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The likelihood ratio method (LRM) is a technique for estimating derivatives of expectations through simulation. LRM
estimators are constructed from the derivatives of probability densities of inputs to a simulation. We investigate the appli-
cation of the likelihood ratio method for sensitivity estimation when the relevant densities for the underlying model are
known only through their characteristic functions or Laplace transforms. This problem arises in financial applications,
where sensitivities are used for managing risk and where a substantial class of models have transition densities known
only through their transforms. We quantify various sources of errors arising when numerical transform inversion is used to
sample through the characteristic function and to evaluate the density and its derivative, as required in LRM. This analysis
provides guidance for setting parameters in the method to accelerate convergence.

Subject classifications : simulation.
Area of review : Simulation.
History : Received January 2008; revisions received July 2008, July 2009, November 2009; accepted December 2009.

1. Introduction
Simulation-based derivative estimates are useful in sensi-
tivity analysis and as inputs to optimization. In financial
applications, sensitivity estimates are important in measur-
ing and managing risk. Financial intermediaries hedge the
risks they incur in buying and selling options by trading in
the underlying assets; the hedging strategy is determined by
the sensitivity of the option price to the underlying assets
and other parameters.
The simulation literature provides several approaches to

parameter sensitivity estimation; see Asmussen and Glynn
(2007, Chapter 7) for an overview and references. The like-
lihood ratio method (LRM) constructs derivative estima-
tors from the derivatives of probability densities associated
with the simulation model. In a discrete-event simulation,
the relevant densities would usually be those of interarrival
or processing times; in financial applications, the relevant
densities are typically those associated with the transition
laws of the underlying assets. LRM is particularly attrac-
tive when there are discontinuities in the payoff or perfor-
mance associated with simulated paths or discontinuities in
the dynamics of the underlying model.
This paper develops and analyzes the use of LRM when

the relevant densities are known only through their char-
acteristic functions or Laplace transforms. Our primary
motivation for investigating this problem lies in financial
applications, where many important classes of models are
characterized through Laplace or Fourier transforms. This
is often the case for models driven by Lévy processes (see,
e.g., Cont and Tankov 2004, Schoutens 2003) and also the
affine class of jump-diffusion models studied in Duffie et al.

(2000), which includes many of the most widely used mod-
els of asset prices. In other application domains, including
telecommunications (e.g., Mikosch et al. 2002), stable laws
arise in models with self-similarity; with few exceptions, the
densities of stable laws are known only through their charac-
teristic functions. Lévy-driven models also arise in queueing
(Kella and Whitt 1992), insurance risk (Klüppelberg et al.
2004), and other areas of applied probability.
We analyze LRM estimators calculated through numeri-

cal transform inversion using, in particular, the method of
Abate and Whitt (1992). The random weight used in the
LRM estimator—the score function—involves both a prob-
ability density and its derivative; we numerically invert the
transform of each. We analyze the various sources of error
that arise in estimating expectations and their sensitivities
using this approach. In particular, we focus on the simu-
lation impact of three sources of numerical error: the grid
spacing used in building an approximation to a distribution,
the discretization error in the transform inversion integral,
and the truncation error in the inversion integral. Building
on the error analysis of Abate and Whitt (1992), we arrive
at the following conclusions for the bias resulting from the
combination of transform inversion and simulation in the
problems we consider:

• the bias from approximating the distribution is
quadratic in the grid spacing;

• the bias from the discretization error is exponentially
small in the integration step size; and

• the magnitude of the bias from truncation depends on
the decay of the modulus of the complex Laplace transform
of the density or its derivative.
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This analysis provides guidance on the optimal alloca-
tion of computational effort across the various parts of the
algorithm in order to balance the three sources of error. We
will see that the decay rate of the transform can vary widely
across models. Moreover, the relevant rate can be differ-
ent for an expectation and its sensitivity. Thus, our main
conclusion is that to understand the computational cost of
this method, the key step is to examine the decay of the
transform of the density and its derivative. We provide both
theoretical and experimental support for our conclusions.
The implementation of simulation-based LRM estimators

involves the underlying probability densities—and thus, in
our setting, the use of transform inversion—in two ways:
we need to know how to sample from the relevant densities
in order to simulate the model, and we need to evaluate
the density and its derivative in order to calculate the score
function that defines the LRM estimators. There are general
methods for sampling from transforms (see Devroye 1981)
and specific methods for specific distributions that do not
require numerical inversion—see, for example, the meth-
ods in §1.7 of Samorodnitsky and Taqqu (1994) for stable
distributions. However, these methods do not address the
problem of computing the score function. In order to keep
our investigation generic, we analyze a method in which
numerical transform inversion is used both for sampling
and for evaluation of the score. We precompute the cumula-
tive distribution function on a grid and use this approximate
distribution function in generating samples. The spacing
in this grid is the first of the three sources of error listed
above.
The problem of numerical inversion of Fourier and

Laplace transforms has been studied extensively. Relative
to this literature, our contribution lies in analyzing how the
errors in transform inversion affect simulation results when
transforms are used for sampling and as an ingredient in
sensitivity estimation. There are many inversion techniques
to choose from and many choices to make in combining
these techniques with simulation—for example, whether to
invert the transform for a density or the transform for its
distribution function. We will see that the application to
simulation motivates certain choices. Given our focus on
applying LRM, we have also imposed an important con-
sistency condition between the sampling method and the
method used to approximate the score function—namely,
that the expectation of the approximate score function be
zero with respect to the approximating distribution, just as
the exact score function has zero mean with respect to the
exact distribution. This constraint drives some of the details
of our approach. Indeed, this constraint would not ordinar-
ily hold if one combined an arbitrary sampling method with
a score function approximated through transform inversion.
The rest of this paper is organized as follows. Section 2

provides more detailed background and motivation for
our investigation, and it introduces examples to which
we return in our numerical tests. Section 3 lays out the

steps in our method, including numerical transform inver-
sion, approximate sampling, and sensitivity estimation.
Section 5 presents our error analysis for both expecta-
tions and their sensitivities. Section 6 provides a sum-
mary algorithm and illustrates our results through numeri-
cal examples. Longer proofs are deferred to an electronic
companion, which is available as part of the online ver-
sion at http://or.journal.informs.org/. Some of the results in
this paper appear in preliminary form in Glasserman and
Liu (2010).

2. Background and Motivation
To fix ideas, let the random variable X have a density g�

that depends on a parameter �, and consider the expectation
of V �X�, for some nonnegative function V . For example,
X may represent the price of an underlying asset (or its
logarithm) at some future date, and V �X� the discounted
payoff of an option on the asset. To stress the dependence of
the expected value of V �X� on the parameter �, we subscript
the expectation by � and write

E��V �X�� =
∫

V �x�g��x�dx�

In using LRM to estimate the sensitivity with respect to �,
the key LRM identity is

d

d�
E��V �X�� = E�

[
V �X�

ġ��X�

g��X�

]
� (1)

with ġ� denoting the derivative of g� with respect to the
parameter �. This follows from bringing the derivative
inside the integral and then multiplying and dividing by
g�. When this identity holds (and it does under mild reg-
ularity conditions—see Asmussen and Glynn 2007, Propo-
sition 7.3.5), the expression inside the expectation on the
right in (1) provides an unbiased estimator of the sensitiv-
ity on the left. We will write this estimator as V �X�S��X�
with

