have tested), so we
simply discard negative values before taking logs. This affects the calculations at N = 2
for Models 1a, 2a, and 2b.

The results in the table confirm a very sizeable correction from the volatility adjustment,
with the adjustment often capturing nearly all the difference between the discrete and
continuous volatilities. There is no a priori reason to expect the error reduction to increase
with N: both the numerator and denominator in our error ratio vanish as N increases.
Nevertheless, it is noteworthy that the values in the table show a fairly consistent pattern.
The portfolios with higher leverage and volatility show a marked improvement in the
error reduction as N increases; for the portfolios with low leverage or low volatility, the
adjusted volatility is nearly exact even at N = 2.

Figure 4.1 illustrates the volatility adjustment in approximating the density and dis-
tribution of Model 4 with N = 4. The left panel shows densities of the logarithms of the
portfolio values on a log scale; the density of log V(T) is normal, so the logarithm of the
density yields a parabola, and this is the lowest curve on the left. The uppermost curve
in the left panel shows the estimated density of log V̂N, based on 4 million replications;
the density values are estimated as the proportion of values falling in each of 100 equally
spaced intervals. The circles show the result of applying the volatility adjustment to the
density of log V(T); these coincide almost perfectly with the density values estimated un-
der discrete rebalancing. The right panel makes an analogous comparison between the
cumulative distributions of the portfolio values, the lower curve corresponding to V(T),
the upper curve to V̂N, and the circles to the effect of applying the volatility adjustment to
V(T) in approximating V̂N. In both panels, the values marked by circles are calculated by
applying the volatility adjustment to the exact lognormal distribution of V(T), without
need for simulation.

The performance of the volatility adjustment in Figure 4.1 is excellent; however, we
will see that this adjustment is not always sufficient to produce a good approximation. In
the next section, we derive a (conditional) mean correction, with particular focus on the
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extreme tails. As a byproduct, this analysis produces a simple characterization of why
and when the volatility adjustment suffices.

5. EXTREME TAILS: CONDITIONAL MEAN

The lognormal approximation to V̂N, based on the central limit theorem in Theorem 3.2,
should be accurate over the range of values where the normal limit X provides a good
approximation to XN . As typically happens with applications of a central limit theorem,
the normal approximation loses accuracy in the extreme tails. Because the motivation
for our investigation includes a 99.9% VaR, the extreme tails are relevant. We therefore
supplement the central limit theorem with an approximation specifically focused on the
tails.

5.1. Conditioning on a Large Loss

Our approach will be to condition on an outcome of V(T) in the tail of its distribution.
We show that, for large N, the resulting conditional distribution of V̂N is concentrated at
a point: in effect, only one outcome of V̂N is consistent with a sufficiently extreme value
of V(T). This limit provides a correction in approximating the distribution of V̂N with
that of V(T) in the tails. It also provides an approximation to the VaR of the discretely
rebalanced portfolio using that of the continuously rebalanced portfolio.

As V(T) and σ̄�W(T) are in one-to-one correspondence, conditioning on a value of
one is equivalent to conditioning on a value of the other. We will impose a condition of
the form

σ̄�W(T) = xN ≡ x
√

N, for some x = 0,

which is equivalent to

V(T) = yN, with xN = log yN − μw T + σ 2
w T/2.

Our choice xN = x
√

N is a large deviations scaling in the following sense: If we set
ZN,n = �W(n)/

√
�t, then σ̄� ZN,n , n = 1, . . . , N, are independent, zero-mean normal

random variables, and

1
N

N∑
n=1

σ̄� ZN,n ⇒ 0;

but conditioning on σ̄�W(T) = x
√

N is equivalent to conditioning on

1
N

N∑
n=1

σ̄� ZN,n = x/
√

T.

Thus, we are conditioning a sample mean on a value away from its limit.
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FIGURE 5.1. Scatter plot of points (V(T), V̂N) for Model 1a.

THEOREM 5.1. With xN = x
√

N and yN = exp(xN + μw T − σ 2
w T/2),(

V̂N

V(T)

∣∣∣∣V(T) = yN

)
⇒ exp

(
1
2
βLx2

)
,(5.1)

as N → ∞, where

βL = σ̄� Bσ̄

σ 4
w

= 1
σ 4

w

(
w����w − σ 4

w

)
,(5.2)

with � and σ̄ as before.

The phenomenon reflected in Theorem 5.1 is illustrated in Figure 5.1 . The figure shows
a scatter plot of simulated pairs (V(T), V̂N) for Model 1a, plotted on a log scale, with
T = 1 and N = 2. The figure includes a diagonal line for comparison. Near the center of the
distribution, we see substantial variability in V̂N at each value of V(T), and this variability
is large relative to the differences in conditional means (i.e., the difference between the
conditional mean and the diagonal line). But in the lower tail, the conditional distribution
of V̂N becomes more tightly concentrated, and the deviation from the diagonal becomes
more appreciable, particularly in comparison to the conditional variability. The limit in
(5.1) measures this deviation. The theorem applies for large N, but the effect is evident
even at N = 2 (a point we return to in Theorem 5.2).

The limit in Theorem 5.1 yields the approximation

(V̂N|V(T) = y) ≈ y exp
(

1
2
βLx2

/
N
)

,

with x = log y − μw T + 1
2σ 2

w T. If we define

H(y) = y exp

(
1
2
βL

(
log y − μw T + 1

2
σ 2

w T
)2 /

N

)
,
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then we have the approximation

P(V̂N ≤ y) ≈ P(V(T) ≤ H−1(y)),(5.3)

provided H is monotone near y. Similarly, we can approximate the VaR for the discretely
rebalanced portfolio V̂a Rα (at confidence 1 − α) in terms of that for the continuously
rebalanced portfolio, Va Rα, using

V̂a Rα ≈ H(Va Rα),

if H is monotone near the VaR. At each y > 0, H′(y) is positive for all sufficiently large
N.

