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This paper develops a method for selecting and analysing stress scenarios for financial risk assessment,
with particular emphasis on identifying sensible combinations of stresses to multiple factors. We focus
primarily on reverse stress testing – finding the most likely scenarios leading to losses exceeding a
given threshold. We approach this problem using a nonparametric empirical likelihood estimator of
the conditional mean of the underlying market factors given large losses. We then scale confidence
regions for the conditional mean by a coefficient that depends on the tails of the market factors to
estimate the most likely loss scenarios. We provide rigorous justification for the confidence regions and
the scaling procedure when the joint distribution of the market factors and portfolio loss is elliptically
contoured. We explicitly characterize the impact of the heaviness of the tails of the distribution,
contrasting a broad spectrum of cases including exponential tails and regularly varying tails. The
key to this analysis lies in the asymptotics of the conditional variances and covariances in extremes.
These results also lead to asymptotics for marginal expected shortfall and the corresponding variance,
conditional on a market stress; we combine these results with empirical likelihood significance tests
of systemic risk rankings based on marginal expected shortfall in stress scenarios.
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1. Introduction

Stress testing has long been part of the risk management toolkit,
but it has gained new prominence through the recent financial
crisis. This is reflected, for example, in the impact of the Super-
visory Capital Assessment Program conducted by US financial
regulators in 2009 (Hirtle et al. 2009), the annual Comprehen-
sive Capital Assessment Reviews led by the Federal Reserve
since 2010 (see Board of Governors of the Federal Reserve
System 2012), the corresponding stress tests undertaken by
the European Banking Authority, the stress testing require-
ments in the Dodd-Frank Act, and greater use of stress test-
ing for internal risk management reported in industry surveys
(Hida 2011, Moody’s 2011).

Stress testing seeks to evaluate losses in extreme yet
plausible scenarios that may be underweighted in a proba-
bilistic model of market movements and absent from a his-
torical backtest. An important challenge in designing effective
stress tests lies in selecting scenarios that are indeed both suffi-
ciently extreme and sufficiently plausible to improve risk
management. Recent work on stress testing methodology
includes Alfaro and Drehmann (2009), Breuer et al. (2009),
Financial Services Authority (2009), Flood and Korenko
(2012), Kopeliovich et al. (2013), Koyluoglu (2006),

∗Corresponding author. Email: wanmo.kang@kaist.edu

Quagliarello (2009), and Rebonato (2010). Borio et al. (2012)
provide a critical review of current practice.

Our objective in this article is to develop a data-driven proce-
dure to inform the selection of scenarios that are both extreme
and plausible. Our primary focus is on reverse stress testing,
which seeks to identify scenarios that result in losses exceeding
a given magnitude for a particular portfolio or firm. Because
many different combinations of movements of market factors
can produce losses of similar magnitude, we formulate the goal
of reverse stress testing more precisely as one of identifying the
most likely scenario or scenarios among all such combinations.
These scenarios are, by definition, of primary importance to
a particular portfolio, whereas purely hypothetical scenarios
often seem arbitrary, making their consequences difficult to
interpret. With a single risk factor, it may be relatively clear in
which direction and even by how much to stress the factor to get
a plausible adverse outcome, but identifying a sensible combi-
nation of stresses to multiple factors requires further analysis.
This is one of the main challenges in defining stress scenarios.

We view the selection of stress scenarios as an exploratory
process. Reliance on a single scenario – even the most likely
one – is potentially misleading, so our objective is to iden-
tify important regions of stress scenarios, where importance
reflects both the likelihood of the outcome and the severity of
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2 P. Glasserman et al.

the resulting loss. The contours of these regions provide sets of
extreme stress scenarios that are, in a sense, equally plausible.

We approach the problem of identifying reverse stress testing
regions in two steps. First, we estimate confidence regions for
the conditional mean of the underlying market factors given
a portfolio loss exceeding a specified level. Then we scale
the conditional mean and the confidence regions by a multi-
plier that depends on the tails of the market factors to correct
for the ratio of the conditional mean to the most likely loss
scenario.