S��x� = ġ��x�/g��x�

the score function. For a function V �X1�����Xm� of inde-
pendent random variables X1�����Xm, each with density g�,
the LRM estimator of the derivative of E��V �X1�����Xm�� is

V �X1� � � � �Xm�S��X1� � � � �Xm��

S��x1� � � � � xm� =
m∑

i=1

ġ��xi�

g��xi�
� (2)

The LRM estimator is easy to use when the density g�

and its derivative are readily available. Moreover, it has the
important practical feature of allowing the estimation of
sensitivities for many different functions V using a single
score function S�, and it does not require differentiability
of V . The drawback of LRM is that it often suffers from
large variance. As explained in the introduction, here we
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investigate the application of LRM when the density is not
explicitly available but is known through its characteristic
function or through its Laplace transform.
Financial applications provide an important source of

motivation for this investigation. In the most extensively
studied models of asset prices with jumps, the price of
an asset at time T is given by AT = A0 exp�aT + XT �,
where XT is the time-T value of a Lévy process with
X0 = 0, and A0 and a are constants. A Lévy process
has stationary independent increments, so its increments
have infinitely divisible distributions; such distributions are
often specified through their characteristic functions, via
the Lévy-Khinchine formula (as in, e.g., Sato 1999, p. 37).
For example, in the variance gamma (VG) model of Madan
et al. (1998) with parameters 	, 
, and �, the Laplace trans-
form of XT is given by

LVG�t� = E�e−tXT � =
(

1
1+ �
t − 	2
t2/2

)T /


(3)

for all complex t in a neighborhood of the origin.
As a simple example of a discounted payoff function, we

could take

e−rT max�0�AT − K�

= e−rT max�0�A0e
aT +XT − K� ≡ V �XT �� (4)

Of particular interest are sensitivities with respect to A0 (the
option’s delta) and 	, which is a type of volatility param-
eter. As discussed in Madan et al. (1998), � determines
the mean and the sign of the skewness of the distribution,

 determines its kurtosis. Through a change of variables,
we can move A0 and a into the density and thus into the
Laplace transform.
In the normal inverse Gaussian (NIG) model introduced

by Barndorff-Nielsen (1998), we have with model parame-
ters , �, �, and �,

LNIG�t�=E�e−tXT �

=exp
(
�T

[√
2−�2−√

2−��−t�2
]−�Tt

)
(5)

for all complex t in a neighborhood of the origin. We will
examine sensitivities with respect to � and A0. We will also
note an important contrast between the VG and NIG mod-
els that is relevant to our analysis: along a vertical line in
the complex plane, the modulus of LNIG decays exponen-
tially, whereas that of LVG has a power decay.

The marginal distributions of Lévy processes are suf-
ficiently flexible to allow fits to many sources of data,
including asset returns. However, because Lévy processes
necessarily have independent increments, they cannot pro-
duce serial dependence or clustering as models of log asset
prices. Barndorff-Nielsen and Shephard (2001) introduce
serial dependence in a process Y driven by a Lévy process
X through a stochastic differential equation of the form

dYt = −�Yt dt + dXt� (6)

� a constant. When X is Brownian motion, this defines
an ordinary Ornstein-Uhlenbeck (OU) process; using other
Lévy processes for X provides greater flexibility in shap-
ing the marginals of Y . In this setting, even the charac-
teristic function of YT may be unknown. In practice, one
would ordinarily simulate a discrete-time approximation
to (6). By viewing Y as a function of the increments of X,
we may then estimate sensitivities of E�V �YT �� using the
score function for these increments. Thus, the methods we
develop using the characteristic functions for VG and NIG
models extend to OU-type processes driven by these Lévy
processes.
In another extension of these models, Carr et al. (2003)

apply random time changes to Lévy processes; here as well,
tractability is limited to transforms of the transition laws.
The same is true for the broad class of affine jump-diffusion
models characterized in Duffie et al. (2000). Therefore, our
method is relevant to these models as well.
It is sometimes possible to find specific methods or ap-

proximations to estimate sensitivities in specific models.
The VG and NIG processes, for example, can both be repre-
sented as time-changed Brownian motions, so a score func-
tion can be constructed from the normal distribution of the
Brownian motion and the mixing distribution of the random
time change. Broadie and Kaya (2006) develop an exact
method for certain affine processes. However, the objective
of this paper is to develop and analyze a general-purpose
method that requires little more than a characteristic func-
tion as input. A generic method is useful in the absence of
special features of a model; it also serves as a benchmark
against which to compare approximations and other meth-
ods. In subsequent work (Glasserman and Liu 2010), we
have tested approximations and alternative methods using
the method developed here as a benchmark.

3. Overview of the Method
In this section, we present the key steps in the method we
analyze, explaining how we sample from the characteristic
function and how we evaluate the score function. We first
detail the one-dimensional case, then discuss the multidi-
mensional generalization.
Let G� denote the distribution function associated with

the density g�. If we knew G�, we could sample from this
distribution by setting X = G−1

� �U�, with U uniformly dis-
tributed on �0�1�. Similarly, if we knew g� and ġ�, we
could evaluate the score function. Thus, we need methods
to accomplish the following tasks, starting from the char-
acteristic function or Laplace transform of g�: We need to
generate samples from G�, and we need to approximate g�

and ġ� in order to evaluate the score function.
With these objectives in mind, we can outline our pro-

cedure as follows:
• On a finite grid of x values, we precompute values of

G�, g�, and ġ�.
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—Using the Abate-Whitt (1992) algorithm, each trans-
form inversion is approximated using a finite weighted
sum of transform values, given in (13).

—Each inversion is subject to two types of error: a
discretization error (defined in (14)) and a truncation error
(defined in (15)).
• At each simulation step, we
—generate �X = �G−1

� �U�, U ∼Unif�0�1�, from our
approximation �G�, as in (9); and

—evaluate the approximate score function �S� = ˙̂g�/ĝ�

at �X, using (8) and (10).
• At the end of each path, we evaluate the function V

and the sum of the approximate score values, as in (2).
The details of this procedure are specified in this sec-

tion and the next and then summarized in an algorithm
in §6.1. The rest of the paper is devoted to analyzing the
bias introduced in the simulation results through the numer-
ical approximations used in the algorithm. The error anal-
ysis provides guidance on allocating computational effort
to the various pieces of the algorithm—how fine a grid to
use, how small a discretization step to use, and how large
a truncation point to use. We will see that the truncation
point is the parameter that most depends on the underlying
transform and drives the optimal allocation of computa-
tional effort. These statements will be made precise in §5
and illustrated in §6.
In implementing the overall approach outlined above, we

face many choices. For example, we can invert the trans-
form for g� and then integrate to get G�, or we can invert
the transform for G� or 1 − G� directly. We face similar
choices in evaluating g� and its derivative. Some of our
choices are driven by computational considerations, some
are driven by a desire for simplicity. Two general principles
are worth highlighting: First, because we sample from an
approximation to G�, we want the numerical approximation
to conform to a genuine probability distribution (a function
that increases from 0 to 1) as much as possible. Second, for
LRM, we want to impose a consistency condition between
the sampling mechanism and the approximate score. For the
exact score function S� and a sample X from the exact dis-
tribution G�, we would have E�S��X�� = 0. Similarly, we
want to ensure E� �S�� �X�� = 0, when �S� is our numerical
approximation to the score function and �X is sampled from
our approximation to G�.
Finally, it should be noted that our need to evaluate

the score function for LRM estimation largely eliminates
the additional overhead associated with tabulating values
of G�—we use these function values in approximating the
score. Thus, even in cases where other mechanisms might
be available for sampling from the transform of g�, using a
numerical approximation to �G−1