We can arrive at nearly the same approximation through an alternative route. Recall
that we derived the central limit theorem for (V̂N − V(T))/V(T) by first showing that
this ratio is close to the sum of the εn. This approach suggests that we approximate the
conditional expectation of the ratio (given V(T) = y) using the conditional expectation
of the εn. We can evaluate this conditional expectation exactly, without requiring that N
(or y) be large.

THEOREM 5.2. For any y > 0,

E

[
N∑

n=1

εn|V(T) = y

]
= 1

2
βL

(
x2 − σ 2

w T
N

)
,(5.4)

where x = log y − μw T + 1
2σ 2

w T.

Observe that if we let y = yN depend on N as in Theorem 5.1, then we should replace
x with x

√
N, and (5.4) approaches βLx2/2 as N → ∞. This yields the approximation

(V̂N|V(T) = y) ≈ y
(

1 + 1
2
βL

x2

N

)
,

which is consistent with what we derived previously, for large N.

5.2. Approximations and Examples

Let F( · ; μ, σ 2) denote a lognormal distribution with parameters μ and σ 2, meaning
that F(y; μ, σ 2) = P(exp (μ − σ 2/2 + σ Z) � y), with Z ∼ N(0, 1). Then the distribu-
tion of V(T) is F0(·) ≡ F(·; μw T, σ 2

w T), and this provides a crude approximation to the
distribution of V̂N.

Theorem 5.1 provides the approximation

P(V̂N ≤ y) ≈ FH(y) ≡ F
(
H−1(y); μw T, σ 2

w T
)
.(5.5)

The volatility adjustment (4.4) yields the approximation

P(V̂N ≤ y) ≈ Fadj(y) ≡ F
(
y; μw T, σ 2

adjT
)
,(5.6)

which is lognormal, but with the portfolio volatility σ w replaced by the adjusted volatility
σ adj.
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The approximation in (5.5) uses an adjustment to the (conditional) mean of V̂N (given
V(T)), whereas the approximation in (5.6) uses an adjustment to the volatility. It is
therefore natural to consider a combined approximation that uses both adjustments,

P(V̂N ≤ y) ≈ FH,adj(y) ≡ F
(
H−1(y); μw T, σ 2

adjT
)
.(5.7)

This approximation is not lognormal because of the distortion introduced by H.
Figure 5.2 illustrates these approximations for some of the test portfolios used in

earlier sections. The figures show estimates, based on 4 million replications each, of the
left tail of the portfolio value distributions, with both coordinates on logarithmic scales.
In each case, the leftmost (and uppermost) solid curve shows the estimated cumulative
distribution for the discretely rebalanced portfolio V̂N; the rightmost (and lowest) solid
curve is F0, the distribution of the continuously rebalanced portfolio. The dashed line
shows estimated values of FH , the adjusted distribution in (5.3). The correction calculated
from Theorem 5.1 shows a substantial improvement over the crude approximation F0

across portfolios with very different characteristics. The points marked by circles show
estimated values of Fadj; in these examples, the volatility adjustment, by itself, has limited
impact in the tail of the distribution. The points marked by plus sign are estimated values
of FH,adj, which combines the mean correction from Theorem 5.1 with the volatility
adjustment from (4.4). This combination gives consistently excellent results, particularly
at N = 12, but even at N = 4. This approximation is especially accurate in the important
region near probabilities of the order of 10−3–10−2 needed to estimate VaR at 99.9% or
99% confidence.

We have displayed values of Fadj and FH,adj at just a few points (marked with circles
and plus signs) in the interest of clarity; these values are just as easy to calculate as the
others using the expressions in (5.5) and (5.7), so plotting a curve of values is easy. The
quality of the approximations is consistent at intermediate points with the values shown
in the figures. The specific points displayed were calculated as follows: we first calculated
quantiles of F0 at probabilities 10−5, 10−4, 10−3, 10−2, and 10−1 and then evaluated Fadj

and FH,adj at those points.
By itself, Fadj (indicated with circles) is not nearly as effective in Figure 5.2 as it was

for Model 4 in Figure 4.1. The results of this section explain this contrast: Model 4
has βL = 0. Thus, for Model 4, FH = F0; the conditional mean adjustment has no
effect and the volatility adjustment becomes more important. For the examples in Figure
5.2, the values of βL are −0.84 (Model 1a), −1.1 (Model 2a), −1.0 (Model 2b), and
−0.99 (Model 3a), so the mean adjustment is comparatively more significant in these
examples.

Table 5.1 compares results under a systematic variation of model parameters. We
consider a portfolio of five assets, each with volatility σ and expected return μ = 0.05 +
σ/2. Correlations between distinct assets are all equal to ρ. The portfolio has a leverage
of two, with weights of −1, w0, w0, w0, and 2 − 3w0. We compare results for σ = 0.1,
0.25, and 0.5; ρ = 0, 0.2, and 0.4; and w0 = 0.1, 0.3, and 0.5, corresponding to Herfindhal
index values of 0.73, 0.37, and 0.25, respectively, for the positive weights. There are many
ways one could compare distributions across parameter values. We choose the 99.9%
VaR from the continuously rebalanced distribution, estimate the tail probability for the
discretely rebalanced portfolio at that loss level using simulation, and compare it with
the approximation using FH,adj.

In each entry of the table, the first number reported is the value from simulation, and
the second value is the approximation. Correlation and the uniformity of the weights
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FIGURE 5.2. In each panel, the upper solid line plots the distribution of log V̂N, and the
lower solid line plots the distribution of log V(T). The dotted line is the approximation
FH , the circles show approximation Fadj, and the plus signs show approximation FH,adj.
From left to right and top to bottom, the models are 1a with N = 4, 1a with N = 12,
2a with N = 4, 3a with N = 4, 2b with N = 4, and 2b with N = 4.

seem to have little impact on the accuracy of the approximation, which is generally
quite good. The approximation is less accurate at high volatility with N = 4, where it
underestimates the loss probability, though the magnitude is correct. The approximation
at high volatility improves at N = 12.



234 P. GLASSERMAN

T
A

B
L

E
5.