� becomes attractive in our
context.
We could restrict ourselves to working with the charac-

teristic function, but there is some practical and expository
advantage to working with the full Laplace transform in
the complex plane. We use Re and Im to denote the real

and imaginary parts of a complex number; thus, for com-
plex t = � + i�, we have Re�t� = � and Im�t� = �. The
two-sided Laplace transform of a function f is given by

Lf �t� =
∫ �

−�
e−txf �x�dx�

where t is a complex variable. This transform is two-sided
because the lower limit of integration is −� rather than
zero. For background, see Widder (1941, Ch. VI).
For the transform Lg�

of g�, we suppose that the region
of convergence in the complex plane includes a real interval
��l��u�, where �l < 0 and �u > 0. (Of the examples in §2,
this excludes stable distributions, although it includes tem-
pered stable distributions.) By Widder (1941 Theorem 5b,
p. 242), we have LG�

�t� = Lg�
�t�/t for Re�t� ∈ �0��u�,

and we have L �G�
�t� = −Lg�

�t�/t for Re�t� ∈ ��l�0�, where
�G� = 1− G�. The transform of ġ� is the derivative of the
transform of g� under, for example, the condition in the
following lemma, which follows from Proposition 7.3.5 in
Asmussen and Glynn (2007).

Lemma 1. If there is an integrable function H for which
e−�x�ġ��x�� � H�x� for all real x for all � in a neighbor-
hood of �0, then

Lġ�
�t� =

∫ �

−�
e−tx �

��
g��x�dx

= �

��

∫ �

−�
e−txg��x�dx = �

��
Lg�

�t�

at � = �0 where Re�t� = � ∈ ��l��u�.

Thus, from the transform of g�, we get the transforms of
G�, �G�, and ġ�. By restricting to a subinterval if necessary,
we assume that the region of convergence of Lġ�

includes
��l��u�.
Using numerical transform inversion (discussed in detail

in §4), we can approximate the value of G��x� at any x.
Our overall approach will be to build a piecewise linear
approximation �G� to the function G�, extract from that a
piecewise-constant approximation ĝ� to the density g�, and
then differentiate to get an approximation ˙̂g� to the differ-
entiated density ġ�. At each step, we seek to ensure that �G�

and ĝ� have the properties of a probability distribution and
density, respectively, and that the approximate score func-
tion ˙̂g�/ĝ� will have expected value zero when evaluated at
samples drawn from �G�.

To accomplish these objectives, we construct (in §4) an
equally spaced grid �xj� j ∈ J � on the x-axis, where J is a
finite index set and xj − xj−1 = � for j ∈ J . At each grid
point xj , we use numerical transform inversion to calculate
Gj = �G��xj�. Between grid points, we use linear interpola-
tion: for any x ∈ �xj−1� xj�, we set

�G��x� = x − xj−1

�
Gj + xj − x

�
Gj−1� (7)

To ensure that �G� is increasing, we require Gj � Gj−1,
for all j ∈ J . This is not automatically guaranteed because
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of numerical error in transform inversion; we enforce this
property when we discuss inversion in §4. Also, we choose
grid points to make Gmin ≈ 0 and Gmax ≈ 1, where Gmin ≡
Gjmin

, Gmax ≡ Gjmax
with jmin = min�j ∈ J �, xmin = xjmin

,
and jmax and xmax defined accordingly. For x < xmin, we set
�G��x� = 0; for x > xmax, we set �G��x� = 1.
We use a uniform grid for simplicity of implementation

and error analysis. It may be possible to achieve better
results with a grid tailored to a specific G� (or V ), but this
would require information about the distribution (or payoff)
that might not be readily available. Our results are likely to
carry over to settings in which the largest and smallest grid
spacing remain within a constant multiple of each other as
the grid is refined. One could also consider approximating
the tail of the distribution by, e.g., an exponential beyond
xmin and xmax.

We denote by �X a random variable with distribution
�G��x�. The density of �X is denoted by ĝ��x� and is given
by a piecewise constant function,

ĝ��x� =
{

�Gj − Gj−1�/�� if x ∈ �xj−1� xj�� j ∈ J �

0� if x < xmin or x > xmax�
(8)

To sample from �G�, we generate U uniformly over
�Gmin�Gmax� and set

�X = U� + xj−1Gj − xjGj−1

Gj − Gj−1

� (9)

with j the index for which Gj−1 �U < Gj .
By sampling from �G��x�, we can estimate E��V � �X��,

with E� indicating that �X ∼ �G�. In order to estimate
the sensitivity E��V � �X� �S�� �X��, where �S��x� = ˙̂g��x�/ĝ��x�
and ˙̂g��x� = �ĝ��x�/��, we compute ˙̂g��x� as follows:

˙̂g��x� =
{

�Ġj − Ġj−1�/�� if x ∈ �xj−1� xj�� j ∈ J �

0� if x < xmin or x > xmax�
(10)

where Ġj ≈ Ġ��xj� is calculated through numerical inver-
sion of the transform of Ġ� = dG�/d�. So, as we compute
each Gj to construct the approximation �G�, we also com-
pute Ġj to be able to evaluate ˙̂g��x�. We fix the values
Ġjmin

= 0 and Ġjmax
= 0; this ensures that ˙̂g� integrates to

zero over �xmin� xmax�, and thus that the expected score is
zero in the sense that∫ �

−�
�S��x�ĝ��x�dx =

∫ xmax

xmin

˙̂g��x�dx = 0�

Once these values are computed and stored, sampling
is easy and fast (it is O�log �J �� using binary search), so
the key question is the quality of the approximation; i.e.,
the difference between E��V � �X�� and E��V �X��, and the
difference between E��V � �X� �S�� �X�� and E��V �X�S��X��.
These differences have several sources, including numerical

errors in transform inversion and discretization errors in the
approximation �G�.
In the multidimensional case, X is a vector �X1� � � � �Xm�

of independent random variables. For example, in a
Lévy-driven model, these could be the increments of an
underlying Lévy process. We sample each Xi, i = 1� � � � �m,
from its distribution using (9). Because the Xi are indepen-
dent, their joint density is the product of their marginal den-
sities, and the score function S� for the vector is the sum of
the score functions of the individual components.