1
C

om
pa

ri
so

n
of

E
st

im
at

ed
T

ai
lP

ro
ba

bi
lit

ie
s

σ
=

0.
1,

N
=

4
σ

=
0.

25
,

N
=

4

w
0
=

0.
1

w
0
=

0.
3

w
0
=

0.
5

w
0
=

0.
1

w
0
=

0.
3

w
0
=

0.
5

ρ
=

0
0.

00
2/

0.
00

2
0.

00
2/

0.
00

2
0.

00
2/

0.
00

2
0.

00
7/

0.
00

5
0.

00
6/

0.
00

5
0.

00
6/

0.
00

5
ρ

=
0.

2
0.

00
2/

0.
00

2
0.

00
2/

0.
00

2
0.

00
2/

0.
00

2
0.

00
5/

0.
00

4
0.

00
4/

0.
00

3
0.

00
4/

0.
00

4
ρ

=
0.

4
0.

00
1/

0.
00

2
0.

00
1/

0.
00

1
0.

00
1/

0.
00

1
0.

00
3/

0.
00

3
0.

00
3/

0.
00

3
0.

00
3/

0.
00

2

σ
=

0.
5,

N
=

4
σ

=
0.

5,
N

=
12

w
0
=

0.
1

w
0
=

0.
3

w
0
=

0.
5

w
0
=

0.
1

w
0
=

0.
3

w
0
=

0.
5

ρ
=

0
0.

08
3/

0.
02

9
0.

05
4/

0.
02

3
0.

04
7/

0.
02

4
0.

00
9/

0.
00

5
0.

00
6/

0.
00

4
0.

00
6/

0.
00

3
ρ

=
0.

2
0.

05
4/

0.
01

8
0.

03
3/

0.
01

4
0.

02
9/

0.
01

4
0.

00
5/

0.
00

4
0.

00
4/

0.
00

3
0.

00
4/

0.
00

2
ρ

=
0.

4
0.

02
8/

0.
01

0
0.

01
7/

0.
00

7
0.

01
5/

0.
00

7
0.

00
3/

0.
00

3
0.

00
3/

0.
00

2
0.

00
2/

0.
00

5

N
ot

e:
In

ea
ch

en
tr

y
of

th
e

ta
bl

e,
th

e
fir

st
nu

m
be

r
gi

ve
s

th
e

es
ti

m
at

ed
ta

il
pr

ob
ab

ili
ty

fr
om

si
m

ul
at

io
n

of
th

e
di

sc
re

te
ly

re
ba

la
nc

ed
po

rt
fo

lio
,

an
d

th
e

se
co

nd
nu

m
be

r
gi

ve
s

th
e

ap
pr

ox
im

at
io

n
us

in
g

F
H

,a
dj

.



RISK HORIZON AND REBALANCING HORIZON IN PORTFOLIO RISK MEASUREMENT 235

6. SUBPORTFOLIOS AND MULTIPLE REBALANCING FREQUENCIES

In this section, we examine the rebalancing error when some assets are rebalanced more
frequently than others. To keep things simple, we focus on the case of two subportfolios.
The analysis of this case shows how to handle the general case, so long as the rebalancing
intervals for all subportfolios are integer multiples of some base interval.

Let Ui(t), i = 1, 2, denote the values of the subportfolios at time t, and let π1 and π2 =
1 − π1 denote their target weights in the full portfolio. We will use the same symbols to
denote the sets of indices of the assets in each subportfolio, writing, for example, i ∈ π1

or i ∈ π2 to indicate that the i th asset is in the first or second subportfolio. We write pi

for the weight of asset i in the subportfolio that contains it, so wi = π1 pi or wi = π2 pi,
depending on whether asset i is in the first or second subportfolio. We assume no asset
is contained in both subportfolios; this is without loss of generality, as we could define
two copies of the same asset as different assets.

Suppose, initially, that U1 is rebalanced twice as often as U2; its gross return over [0,
�t] is

U1(�t)
U1(0)

=
(∑

i∈π1

pi
Si (�t/2)

Si (0)

)(∑
i∈π1

pi
Si (�t)

Si (�t/2)

)
.

The gross return on the second subportfolio over the same period is

U2(�t)
U2(0)

=
∑
i∈π2

pi
Si (�t)
Si (0)

,

and the gross return on the full portfolio is

π1
U1(�t)
U1(0)

+ π2
U2(�t)
U2(0)

.

The value V(�t) of the continuously rebalanced portfolio is unchanged from previous
sections.

If we carry out a Taylor expansion of

π1
U1(�t)
U1(0)

+ π2
U2(�t)
U2(0)

− V(�t)(6.1)

to terms of order �t (taking the magnitude of a Brownian increments to be the square
root of the magnitude of the corresponding time increment), we get a quadratic function
of the Brownian increments over [0, �t/2] and [�t/2, �t], centered by its mean; this
generalizes the error terms εn used in previous sections. For this section only, let �W1

and �W2 denote the Brownian increments over these subintervals; �W = �W1 + �W2.
Then Taylor expansion of U1 yields

U1(�t/2)
U1(0)

≈
(

1 +
∑
i∈π1

pi

(
μi − 1

2
‖σi‖2

)
�t
2

+
∑
i∈π1

piσ
�
i �W1 + 1

2

∑
i∈π1

pi
(
σ�

i �W1
)2

)
,

(6.2)
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and the same expression for U1(�t)/U1(�t/2) but with �W1 replaced by �W2. Similarly,
we get

U2(�t)
U2(0)

≈
(

1 +
∑
i∈π2

pi

(
μi − 1

2
‖σi‖2

)
�t +

∑
i∈π2

piσ
�
i (�W1 + �W2) + 1

2

∑
i∈π2

pi
(
σ�

i (�W1 + �W2)
)2

)
,

(6.3)

and

V(�t) ≈ 1 +
(
μw − 1

2
σ 2

w

)
�t +

d∑
i=1

wiσ
�
i (�W1 + �W2) + 1

2

(
d∑

i=1

wiσ
�
i (�W1 + �W2)

)2

.