4. The Fourier-Series Method for
Laplace Inversion

Abate and Whitt (1992) derived and analyzed a Fourier-
series inversion formula for the one-sided Laplace trans-
form, and we follow their approach and build on their
analysis. Cai et al. (2007) extend the Abate-Whitt algorithm
to two-sided Laplace transforms, which yields the following
expression for a continuous function f in terms of its trans-
form Lf , for any � in the interval of convergence ��l��u�:

f �x� = e�x

�

∫ �

0

(
Re�Lf �� + i��� cos��x�

− Im�Lf �� + i��� sin��x�
)
d�� (11)

We abbreviate this formula as f �x� = I��x�Lf �. We can
(and will) allow the choice of � to depend on x.
Employing the trapezoidal rule to numerically evaluate

the infinite integral in (11) with a step size h gives the
approximation

Ih
��x�Lf �= he�x

2�
Lf ���

+ he�x

�

�∑
k=1

(
Re�Lf �� +ikh��cos�khx�

−Im�Lf �� +ikh��sin�khx�
)
� (12)

See Abate and Whitt (1992, pp. 18–19) for a discussion
of the advantages of the trapezoidal rule over higher-order
quadrature rules in this setting. As in Abate and Whitt
(1992), we truncate the infinite sum in (12); keeping only
the first N terms of the series in (12) yields

IN�h
��x �Lf �= he�x

2�
Lf ���

+ he�x

�

N∑
k=1

(
Re�Lf �� +ikh��·cos�khx�
−Im�Lf �� +ikh��sin�khx�

)
� (13)

We call Tp = Nh the truncation point.
By applying this method to Lg�

, we obtain the approx-
imations Ih

��x�Lg�
� and IN�h

��x �Lg�
�. The discretization error

at x resulting from step size h is

ed
��x� = Ih

��x�Lg�
� − g��x�� (14)
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we show in Appendix B that ed
��x� � 0. The truncation

error is

et
��x� = IN�h

��x �Lg�
� − Ih

��x�Lg�
�� (15)

Thus, IN�h
��x �Lg�

� = g��x� + ed
��x� + et

��x�. We similarly
define the discretization error ėd

� �x� = Ih
��x�Lġ�

� − ġ��x�
and the truncation error ėt

� �x� = IN�h
��x �Lġ�

� − Ih
��x�Lġ�

�
in approximating ġ��x�. Note that the truncation error
could be negative, so IN�h

��x �Lg�
�, as well as IN�h

��x �LG�
� and

IN�h
��x �L �G�

�, could be negative too.
We will apply the Fourier-series method in a way that

ensures monotonicity of Gj , j ∈ J , and ensures that Gjmin

approaches 0 and Gjmax
approaches 1 as xjmin

and xjmax

approach −� and +�, respectively. First, we make the
following observation about the behavior of the inversion
method at extreme values of x:

Proposition 1. For any � ∈ �0��u�,

IN�h
��x �LG�

� → 0 as x → −��

for any � ∈ ��l�0�,

IN�h
��x �L �G�

� → 0 as x → ��

Proof. From the formulas for IN�h
��x �LG�

� and IN�h
��x �L �G�

�, we
see that IN�h

��x �LG�
� = O�e�x� as x → −� and IN�h

��x �L �G�
� =

O�e�x� as x → �, which yields the conclusion. �

From this result, we see that in order for the Gj to ap-
proach 0 and 1 at extreme values of xjmin

and xjmax
, we can

pick �+ ∈ �0��u� and �− ∈ ��l�0�, and let

Gj =
⎧⎨
⎩

IN�h
�+� xj

�LG�
�� if xj � 0�

1− IN�h
�−� xj

�L �G�
�� if xj > 0�

(16)

The transforms and their approximations may diverge if �+
is chosen equal to �u or �− is chosen equal to �l (recall that
the interval ��l��u� determines the region of convergence
of Lg�

). To ensure stability, the values of �+ and �− should
therefore not be chosen right next to the boundaries; with
this qualification, we have found that the results are not
very sensitive to the choices of �+ and �−. The question
of choosing the vertical line in the complex plane for the
inversion integral is investigated in Cai et al. (2007).
For the monotonicity of the Gj , we will use the following

property of the Fourier-series method.

Proposition 2. Let f be a density and F its distribution
function. Suppose the interval ��1��2� is within the region
of convergence of LF and Lf , where �1 < 0 and �2 > 0.
Then for any � ∈ �0��2�,

d

dx
IN�h
��x �LF � = IN�h

��x �Lf �� (17)

Similarly, if �F = 1− F , then for any � ∈ ��1�0�,

d

dx
IN�h
��x �L �F � = −IN�h

��x �Lf �� (18)

BecauseIN�h
��x �Lg�

� = g��x� + ed
��x� + et

��x� and
ed

��x�� 0, we may conclude that IN�h
��x �Lg�

� is nonneg-
ative for all sufficiently large N at any point at which
g��x� is strictly positive. From Proposition 2, we see
that nonnegativity of IN�h

��x �Lg�
� implies monotonicity of

IN�h
��x �LG�

� and IN�h
��x �L �G�

�. In practice, we do not know
how large N needs to be, so we apply the following rule:
if it happens that Gj0

< Gj0−1 for some j0, we simply let
Gj0

= Gj0−1 to make Gj� j ∈ J a monotonically increasing
sequence. (Alternatively, one might increase N adaptively,
but we have not explored this possibility.) The steps we
use to construct the sequence Gj are as follows:

1. Let x0 = E��X� = −L′
g�

�0� and compute G0

using (16).
2. Let xj = x0 + j� and x−j = x0 − j�. Compute G±j by

(16). At any xj close to zero (say �xj � < � for some toler-
ance � much smaller than �), we use a very large truncation
point to ensure accuracy as we switch from one case in (16)
to the other. After getting Gj and G−j , we enforce mono-
tonicity by adjusting their values according to the following
rule: If Gj < Gj−1, then set Gj = Gj−1; if G−j > G−�j−1�,
then set G−j = G−�j−1�.
3. We continue for j = 1�2� � � � until we find jmax > 0

and jmin < 0 such that Gjmax
≈ 1 and Gjmin

≈ 0; we set J =
�jmin� jmin + 1� � � � � jmax − 1� jmax� and use �xj� j ∈ J � as our
grid.
In the next section, we discuss the errors in estimating

expectations E��V �X�� (which we refer to generically as
prices) and sensitivities E��V �X�S��X��. It will be impor-
tant to keep in mind that our calculation (16) uses �− ∈
��l�0� in computing values at x > 0, and uses �+ ∈ �0��u�
for all x < 0.

5. Error Analysis

5.1. Error Analysis for Prices

In this section, we analyze the error in estimating a price,
i.e., the difference between E��V � �X�� and E��V �X��. For
simplicity, we let

IN�h
x �Lg�

� =
⎧⎨
⎩

IN�h
�+� x�Lg�

�� if x � 0�

IN�h
�−� x�Lg�

�� if x > 0�
(19)

and let ed�x� = 1�x > 0�ed
�−�x� + 1�x � 0�ed

�+�x� and
et�x� = 1�x > 0�et

�−�x� + 1�x � 0�et
�+�x�, where 1� · � is

the indicator function.
We can decompose the error using

�E��V � �X�� − E��V �X���
=
∣∣∣∣
∫ xmax

xmin

V �x�ĝ��x�dx −
∫ �

−�
V �x�g��x�dx

∣∣∣∣
�

∣∣∣∣
∫ xmax

xmin

V �x�ĝ��x�dx −
∫ �

−�
V �x�IN�h

x �Lg�
�dx

∣∣∣∣ (20)

+
∣∣∣∣
∫ �

−�
V �x��IN�h

x �Lg�
� − g��x��dx

∣∣∣∣� (21)
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We will analyze (21) first and then turn to (20). If V � 0,
then ed � 0 implies that∣∣∣∣
∫ �

−�
V �x��IN�h

x �Lg�
� − g��x��dx

∣∣∣∣
=
∣∣∣∣
∫ �

−�
V �x��ed�x� + et�x��dx

∣∣∣∣
�

∫ �

−�
V �x�ed�x�dx +

∣∣∣∣
∫ �

−�
V �x�et�x�dx

∣∣∣∣� (22)

To bound the error, we impose the following condition on
Lg�

:

Assumption 1. For any � in ��l��u�, as � → �,

�Re�Lg�
�� + i����� = O��−RRe�Lg�

�� + i����

and

�Im�Lg�
�� + i����� = O��−I Im�Lg�

�� + i����

uniformly in �� 1, for some R > 0 and I > 0.

This assumption is broadly applicable. For example, it
holds if Re�Lg�

�� + i��� and Im�Lg�
�� + i��� are reg-

ularly varying functions (of �) with negative indices, or
if − log�Re�Lg�

�� + i��� and − log�Im�Lg�
�� + i��� are

regularly varying functions with positive indices. Regular
variation makes precise the notion of a power decay (see,
e.g., Bingham et al. 1987 for background), so Assumption 1
is consistent with both a power decay and an exponential
decay of the real and imaginary parts of the Laplace trans-
form in the indicated directions. In particular, this assump-
tion holds for the variance gamma and normal inverse
Gaussian models we use in our numerical tests.
We impose the following condition on the payoff

function V :

Assumption 2. For x > 0, 0 � V �x� � Cve
v+x, and for

x < 0, 0� V �x��Cve
v−x, for some constants Cv > 0, v+ ∈

�0�−�l�, and v− ∈ �−�u�0�. Also, we assume V to be dif-
ferentiable at all but finitely many points x.

This assumption is more than sufficient to ensure that
E��V �X�� exists, and it is satisfied by standard option
payoffs, such as the call option payoff in (4). This assump-
tion together with Lemma 1 also ensures the validity of the
LRM identity in (1) through Proposition 7.3.5 of Asmussen
and Glynn (2007).
For fixed �− ∈ ��l�0� and �+ ∈ �0��u�, let

M±�Tp� = �Lg�
��± + iTp�� and

M�Tp� =max�M−�Tp��M+�Tp���

We can now state the following result, which is proved in
Appendix B.

Proposition 3. Under Assumptions 1 and 2, we can find
�− ∈ ��l�0� and �+ ∈ �0��u� such that∫ �

−�
V �x�ed�x�dx = O�e−C/h��

for some constant C > 0, and∣∣∣∣
∫ �

−�
V �x�et�x�dx

∣∣∣∣= O�M�Tp���

Through (22), this determines the order of (21). We next
decompose (20) as∣∣∣∣
∫ xmax

xmin

V �x�ĝ��x�dx −
∫ �

−�
V �x�IN�h

x �Lg�
�dx

∣∣∣∣
�

∣∣∣∣
∫ xmin

−�
V �x�IN�h

x �Lg�
�dx

∣∣∣∣+
∣∣∣∣
∫ �

xmax

V �x�IN�h
x �Lg�

�dx

∣∣∣∣
+
∣∣∣∣
∫ xmax

xmin

V �x��ĝ��x� − IN�h
x �Lg�

��dx

∣∣∣∣�
For the last term, we have the following result, proved in
Appendix C:

Lemma 2. If V is bounded on the interval �xj−1� xj �, then∣∣∣∣
∫ xj

xj−1

V �x��ĝ��x� − IN�h
x �Lg�

��dx

∣∣∣∣= O��2��

If, furthermore, V is differentiable, then∣∣∣∣
∫ xj

xj−1

V �x��ĝ��x� − IN�h
x �Lg�

��dx

∣∣∣∣= O��3��

Through this lemma, we arrive at the following result:

Proposition 4. If V is bounded on �xmin� xmax� and differ-
entiable at all but finitely many points,∣∣∣∣
∫ xmax

xmin

V �x��ĝ��x� − IN�h
x �Lg�

��dx

∣∣∣∣= O��2��

For the two tail errors over �−�� xmin� and �xmax���,
we have the following proposition, proved in Appendix D:

Proposition 5. If Gjmin
= �, then∫ xmin

−�
V �x�IN�h

x �Lg�
�dx = O����++v−�/�+��

if Gjmax
= 1− �, then∫ �

xmax

V �x�IN�h
x �Lg�

�dx = O����−+v+�/�−��

Because both ��+ + v−�/�+ and ��− + v+�/�− are
strictly between 0 and 1, this result indicates that∣∣∣∣
∫ xmin

−�
V �x�IN�h

x �Lg�
�dx

∣∣∣∣ and

∣∣∣∣
∫ �

xmax

V �x�IN�h
x �Lg�

�dx

∣∣∣∣
are negligible compared to∣∣∣∣
∫ xmax

xmin

V �x��ĝ�x� − IN�h
x �Lg�

��dx

∣∣∣∣�
With this specification, we can combine Propositions 3

and 4 to quantify the pricing error:

Theorem 1. Under Assumptions 1 and 2,

�E��V � �X�� − E��V �X��� = O��2 + e−C/h + M�Tp���
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5.2. Error Analysis for Sensitivities

We now extend our analysis to the error in estimating the
sensitivities, bounding �E��V � �X� �S�� �X��−E��V �X�S��X���.
Much as in the previous section, we define

IN�h
x �Lġ�

� =
⎧⎨
⎩

IN�h
�+� x�Lġ�

�� if x � 0

IN�h
�−� x�Lġ�

�� if x > 0�

and we let ėd�x� = 1�x > 0�ėd
�−�x� + 1�x � 0�ėd

�+�x� and
ėt�x� = 1�x > 0�ėt

�−�x� + 1�x � 0�ėt
�+�x�.

We bound the error in the sensitivity estimate as

�E��V � �X� �S�� �X�� − E��V �X�S��X���
=
∣∣∣∣
∫ xmax

xmin

V �x� ˙̂g��x�dx −
∫ �

−�
V �x�ġ��x�dx

∣∣∣∣
�

∣∣∣∣
∫ xmax

xmin

V �x� ˙̂g��x�dx −
∫ �

−�
V �x�IN�h

x �Lġ�
� dx

∣∣∣∣
+
∣∣∣∣
∫ �

−�
V �x��IN�h

x �Lġ�
� − ġ��x��dx

∣∣∣∣�
This bound is very similar to the one we used for the error
in the price estimate, but now with derivatives of g�. Much
as in Assumption 1, we impose

Assumption 3. For any � in ��l��u�, as � → �,∣∣Re�Lġ�
�� + i����

∣∣= O
(
�−̇RRe�Lġ�

�� + i���
)

and∣∣Im�Lġ�
�� + i����

∣∣= O
(
�−̇I Im�Lġ�

�� + i���
)

uniformly in �� 1, for some ̇R > 0 and ̇I > 0.

For fixed �− and �+, let

Ṁ±�Tp� = ∣∣Lġ�
��± + iTp�

∣∣ and

Ṁ�Tp� =max�Ṁ−�Tp�� Ṁ+�Tp���

With these assumptions and definitions, the previous
analysis carries over with appropriate modification (the
function g� now replaced by ġ�), leading to the following
result:

Theorem 2. Under Assumptions 2 and 3, using the same
�− and �+ as in Proposition 3,∫ �

−�
V �x��ėd�x��dx = O�e−Ċ/h��

for some positive constant Ċ,∣∣∣∣
∫ �

−�
V �x�ėt�x�dx

∣∣∣∣= O�Ṁ�Tp��

and∣∣E��V � �X� �S�� �X�� − E��V �X�S��X��
∣∣

= O��2 + e−Ċ/h + Ṁ�Tp���

5.3. The Multidimensional Case

Similar conclusions can be reached for the multi-
dimensional case on the error analysis. First, for the payoff
function V �x1� � � � � xm�, we assume

Assumption 4. V �x1� � � � � xm� � V1�x1� · · ·Vm�xm� for
some functions V1� � � � � Vm satisfying Assumption 2.