(6.4)

Combining these expressions and keeping only terms of order �t or larger yields the
difference between a quadratic form in (�W1, �W2) and θ�t, with θ as in (2.4).

The limits and approximations in previous sections all result from approximating the
relative difference (V̂N − V(T))/V(T) with the sum of the εn. Here, we will not extend
the convergence arguments given previously, but instead show how to redefine εn to
capture different rebalancing frequencies. This provides a mechanism for extending the
approximations by calculating the parameters used previously for the new increments
εn. We will illustrate this idea by evaluating their variance to generalize σ 2

L. The main
difference between this setting and the previous one is that before we had only quadratics
of the form �W� B�W, and now we pick up cross terms of the form �W�

1 C�W2 that
arise as products of the linear (in �Wi) terms in the expansion of U1. These terms arise
precisely because of the doubly frequent rebalancing of this subportfolio.

We use the following notation:

σ̄ j =
∑
i∈π j

piσi , j = 1, 2,

and

Aj =
∑
i∈π j

piσiσ
�
i , j = 1, 2.

Observe that σ̄ = π1σ̄1 + π2σ̄2 and B = π1 A1 + π2 A2 − σ̄ σ̄�.
Substituting (6.2)–(6.4) in (6.1), keeping only terms of order O(�t) or larger, and

simplifying, we get

π1
(
σ̄�

1 �W1
)(

σ̄�
1 �W2

) + π1

2

∑
i∈π1

pi
((

σ�
i �W1

)2 + (
σ�

i �W2
)2)

+π2

2

∑
i∈π2

pi
((

σ�
i �W

)2 − 1
2

(σ̄��W)2 − θ�t.

This, in turn, can be rewritten as

�W�
1 C�W2 + 1

2
�W�

1 B�W1 + 1
2
�W�

2 B�W2 − θ�t,(6.5)
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with

C = π1σ̄1σ̄
�
1 + π2 A2 − σ̄ σ̄� = B + π1

(
σ̄1σ̄

�
1 − A1

)
.(6.6)

The expectation of (6.5) is

0 + 1
2

Tr(B)
�t
2

+ 1
2

Tr(B)
�t
2

− θ�t = 0.

By following the same steps, we can generalize this derivation to the case where the
first subportfolio is rebalanced K times as often as the rest of the portfolio. For this case,
we divide �t into K equally spaced subintervals and write the increment �W as the sum
�W1 + ··· + �WK ; (6.5) becomes

ε1 = 1
2

K∑
k=1

�W�
k B�Wk +

∑
j<k

�W�
j C�Wk − θ�t.(6.7)

We have labeled this ε1 because it generalizes our previous definition (the case K = 1)
and arises in the same way.

We calculate the variance of (6.7) to generalize σ 2
L. For this we need some additional

notation. Arrange the indices of the assets so that all assets in the first subportfolio
are listed before those in the second subportfolio. We can then partition the covariance
matrix � as

� =
(

�(1) �(12)

�(21) �(2)

)
=
(

�(1·)

�(2·)

)
= (�(·1) �(·2)).

Write p(1) for the vector of weights pi, i ∈ π1, and let �(1) denote the diagonal matrix
with the elements of p(1) on its diagonal. Let

σ 2
π1

= p(1)��(1) p(1) = σ̄�
1 σ̄1,

and define

σ 2
L(1) = 1

2

(
p(1)��(1) ◦ �(1) p(1) − 2p(1)��(1)�(1)�(1) p(1) + σ 4

π1

)
,

and

σ 2
L(1·)

= 1
2

(
p(1)��(1·) ◦ �(1·)w − p(1)��(1)�(1)�(1) p(1) − w��(·1)�(1)�(1·)w + (w��(·1) p(1))2).

PROPOSITION 6.1. We have

Tr(C2) = 2σ 2
L + 2π2

1 σ 2
L(1) − 2π1σ

2
L(1·),(6.8)

and

Var[ε1] =
(

Tr(B2)
2

+ (K − 1)
Tr(C2)

2

)
�t2

K
(6.9)
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= σ 2
L�t2 + K − 1

K
(π2

1 σ 2
L(1) − π1σ

2
L(1·))�t2.(6.10)

Of these expressions, (6.9) is easier to read, but B and C depend on the way we factor
� (through the vectors σ i) whereas (6.10) does not. In both cases, the first term results
from squared Brownian increments, and the second term results from cross products of
increments over subintervals of length �t/K within the same interval of length �t. When
K = 1, we recover σ 2

L�t2. If the first subportfolio encompasses the full portfolio, then π1

= 1, π2 = 0, and C = 0, as one can see from the first expression in (6.6), so (6.9) reduces
to σ 2

L�t2/K . (We have σ 2
L�t2/K rather than σ 2

L(�t/K)2 because ε1 is evaluated at time
�t rather than �t/K .) If the first subportfolio is empty, then π1 = 0, π2 = 1, and C =
B (see the second expression in (6.6)), so (6.9) reduces to σ 2

L�t2.

7. CONCLUDING REMARKS

Our investigation provides simple and explicit characterizations of the impact of the re-
balancing constraints in the Basel Committee’s incremental risk charge for market risk.
We have identified an asymptotic variance parameter σ 2

L that quantifies the magnitude
of the relative difference between discretely and continuously rebalanced portfolios. In
combination with an asymptotic covariance parameter γ L, this yields a volatility adjust-
ment to approximate a discretely rebalanced portfolio with a continuously rebalanced
portfolio. A conditional mean adjustment parameter βL improves the approximation,
particularly in the region of the loss distribution near a 99.9% VaR. All of these param-
eters are given explicitly in terms of the volatilites, correlations, and expected returns of
the underlying assets.

The analysis in this paper is limited to assets modeled as correlated geometric Brow-
nian motions. Understanding the impact of other asset dynamics is a topic for further
investigation. In preliminary tests using bootstrapped returns from historical market
data, we find that the moment corrections σ 2

L and γ L perform quite well; as one would
expect, the distribution of the normalized error exhibits heavier tails than one finds with
the normal distribution.