Each Vi in this condition is bounded by the exponen-
tial of a linear function. When a Lévy process is used to
model a log asset price, as in (4), Assumption 4 allows us
to bound a path-dependent payoff using linear functions of
the underlying asset, and this should cover most cases of
practical interest. Under this assumption, the error analy-
sis in the multidimensional case is very similar to that in
the one-dimensional case. The details are in the electronic
companion to this paper.

6. Algorithm and Numerical Examples
In this section, we encapsulate our analysis into an over-
all algorithm and then illustrate the theoretical results with
numerical examples. We investigate the convergence rate
of our method as we vary the grid spacing �, the step
size h, and the truncation parameter Tp, using our error
estimates to guide the relative magnitudes of the changes
in the parameters.

6.1. Algorithm

In the previous sections, we have focused on the bias in
estimating prices and sensitivities. As a measure of overall
simulation error, we use mean square error (MSE), which
is the sum of the squared bias and the estimator variance.
If we use Ns simulation trials, then the MSE for the price
estimate is

MSEprice = �O��2 + e−C/h + M�Tp���2 + Varprice
Ns

� (23)

and for the sensitivity, the MSE is

MSEsen = �O��2 + e−Ċ/h + Ṁ�Tp���2 + Varsen
Ns

� (24)

where Varprice and Varsen denote the variance per replication
of the price estimate and sensitivity estimate, respectively.
To drive each MSE to 0, we need to decrease � and h and
increase Tp and Ns . For efficiency, we should do so at rates
consistent with their impact on the MSE.

Algorithm
INITIALIZE �, h, Tp, and Ns

REPEAT until stopping condition is satisfied:
1. Build grid �xj� and compute �G�, ĝ�, and ˙̂g� at these

grid points;
2. FOR replications n = 1� � � � �Ns

(a) Generate �X;
(b) Evaluate V � �X� and �S�� �X�;
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3. RETURN sample means of V � �X� and V � �X� �S�� �X�
over Ns replications;

4. UPDATE parameters: � → �′, h → h′, Tp → T ′
p,

Ns → N ′
s

The grid construction is detailed in Steps 1–3 in §4; the
function evaluations and sampling mechanism are specified
in (7)–(10). The theoretical analysis in §5 allows us to spec-
ify the parameter update rule in the last step to maximize
the rate of decrease of the mean square error. For example,
from (23) and (24), we see that if we increase the num-
ber of replications by a factor of c, (so Ns → cNs), then
we should refine the grid size by a factor of c1/4 (so � →
�/c1/4). However, the relative allocation of effort between
these parameters and the truncation point Tp depends on the
underlying model through M�Tp� and Ṁ�Tp�; we illustrate
this point in our examples, where we make the update rule
explicit.
The iterative refinement of the computational parame-

ters requires a stopping condition. Ideally, one would like
to stop when a target level of accuracy and precision is
reached. The variance per replication is easily estimated
using the sample variance. The bias is more difficult to
estimate because the exact value of the price or sensitiv-
ity is unknown; a simple and standard approach is to use
the difference in estimates from one iteration to the next as
an estimate of the remaining bias. The bias and variance
estimates can then be combined to estimate the MSE, and
the algorithm stopped once the MSE falls below a desired
tolerance.
Our asymptotic results do not provide much guidance on

initializing the computational parameters in the first step of
the algorithm. Similar issues arise across many applications
of simulation. In discretizing a diffusion, for example, one
seldom if ever has solid grounds for choosing the initial
size of the time step. Even in the absence of bias, choosing
an initial number of replications requires some problem-
specific information about the magnitude of the variance.
Although theoretical support for initial parameter values
can be difficult to find, practical considerations often dictate
at least rough values for the number of replications, the
number of grid points, and integration parameters h and Tp,
as in our examples below.
We use the VG and NIG models as test cases. These

two models exhibit qualitatively different dependence on
Tp; this will be reflected in the rates we use to vary the error
parameters and in the overall convergence rate of the MSE.
The VG and NIG models have been studied extensively in
previous work and offer some tractability that makes them
useful as test cases.

6.2. VG Model

We begin by considering the VG model with the call option
payoff in (4). From a VG process X, we define an asset
price by setting AT = A0 exp�aT + XT �, for some initial

price A0 and parameter a. Formula (22) in Madan et al.
(1998) gives

a = r + 1


log�1− �
 − 	2
/2�� (25)

with 	, 
, and � parameters of the model. Madan et al.
(1998) provide an option pricing formula for the VG model,
which is useful in evaluating the error in our simulation
estimates.
The Laplace transform of XT appears in (3). Its region

of convergence is the vertical strip in the complex plane
that intersects the real axis on the interval(

�
 −√
�2
2 + 2	2


	2

�

�
 +√
�2
2 + 2	2


	2


)
�

For any � in this interval, �LVG�� + i��� has a power decay
(as � → �) with rate 2T /
. Thus,

M�Tp� = O�T −2T /

p �� (26)

and the MSE for the price estimate is therefore

MSEprice�VG = �O��2 + e−C/h + T −2T /

p ��2 + Varprice

Ns

� (27)

To reduce the MSE, we would like, ideally, to increase
Tp and Ns and decrease � and h in a way that equates the
magnitude of the error reduction in each source of error.
Otherwise, we would be devoting too much computational
effort to some parts of the algorithm and insufficient effort
to others. This yields the following update rule for the algo-
rithm in §6.1:

UPDATE: Tp → √
10Tp� � → 10−T /2
��

Ns → 102T /
Ns� h−1 → h−1 + T log10/C
�

(Our choice of C is specified in the proof of Proposition 3.)
With these changes, the RMSE (the square root of the MSE)
for the price estimate should decrease by a factor of 10T /
 .
The number 10 could be replaced with any other constant
in the update rule and in this conclusion. All of these state-
ments should be understood in the big-O sense provided by
our results.
Although our focus is on the impact of Tp and the other

parameters on the convergence of the RMSE, the tail behav-
ior identified in (26) also provides information about the
density of XT : the decay rate of the transform characterizes
the smoothness of the density. In particular, from (26) and
Feller (1971, Lemma 4, p. 517), we find that if 2T /
 � 1,
then the density of XT does not have an integrable derivative
and may fail to be differentiable. In this case, LRM would
not be applicable, even if we had a convenient expression
for the density. We therefore require 2T /
 > 1.
In our examples, we use the following values for the

VG process and the call option payoff: A0 = 100, r = 5%,
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Table 1. European call prices and derivatives for VG
model.