APPENDIX

A1. Proof of Proposition 3.1

Define

Rn = exp
(
μw�t − σ 2

w�t/2 + σ̄��W(n)
)
,(A.1)

and

R̂n =
d∑

i=1

wi exp
(
μi�t − ‖σi‖2�t/2 + σ�

i �W(n)
)
.(A.2)

Then

V̂N

VN
=

N∏
n=1

R̂n

Rn
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and

R̂n

Rn
=

d∑
i=1

wi exp
(

(μi − μw )�t − 1
2
‖σi‖2�t + 1

2
σ 2

w�t + (σi − σ̄ )��W(n)
)

.

Let ZN,n = �W(n)/
√

�t, so that, for each N, ZN,1, . . . , ZN,N are independent N(0, I)
random vectors. Define

gN,n(x) =
d∑

i=1

wi exp
(

(μi − μw )x2 − 1
2
‖σi‖2x2 + 1

2
σ 2

w x2 + (σi − σ̄ )� ZN,n x
)

− 1.

(A.3)

Then

V̂N

VN
=

N∏
n=1

[1 + gN,n(
√

�t)]

and

N∑
n=1

εn = 1
2

N∑
n=1

g′′
N,n(0)�t.(A.4)

We apply a Taylor approximation to gN,n. Observe first that

g′
N,n(0) =

∑
i

wi (σi − σ̄ )ZN,n = 0.

Then, for some ξN,n ∈ [0,
√

�t], we have

V̂N

VN
=

N∏
n=1

[
1 + 1

2
g′′

N,n(0)�t + 1
6

g′′′
N,n(0)�t3/2 + 1

24
g(4)

N,n(ξN,n)�t2
]

(A.5)

= 1 + 1
2

N∑
n=1

g′′
N,n(0)�t + 1

6

N∑
n=1

g′′′
N,n(0)�t3/2 + 1

24

N∑
n=1

g(4)
N,n(ξN,n)�t2 + rN,(A.6)

where the remainder rN includes all other terms in the product. In light of (A.4), the proof
will be concluded once we show that the last three terms in (A.6) are indeed negligible.

In the following, when applied to a random variable the symbol ‖ · ‖ denotes the L2

norm, ‖X‖ = (E[X2])1/2. In light of (A.6) and (A.4), we have∥∥∥∥∥ V̂N − VN

VN
−

N∑
n=1

εn

∥∥∥∥∥ ≤
∥∥∥∥∥1

6

N∑
n=1

g′′′
N,n(0)�t3/2

∥∥∥∥∥ +
∥∥∥∥∥ 1

24

N∑
n=1

g(4)
N,n(ξN,n)�t2

∥∥∥∥∥ + ‖rN‖.(A.7)

We discuss the terms on the right in turn, showing that each is O(�t).
Direct calculation shows that g′′′

N,n(0) is a linear combination of terms (σi − σ̄ )� ZN,n

and [(σi − σ̄ )� ZN,n ]3, and thus has mean zero. (Indeed, for all j = 1, 2, . . ., g( j )
N,n(0) is

a linear combination of odd powers of normal random variables if j is odd and even
powers of normal random variables if j is even.) Thus, the first term on the right in (A.7)
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is the norm of a sum of uncorrelated (in fact, independent), identically distributed, mean
zero random variables. It follows that

∥∥∥∥∥1
6

N∑
n=1

g′′′
N,n(0)�t3/2

∥∥∥∥∥
2

= N
36

Var[g′′′
N,1(0)]�t3 = O(�t2),

and thus the norm is O(�t).
In the next term in (A.7), the summands do not have mean zero, but the triangle

inequality yields

∥∥∥∥∥ 1
24

N∑
n=1

g(4)
N,n(ξN,n)�t2

∥∥∥∥∥ ≤ N
24

∥∥g(4)
N,n(ξN,n)

∥∥�t2 = O(N�t2) = O(�t).

The norm of g(4)
N,n(ξN,n) is finite because ξN,n ∈ [0,

√
�t] and g(4) is continuous.

It remains to show that we have ‖rN‖ = O(�t) for the remainder in (A.7). Each term
in rN is a product of the four types of terms in (A.5). We group the terms in rN according
to the number J of factors different from 1, for J = 2, 3, . . . , N. The cases J = 0 and J
= 1 appear explicitly in (A.6). To lighten notation, we write

an = g′′
N,n(0)/2, bn = g′′′

N,n(0)/6, cn = g(4)
N,n(ξN,n)/24,

for n = 1, . . . , N. Then

rN =
N∑

J=2

J∑
k=0

J−k∑
�=0

∑
n1,...,n J

cn1 . . . cnkbnk+1 . . . bnk+�
ank+�+1 . . . an J �t2k�t3�/2�tJ−k−�,(A.8)

where, in the innermost sum, each ni ranges from 1 to N and the sum is taken over sets
of distinct indices n1, . . . , nJ . In this expression for rN , we have collected powers of �t
according to their sources in (A.5): the k factors cn1 , . . . , cnk contribute �t2k, and so on.

Because the sum in (A.8) is over sets of distinct indices, each product in the sum is a
product of independent random variables drawn from up to three distributions. Thus,
we have

‖cn1 . . . cnkbnk+1 . . . bnk+�
ank+�+1 . . . an J ‖

= ‖cn1‖ . . . ‖cnk‖‖bnk+1‖ . . . ‖bnk+�
‖‖ank+�+1‖ . . . ‖an J ‖ ≤ ρ J,

for some ρ not depending on J or N; for example, if �t < 1, we can take

ρ = max
(‖a1‖, ‖b1‖, max

0≤τ≤1

∥∥g(4)
N,1(τ )

∥∥) < ∞.

We decompose the remainder in (A.8) as r (0)
N + r (1)

N by letting r (0)
N be the sum in (A.8)

restricted to terms with k = 0 and letting r (1)
N be the sum over terms with k � 1. We will

bound the norm of each of these terms. For r (0)
N , we have

r (0)
N =

N∑
J=2

J∑
�=0

∑
n1,...,n J

bn1 . . . bn�
an�+1 . . . an J �tJ�t�/2.
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We claim that this is a sum of uncorrelated, mean zero terms. First observe that, for all
n, m = 1, . . . , N with m = n,

E[anbn ] = 0 and E[anam] = E[bnbm] = E[anbm] = 0.(A.9)

To verify the first equality, recall that each bn is a linear combination of odd powers of
(σi − σ̄ )� ZN,n and each an is a centered sum of even powers. The other equalities from
the independence of the ZN,n, n = 1, . . . , N. Thus, each summand in r (0)

N has mean zero,
and the product of any two distinct summands also has mean zero. The squared norm
of r (0)

N (its variance) then satisfies

∥∥r (0)
N

∥∥2 =
N∑

J=2

J∑
�=0

∑
n1,...,n J

‖bn1 . . . bn�
an�+1 . . . an J ‖2�t2J+�

≤
N∑

J=2

J∑
�=0

(
N
J

)(
J
�

)
ρ2J�t2J+�

=
N∑

J=2

(
N
J

)
ρ2J�t2J(1 + �t)J

∼
(

N
2

)
ρ4�t4(1 + �t)2 ∼ ρ4T2�t2/2,

where “∼” means that the ratio of the two sides approaches 1 as N → ∞. Thus, ‖r (0)
N ‖ =

O(�t).
The remaining term is

r (1)
N =

N∑
J=2

J∑
k=1

J−k∑
�=0

∑
n1,...,n J

cn1 . . . cnkbnk+1 . . . bnk+�
ank+�+1 . . . an J �tJ+k+�/2.

The triangle inequality yields

∥∥r (1)
N

∥∥ ≤
N∑

J=2

J∑
k=1

J−k∑
�=0

∑
n1,...,n J

‖cn1 . . . cnkbnk+1 . . . bnk+�
ank+�+1 . . . an J ‖�tJ+k+�/2

≤
N∑

J=2

J∑
k=1

J−k∑
�=0

(
N
J

)(
J
k

)(
J − k

�

)
ρ J�tJ+k+�/2

=
N∑

J=2

J∑
k=1

(
N
J

)(
J
k

)
ρ J�tJ+k(1 + �t1/2)J−k

=
N∑

J=2

(
N
J

)
ρ J�tJ [(1 + �t1/2 + �t)J − (1 + �t1/2)J ]

= [1 + ρ�t(1 + �t1/2 + �t)]N − [1 + ρ�t(1 + �t1/2)]N − Nρ�t2

∼ ρT(exp(ρT) − 1)�t,

as N → ∞. The last step uses the fact that (1 + x/N)N → exp (x). Thus, ‖r (1)
N ‖ = O(�t),

and then ‖rN‖ ≤ ‖r (0)
N ‖ + ‖r (1)

N ‖ is also O(�t). �
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A2. Proof of Proposition 3.3

With Z a d-dimensional standard normal vector, we have, for any d × d matrix A,

Var[Z� AZ] = 2Tr(A� A),

so the first expression for σ 2
L follows from rewriting (3.1) as σ 2

L = Var[Z� BZ/2] and
observing that B is symmetric.

Squaring B yields three terms; we evaluate Tr(B2) as the sum of the traces of these
terms:

Tr

⎛
⎝
(

d∑
i=1

wiσiσ
�
i

)2
⎞
⎠ = Tr

⎛
⎝ d∑

i , j=1

wi w jσiσ
�
i σ jσ

�
j

⎞
⎠ =

d∑
i , j=1

wi w j Tr
(
σi�i jσ

�
j

)

=
d∑

i , j=1

wi w j Tr
(
σ�

j σi�i j
)

=
d∑

i , j=1

wi w j (�i j )2 = w�� ◦ �w ;

(A.10)

−2Tr

((
d∑

i=1

wiσiσ
�
i

)
σ̄ σ̄�

)
= −2

d∑
i=1

wi Tr
(
σiσ

�
i σ̄ σ̄�)

= −2
d∑

i=1

wi
(
σ̄�σi

)2

= −2
d∑

i=1

wi

(∑
�

w�σ
�
� σi

)2

= −2
d∑

i=1

wi

(∑
�

w���i

)2

= −2w����w ;

(A.11)

Tr(σ̄ σ̄�σ̄ σ̄�) = Tr(σ̄�σ̄ σ̄�σ̄ ) = (σ̄�σ̄ )2 = σ 4
w .(A.12)

Adding (A.10), (A.12), and (A.13) and multiplying by 1/2 yields the result. �

A3. Proof of Proposition 4.1

(i) From (2.2), we have

XN =
√

N
N−1∑
n=0

(
V̂n+1

Vn+1
− V̂n

Vn

)
,

so
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Cov[log VN, XN] =
√

N
N∑

k=1

N−1∑
n=0

E

[
σ̄��W(k)

(
V̂n+1

Vn+1
− V̂n

Vn

)]
.(A.13)

We claim that

E

[
σ̄��W(k)

(
V̂n+1

Vn+1
− V̂n

Vn

)]
=

⎧⎪⎪⎨
⎪⎪⎩

0, k ≥ n + 2;

γL�t2 + O(�t3), k = n + 1;

O(�t4), k ≤ n.

(A.14)

The first case in (A.15) follows immediately from the independence of �W(k) and
(V̂n, Vn, V̂n+1, Vn+1), for k � n + 2. For the second case in (A.15), we may write

E

[
σ̄��W(k)

(
V̂n+1

Vn+1
− V̂n

Vn

)]
= E

[
V̂n

Vn

]
E

[
σ̄��W(k)

R̂n+1

Rn+1

]
.(A.15)

Now

E

[
σ̄��W(n + 1)

R̂n+1

Rn+1

]

=
d∑

i=1

wi E
[
σ̄��W(n + 1) exp

([
μi − μw − 1

2
‖σi‖2 + 1

2
σ 2

w

]
�t + (σi − σ̄ )��W(n + 1)

)]

=
d∑

i=1

wi
(
σ̄�σi − σ 2

w

)
�t exp

((
μi − μw + σ 2

w − σ�
i σ̄

)
�t

)
.