 Call price A0-derivative 	-derivative

1 11.2669 0.7282 23.0434
0�5 10.9292 0.6927 28.5971

T = 1, 	 = 0�2, � = −0�15, and we set K at 100 or 125. We
compare results at 
 = 1 and 
 = 0�5. Using the formula in
Madan et al. (1998) for the prices of European call options,
we get the values in Table 1, against which we compare the
simulation estimates.
To test our sensitivity estimates, we calculate sensitivities

with respect to the model parameter 	 and the initial price
A0 of the underlying asset. By applying finite difference
approximations to the formula for option prices, we get the
derivative values in Table 1.
To apply LRM, we need to move the dependence on

A0 and 	 into the density; recall from (25) that a is
a function of 	. We therefore work with the random
variable logA0 + aT + XT , whose Laplace transform is
A−t

0 exp�−aTt�LVG�t�. For the parameter A0, the Laplace
transform of the partial derivative is −tLVG�t�/A0; for
the parameter 	, the Laplace transform of the deriva-
tive is ��A−t

0 exp�−aTt�LVG�t��/�	. In both cases, we get
Ṁ�Tp� = O�T −�2T /
�+1

p �, so the sensitivity MSE is

MSEsen�VG = �O��2 + e−C/h + T −�2T /
�+1
p ��2 + Varsen

Ns

� (28)

Recall that we have required 2T /
 > 1 for the differentia-
bility of the density, and this ensures that the exponent of
Tp is negative.
The impact of the truncation point Tp in the sensitiv-

ity MSE (28) differs from that in the price MSE (27) and
results in a slower overall rate of convergence. For exam-
ple, with 
 = 1, we get 2T /
 = 2, so the optimal RMSE
for the price is O�T −2

p �, whereas for the sensitivity it is
O�T −1

p �. Thus, to decrease the price RMSE by a factor
of 10, we increase the truncation point by a factor of

√
10,

but to decrease the sensitivity RMSE by a factor of 10 we
increase the truncation point by a factor of 10:

UPDATE: Tp → 10Tp� � → 10−1/2��

Ns → 102Ns� h−1 → h−1 + log10/Ċ�

A corresponding rule applies for 
 = 0�5.

Table 2. Results for prices and derivatives on A0 and 	 in VG model, with 
 = 1.

Price A0-derivative 	-derivative

Tp � Ns �J � Mean Error SE Mean Error SE Mean Error SE

10 0�5 5E3 12 13�073 1�806 0�2999 0�559 0�169 0�0325 31�557 8�514 2�6898
31.6 0�16 5E5 37 11�588 0�321 0�0201 0�772 0�043 0�0025 21�928 1�115 0�3377
100 0�05 5E7 87 11�300 0�032 0�0018 0�743 0�014 0�0002 22�797 0�246 0�0341

10 0�5 5E3 12 4�120 2�505 0�2051 0�379 0�189 0�0235 29�202 6�949 1�9321
31.6 0�16 5E5 37 2�188 0�573 0�0098 0�240 0�050 0�0012 20�759 −1�493 0�2371
100 0�05 5E7 87 1�663 0�049 0�0009 0�197 0�007 0�0001 22�186 −0�067 0�0232

Note. The top panel is for K = 100, and the bottom panel is for K = 125.

Table 2 shows numerical results for price estimates with

 = 1. From each row to the next, we multiply Tp by√
10 and change the other parameters at the correspond-

ing rates. The initial values are set to make the modulus
of Lg�

��± + iTp� reasonably small (some number between
0.1 and 0.5) and J have several points. In the “Error” col-
umn, we report the absolute difference between the simula-
tion mean and the formula price. The column labeled “SE”
shows the standard error of each estimate. To estimate the
standard errors precisely, we simulate all rows for 5E7 repli-
cations. We then multiply the standard error obtained by 100
for the first row, 10 for the second row and 1 for the third
row. In general agreement with our analysis, the order of
magnitude of the price error decreases by roughly a factor
of 10 from each row to the next. In order to get reliable
estimates for our comparison, we use a larger number of
replications than would be optimal under our analysis. In
practice, we would try to set the value of Ns to make the
standard error approximately equal to the bias.
Our results are calculated using MATLAB running on a

laptop computer with a 1.6 GHz Pentium M processor and
1 G of RAM. Even at our largest values of �J �, building
the grid takes less than a tenth of a second. Once the grid
is built, we can run 100,000 replications in under a second.
Because we tabulate the transform inversion results, the
only computational parameter that affects the computing
time per replication is the number of grid points �J �. As
a point of comparison, with �J � = 87 (as in the third row
of Table 2), sampling from the grid takes approximately
3.7 times as long as sampling from the normal distribution
using MATLAB’s built-in implementation of the inverse
normal distribution. The sampling time could potentially be
accelerated using a cut-point method or alias table.
Table 2 also shows numerical results for the sensitivities

with 
 = 1. The sensitivity errors decrease by approxi-
mately

√
10 from one row to the next, in line with our

analysis, although the convergence of the derivative with
respect to 	 is a bit faster than expected.
Table 3 shows results for 
 = 0�5. In this case, the mod-

ulus of the Laplace transform decays more quickly, so we
increase Tp by a factor of 4

√
10 from one row to the next.

This should decrease the price error by a factor of 10 and
the sensitivity error by a factor of 103/4 ≈ 5�6 in each case.
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Table 3. Results for prices and derivatives on A0 and 	 in VG model, with 
 = 0�5.

Price A0-derivative 	-derivative

Tp � Ns �J � Mean Error SE Mean Error SE Mean Error SE

10 0�5 5E3 8 13�179 2�250 0�2862 0�529 0�163 0�0296 37�472 8�875 3�6388
17�8 0�16 5E5 23 11�307 0�378 0�0209 0�752 0�060 0�0024 26�670 1�927 0�3584
31�6 0�05 5E7 67 10�964 0�035 0�0020 0�704 0�011 0�0002 28�461 0�136 0�0360

10 0�5 5E3 8 4�066 2�129 0�1945 0�344 0�133 0�0216 35�835 10�288 2�7194
17�8 0�16 5E5 23 2�399 0�462 0�0105 0�254 0�043 0�0012 24�129 −1�418 0�2510
31�6 0�05 5E7 67 1�982 0�045 0�0009 0�217 0�007 0�0001 25�453 −0�094 0�0243

Note. The top panel is for K = 100, and the bottom panel is for K = 125.

The results in the tables are roughly in line with these
predictions.

6.3. NIG Model

For an NIG process X at time T with parameters
�� �� �� ��, the Laplace transform is given in (5). The
region of convergence is the vertical strip in the complex
plane that intersects the real line on the interval �� − �
� + �. Whereas the Laplace transform of the VG process
exhibits a power decay, that of the NIG process exhibits
an exponential decay; more precisely, �LNIG�� + i��� ∼
exp�−�T�� as � → �, for any fixed � in the convergence
interval.
To define an asset price AT from XT as in (4), the appro-

priate value of a is

a = r − � − �
(√

2 − �2 −√
2 − �� + 1�2

)
� (29)

For the parameters, we use the following values from
Këllezi and Webber (2004):

A0 = 100 K = 100 r = 0�1 T = 1  = 28�42141

� = −15�08623 � = 0�31694 � = 0�05851�

We also consider the case K = 125. As in Këllezi and
Webber (2004), numerical integration produces a call price
of 11.3599 for these parameters. Numerical differentiation
yields 0.8124 as the derivative with respect to A0 and
5.8165 as the derivative with respect to �.

Table 4. Results for prices and derivatives on A0 and � in NIG model.

Price A0-derivative �-derivative

Tp � Ns �J � Mean Error SE Mean Error SE Mean Error SE

20 0�25 1E4 9 13�082 1�722 0�1315 0�7641 0�0483 0�0179 2�075 3�741 0�7400
27�3 0�079 1E6 22 11�501 0�141 0�0107 0�8048 0�0076 0�0019 5�463 0�353 0�0665
34�5 0�025 1E8 66 11�373 0�014 0�0010 0�8116 0�0008 0�0002 5�784 0�032 0�0068

20 0�25 1E4 9 2�234 1�208 0�0542 0�2148 0�0298 0�0104 4�356 −1�231 0�4404
27�3 0�079 1E6 22 1�148 0�123 0�0036 0�1931 0�0081 0�0008 5�345 −0�242 0�0318
34�5 0�025 1E8 66 1�038 0�013 0�0003 0�1858 0�0008 0�0001 5�557 −0�030 0�0032

Note. The top panel is for K = 100, and the bottom panel is for K = 125.

By following the same steps as in the VG example, we
find that the MSEs for the price and the two sensitivities for
the NIG process all have the same order of convergence,
given by

MSE�price� sen��NIG = (
O��2 + e−C/h + e−�TTp �

)2
+ Var�price� sen��NIG

Ns

� (30)

Notice that the dependence on Tp now shows an exponen-
tial decay rather than a power decay. So, to target a factor
of 10 reduction in the RMSE, we use the following rule:

UPDATE: Tp → Tp + log10/�T � � → 10−1/2��

Ns → 102Ns� h−1 → h−1 + log10/C�

The resulting increment in Tp is around 7.265 in our
example.
Table 4 shows results for prices and derivatives using

this update rule. In this example, we start � at 0.25 rather
than 0.5 so that �J � is not too small. The values of Tp, h are
varied in accordance with (30). The values in the “Error”
column decrease by roughly a factor of 10 from each row to
the next, in agreement with our analysis. Computing times
in this example are consistent with those reported for the
VG model in the previous section.

6.4. A Path-Dependent Option

We now turn to a multidimensional example and consider
the pricing of a discretely monitored Asian option in the
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Table 5. Asian call prices and derivatives in NIG model.

Price A0-derivative �-derivative

Tp � Ns �J � Mean Error SE Mean Error SE Mean Error SE

50 0�1 1E4 10 10�727 4�392 0�5470 0�876 0�123 0�0316 −3�51 7�22 0�7048
137 0�032 1E6 31 6�491 0�156 0�0061 0�735 0�017 0�0034 3�42 0�29 0�0728
224 0�01 1E8 95 6�348 0�013 0�0006 0�751 0�002 0�0004 3�69 0�02 0�0078

NIG model. The payoff of the Asian option is a function
of the average level of the underlying asset over m equally
spaced averaging dates and is given by

max
(
1
m

m∑
k=1

Ak�t − K�0
)

�

where

Ak�t =A0 exp
(

ak�t+
k∑

l=1

X�t�l

)
=A�k−1��t exp�a�t+X�t�k�

and the X�t�k, k = 1� � � � �m, are independent increments of
the NIG process. To formulate the problem in the setting
of §5.3, we set

V �x1�x2�����xm�=max
(

A0

m

m∑
k=1

exp
(

ak�t+
k∑

l=1

xl

)
−K�0

)
�

It is easy to see that this function satisfies Assumption 4.
As in Equation (30), the MSE is

MSEMult
�price� sen��NIG

= (
O��2 + e−C/h + e−��tTp �

)2 + VarMult
�price� sen��NIG

Ns

� (31)

In order to measure the error in our method, we need
benchmark values of the prices and sensitivities against
which to compare. We estimate accurate values using 108

simulation replications and exact sampling from the NIG
distribution using its representation as a continuous mixture
of normals. We use finite difference approximations with
common random numbers to estimate sensitivities. This
would be prohibitively time consuming in practice but is
necessary to get accurate benchmark values for comparison.
We use m = 12 steps in the average, which corresponds
to monthly price fixings with a maturity of T = 1 year.
We set K = 100. We estimate a price of 6.335, a sensi-
tivity to A0 of 0.7525, and a sensitivity to � of 3.71. We
believe these estimates are accurate to the number of deci-
mal places reported.
We set the initial values � = 0�1 and Tp = 50 to make the

modulus of the Laplace transform reasonably small. The
initial value of h is obtained by setting e−C/h = �2. From
each row to the next, we use the following rule:

UPDATE: Tp → Tp + log10/��t� � → 10−1/2��

Ns → 102Ns� h−1 → h−1 + log10/C�

The results are shown in Table 5 and are in general agree-
ment with our theoretical analysis. The derivative with
respect to � in the first row has a very large error; we
attribute this to the small value of �J � in the first row.

6.5. Integrated OU Process

The Asian option gives rise to a multidimensional problem
because the payoff of the option is path dependent. We
now consider an example that is multidimensional because
of the dynamics of the underlying asset, rather than the
form of the payoff. As in Barndorff-Nielsen and Shephard
(2001), we introduce a process Y with the dynamics in (6),
in which X is a Lévy process. In our example, we take
X to be an NIG process and interpret Y as the logarithm
of the price of an underlying asset on which we price a
standard European call option. This reduces to a problem
of estimating the expectation of a function of YT and its
sensitivities.
We use a Euler scheme for the evolution of Y , and thus

replace (6) with the recursion

Yt+�t = �1− ��t�Yt + Xt+�t − Xt�

If we set �t = T /m, then

YT =
m∑

k=1

�1− ��t�k−1X�t�k� (32)

where X�t�k, k = 1� � � � �m, are i.i.d. increments of X over
consecutive intervals of length �t. Because (32) represents
YT as a linear combination of independent NIG increments,
it would allow us to write the Laplace transform of the
Euler approximation to YT in terms of the NIG Laplace
transform; however, for the purpose of testing our results,
we will treat this as a multidimensional problem with a
payoff that depends on X�t�k, i = 1� � � � �m.
We use the NIG parameters from §6.3 with K = 100,

and we take � = 2 and m = 12. By forcing E�eaT +YT � = 1,
we get

a = r − ��t

T

m∑
k=1

�
√

2 − �2 −√
2 − �� + �1− ��t�k−1�2��

The payoff function is V �x1� x2� � � � � xm� = max�A0 exp
�aT +yT �−K�0� where yT =∑m

k=1�1−��t�k−1xk. This V
satisfies Assumption 4, which leads us to

MSEOU
�price� sen��NIG

= �O��2 + e−C/h + e−��tTp ��2 + VarOU�price� sen�� et al�NIG

Ns

� (33)

As in §6.4, we estimate benchmark values through exten-
sive simulation with 108 replications. This gives a price of
9.896, a sensitivity to A0 of 0.9261, and a sensitivity to �
of 1.61. Table 6 illustrates the convergence of the price and
derivative estimates computed through transform inversion,
and these are in general agreement with our theoretical
analysis.
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Table 6. European call prices and derivatives in OU model.

Price A0-derivative �-derivative

Tp � Ns �J � Mean Error SE Mean Error SE Mean Error SE

50 0�1 1E4 10 13�155 3�259 0�0517 1�052 0�126 0�0341 −3�31 4�91 0�9648
137 0�032 1E6 31 9�958 0�062 0�0063 0�905 0�021 0�0044 1�37 0�24 0�1392
224 0�01 1E8 95 9�902 0�006 0�0006 0�924 0�002 0�0005 1�59 0�02 0�0151

7. Summary
We have analyzed and tested a method for estimating sen-
sitivities by simulation using the likelihood ratio method
when the underlying density is known only through its
characteristic function or Laplace transform. The method
uses numerical transform inversion and incurs several types
of error; we have presented results on the convergence rates
of these errors and illustrated these results through numer-
ical examples. The main determinant of the overall con-
vergence rate is the truncation point used in the transform
inversion. The convergence rate determined by the trunca-
tion point can vary qualitatively between models and, within
a given model, can be different for expectations and their
sensitivities. In our examples, the variance gamma model
exhibits polynomial convergence for both expectations and
sensitivities, with a slower rate for the sensitivities; the
normal inverse Gaussian model exhibits exponential conver-
gence for both expectations and sensitivities.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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