(A.16)

The last equality uses σ̄�σ̄ = σ 2
w and the identity

E
[
σ̄��W(n + 1) exp

(
−1

2
‖(σi − σ̄ )�‖2�t + (σi − σ̄ )��W(n + 1)

)]
= σ̄�(σi − σ̄ )�t;

this follows from Girsanov’s theorem, as the exponential in this expectation is the density
for a change of measure that changes the mean of �W(n + 1) to (σi − σ̄ )�t. Expanding
(A.17), we find that the O(�t) term is actually zero because its coefficient is

d∑
i=1

wi
(
σ̄�σi − σ 2

w

) = σ̄�σ̄ − σ 2
w = 0.

The coefficient on �t2 is

d∑
i=1

wi
(
μi − μw + σ 2

w − σ�
i σ̄

)(
σ�

i σ̄
) =

d∑
i=1

wi (μi − μw )σ�
i σ̄ + σ 4

w −
∑

i

wi
(
σ�

i σ̄
)2

=
d∑

i=1

wiμiσ
�
i σ̄ − μwσ 2

w + σ 4
w −

∑
i

wi
(
σ�

i σ̄
)2

= γL,

and the remainder is O(�t3).
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By essentially the same argument,

E

[
V̂n

Vn

]
=

n∏
k=1

E

[
R̂k

Rk

]
=

n∏
k=1

(
1 + O(�t2)

) = 1 + O(�t),

so (A.16) is indeed γ L�t2 + O(�t3).
Using the independence of the Brownian increments, we can write the last case in

(A.15) as

E

[
V̂k−1

Vk−1

]
E

[
σ̄��W(k)

R̂k

Rk

](
n∏

m=k+1

E

[
R̂m

Rm

])
E

[
R̂n+1

Rn+1
− 1

]
.

With the calculations above, this is

(1 + O(�t)) · O(�t2) · (1 + O(�t)) · O(�t2) = O(�t4).

Applying (A.15) to (A.14), we get

N−1/2Cov[log V(T), XN] = O(N2) · O(�t4) + N · (γL�t2 + O(�t3)) = γLT2

N
+ O(N−2),

which implies (4.2).
For part (ii) of the proposition, the mean value theorem yields

V̄N − V̂N = V(T)
(

exp(XN/
√

N) − 1 − XN√
N

)
= V(T) · 1

2
ξN

N
,

for some ξN with |ξN | � |XN |. We need to show that E[V(T)2ξ 2
N] is bounded, and this

will follow if we show that E[V(T)2 X2
N] has a finite limit. But

E
[
V(T)2 X2

N

] = e2μw T+σ 2
w T E

[
e2σ̄�W(T)−2σ 2

w T X2
N

]
.

By Girsanov’s theorem, the expectation on the right is the second moment of XN in a
model in which each original asset drift μi is changed to μi + 2σ�

i σ̄ . From Proposition
3.1, we have convergence of the second moment of XN , regardless of the values of the
drifts, as long as they are constants. The last statement in the proposition follows from
(4.1) and part (i). �

A4. Proofs of Theorems 5.1 and 5.2

Before proceeding with the proofs of the theorems, we record the conditional distri-
bution of the Brownian increments in the following lemma:

LEMMA A.1. Conditional on σ̄�W(T) = u, u ∈ R, the increments �W(1), . . . , �W(N)
are jointly normal. Each �W(n) has conditional distribution

(
�W(n)|σ̄�W(T) = u

) ∼ N
(

σ̄

σ 2
w N

u, �t
(

I − σ̄ σ̄�

σ 2
w N

))
,(A.17)

and each pair of increments �W(n), �W(m), m = n, has covariance matrix−σ̄ σ̄��t/σ 2
w .

The conditional joint distribution of �W(1), . . . , �W(N) coincides with the unconditional
joint distribution of
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˜�W(n) = �W(n) − σ̄ σ̄�W(T)
σ 2

w N
+ σ̄u

σ 2
w N

, n = 1, . . . , N.(A.18)

Proof of Theorem 5.1. The first assertion follows from the fact that jointly normal
random variables remain jointly normal when conditioned on a linear combination. To
derive the conditional means and covariances of the increments, we first note that the
joint distribution of �W(n), �W(m), and σ̄�W(T), m = n, is

⎛
⎜⎜⎝

�W(n)

�W(m)

σ̄�W(T)

⎞
⎟⎟⎠ ∼ N

⎛
⎜⎜⎝0,

⎛
⎜⎜⎝

�t I 0 �tσ̄

0 �t I �tσ̄

�tσ̄� �tσ̄� σ 2
w T

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

Now using a standard identity (as in, e.g., theorem 2.5.1 of Anderson 1984) for the
conditional mean and covariance of a normal vector given the values of some components
of the vector (in this case, the last component), we get

(
�W(n)

�W(m)

∣∣∣∣∣ σ̄�W(T) = u

)
∼ N

(
u

σ 2
w N

(
σ̄

σ̄

)
, �t

[
I − 1

σ 2
w N

(
σ̄ σ̄� σ̄ σ̄�

σ̄ σ̄� σ̄ σ̄�

)])
.

(A.19)

The conditional distribution (A.18) and the conditional covariance of �W(n) and
�W(m) can be read from this joint distribution. The last assertion in the lemma follows
from direct verification that each pair of vectors in (A.19) has the joint distribution in
(A.20). �

Proof of Theorem 5.1. In light of Lemma A.1, we can represent the conditional distri-
butions (

V̂N

V(T)

∣∣∣∣V(T) = yN

)
=
(

N∏
n=1

R̂n

Rn

∣∣∣∣V(T) = yN

)
(A.20)

as

N∏
n=1

d∑
i=1

wi exp
(
(μi − μw )�t + (

σ 2
w − ‖σi‖2)�t/2 + (σi − σ̄ )� ˜�W(n)

)
,(A.21)

with ˜�W(n) as in (A.19) and u = x
√

N. Any limit of (A.22) is then a weak limit of
(A.21).

We will expand the factors in (A.22) by following steps similar to those used for gN,n in
(A.3). For each factor in (A.22), replace W̃(n) with its definition in (A.19) (with u in (A.19)
replaced by x

√
N), and then replace each �W(n) with ZN,n

√
�t, where ZN,1, . . . , ZN,n

are independent standard normal vectors in Rd . Just as with gN,n in (A.3), this allows
us to write each factor in (A.22) as a function G N,n(

√
�). Next, we carry out a Taylor

expansion of GN,n. We find that GN,n(0) = 1, G ′
N,n(0), and G ′′

N,n(0)�t/2 = YN,n + (a/N),
where
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YN,n =
d∑

i=1

wi

(
σ 2

w − ‖σi‖2 + [(σi − σ̄ )� ZN,n ]2
�t
2

)

+
d∑

i=1

wi (σi − σ̄ )� ZN,n
√

�t(σi − σ̄ )�
x

σ 2
w

√
N

and

a = 1
2

d∑
i=1

wi
[
(σi − σ̄ )�σ̄

]2 x2

σ 4
w

.

Thus,

d∑
i=1

wi exp
(
(μi − μw )�t + (σ 2

w − ‖σi‖2)�t/2 + (σi − σ̄ )� ˜�W(n)
)

= 1 + YN,n + a
N

+ rN,n,

where the remainder rN,n is O(�t3/2). More precisely, each rN,n is the product of a cubic
function of normal random vectors and ξ 3

N,n for some ξN,n ∈ [0,
√

�t]. We write the
logarithm of (A.22) as

N∑
n=1

log
(

1 + YN,n + a
N

+ rN,n

)
.(A.22)

We claim that this sum converges to a in probability.
To justify this claim, we first observe that E[YN,n] = 0 (see (2.5)) and, by properties of

the quadratic variation of Brownian motion,

N∑
n=1

YN,n and
N∑

n=1

Y2
N,n

both converge to zero in probability. (The first assertion follows from theorem 1.5.8 of
Karatzas and Shreve (1991) and the second from their problem 1.5.11, for which they
provide a solution on p. 44. These statements can also be verified using the ZN,n rather
than the Brownian increments.) By the properties of the remainders noted above, we also
have that

N∑
n=1

rN,n,

N∑
n=1

r 2
N,n, and

N∑
n=1

YN,nrN,n

all converge to zero in probability. Thus,

N∑
n=1

(
YN,n + a

N
+ rN,n

)

converges to a in probability, and
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N∑
n=1

(
YN,n + a

N
+ rN,n

)2
and max

n=1,...,N

∣∣∣YN,n + a
N

+ rN,n

∣∣∣
converge to zero in probability. But, for all sufficiently small v ,

v − v2 ≤ log(1 + v) ≤ v + v2,

so (A.23) converges to a in probability. It follows that (A.22) converges in probability to
ea and thus that (A.21) converges in distribution to the same constant.

It remains to evaluate a. From the definition of a, we can write a = βLx2/2 with

βL =
d∑

i=1

wi
[
(σi − σ̄ )�σ̄

]2
/σ 4

w .

But
d∑

i=1

wi
[
(σi − σ̄ )�σ̄

]2 =
d∑

i=1

wi
[(

σ�
i σ̄

)2 − 2σ�
i σ̄ σ 2

w + σ 4
w

]

=
d∑

i=1

wi
[(

σ�
i σ̄

)2 − σ 4
w

] = σ̄� Bσ̄ ,

using (3.8). Repeating the steps from (A.11) to (A.12) establishes the second expression
for βL in the statement of the theorem. �

Proof of Theorem 5.2. Using the conditional distribution of �W(n) in (A.18), we get

E
[
�W(n)� B�W(n)|σ̄�W(T) = x

] = σ̄� Bσ̄

N2σ 4
w

x2 + Tr
(

B · �t
(

I − σ̄ σ̄�

Nσ 2
w

))

= σ̄� Bσ̄

N2σ 4
w

x2 + Tr(B)�t − σ̄� Bσ̄

N2σ 2
w

T.

From (3.6), we therefore get

E[εn|σ̄�W(T) = x] = 1
2

(
σ̄� Bσ̄

N2σ 4
w

x2 − σ̄� Bσ̄

N2σ 2
w

T
)

= σ̄� Bσ̄

2σ 4
w

(
x2 − σ 2

w T
N2

)
,

and (5.4) follows using the first expression for βL in (5.2). �

A5. Proof of Proposition 6.1

The first K terms in (6.7) are independent of each other; the remaining K(K − 1)/2
terms are uncorrelated with each other and with the first K terms. Thus, the variance of
(6.7) is the sum of the variances of the individual terms. For each of the first K terms, we
have

Var
[

1
2
�W�

k B�Wk

]
= 1

4

(
�t
K

)2

Var[Z� BZ] = �t2

2K2
Tr(B2),

where Z ∼ N(0, I) in Rd ; and, for each of the remaining terms, we have



248 P. GLASSERMAN

Var
[

1
2
�W�

j C�Wk

]
= 1

4

(
�t
K

)2

Var[Z�CZ̃] = �t2

4K2
· Tr(C2),

with Z̃ ∼ N(0, I), independent of Z. Summing K times the first expression and K(K −
1)/2 times the second yields (6.9).

For (6.10), we need to evaluate Tr(C2). Using the second expression in (6.6), we get

Tr(C2) = Tr
(
π2

1 (σ̄1σ̄
�
1 − A1)2 + B2 + 2π1 B

(
σ̄1σ̄

�
1 − A1

))
.

Then,

Tr
((

σ̄1σ̄
�
1 − A1

)2) = 2σ 2
L(1),

Tr(B2) = 2σ 2
L, and

B
(
σ̄1σ̄

�
1 − A1

) = σ 2
L(1, ·).

The details of these calculations are similar to the steps in (A.10)–(A.13) and are therefore
omitted. �
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