For the first step, the estimation of the conditional mean, we
use an empirical likelihood estimator, in the sense of Owen
(2001). Empirical likelihood (EL) is a nonparametric estima-
tion procedure through which we get confidence regions for the
conditional mean. Importantly, the EL estimator does not rely
on significant assumptions about the conditional distribution of
the market factors in extremes. The shape of the resulting con-
fidence regions is able to capture skewness and other features
present in extreme outcomes.

For the second step in our procedure – scaling the conditional
mean – we derive asymptotically exact scaling multipliers
(Proposition 1) when the joint distribution of market factors
and portfolio value falls within a broad family of elliptically
contoured distributions. This family includes, among many
other examples, the multivariate normal, multivariate Laplace,
and multivariate t distributions. Indeed, these three examples
illustrate the range of qualitatively different tail behaviour
captured within our framework – the normal distribution has
very light tails, the Laplace distribution has tails that decay
exponentially, and the t distribution has regularly varying tails.
Relatively heavy tails are an important feature of market data,
particularly in considering extreme scenarios. We provide rig-
orous justification for the scaling factor we derive, which re-
flects the heaviness of the tails, and for the combination of the
scaling factor and the EL estimator; this combination yields
asymptotically valid confidence regions for the most likely
scenario leading to losses exceeding a given magnitude. We
illustrate the results on market data.

The theoretical support for our method relies on a large
loss level and a large sample size. In practice, data on large
losses are limited, and this presents an obstacle to any attempt
at rigorous statistical analysis without strong distributional
assumptions. This difficulty is intrinsic to stress testing. By
generating confidence regions around stress scenarios, our ap-
proach provides information about uncertainty in extremes,
which is generally absent from the stress scenario selection
process.

As part of our analysis, we derive results for the conditional
variances and covariances of the underlying market factors
given an extreme move by one factor. These results connect
the tail behaviour of market factors with conditional moments
in extreme scenarios.

Using these limits, we derive asymptotics for marginal ex-
pected shortfall (MES) and a corresponding marginal variance
of shortfall (MVS), which are conditional moments in a stress
scenario. An MES is itself a stress-test measure – an expected
loss given a stress event. We show explicitly how the MES
and MVS are affected by the underlying tail behaviour; in
particular, the MVS grows faster in the extremes with heavier
tails. Large variance values suggest the potential for a high

degree of variability in MES estimates. With this in mind, we
apply ELconfidence regions to test the significance of systemic
risk rankings in Acharya et al. (2010). The tests suggest that
the top 50 companies rank roughly equally, as measured by
MES, and that the difference between this group and the 100th
ranked company is highly significant.

We comment briefly on some other relevant work. In addi-
tion to the papers cited previously on stress testing methodol-
ogy, recent research addresses foundational questions in stress
testing, particularly Goldstein and Sapra (2012), Pritsker (2011),
and Schuermann (2012). Acharya et al. (2013) use marginal
shortfall measures to evaluate regulatory stress tests. Baysal
and Staum (2008) apply empirical likelihood estimation for
expected shortfall and value-at-risk and find that it has the high-
est coverage among the methods they compare. Their setting
considers confidence regions for the outputs of risk measure-
ment whereas our concern is with the inputs in the form of
most likely scenarios. Peng et al. (2012) extend the approach
of Baysal and Staum (2008).

The rest of this paper is organized as follows. Section 2
motivates and formulates the reverse stress testing problem.
Section 3 introduces empirical likelihood estimation, and
section 4 converts estimates of conditional means to estimates
of most likely loss scenarios. Section 5 illustrates the method
through equity and currency portfolios. Section 6 presents our
results on conditional extreme moments and applies these to
analyse marginal expected shortfall and the corresponding vari-
ance. Proofs are deferred to an appendix.

2. The reverse stress testing problem

In an ordinary stress test, one posits a stress scenario and
then evaluates the losses suffered by a given portfolio in that
scenario. This approach offers the potential to uncover vul-
nerabilities that might be missed by other measures of risk.
However, the results of a stress test can be difficult to interpret:
If the losses in a stress scenario are large, should the portfolio
be changed or is the scenario too extreme to be of concern?
This inevitable question cannot be addressed without a view
on the likelihood of the underlying scenario.

A reverse stress test starts by positing an adverse outcome –
typically a loss of a given magnitude – rather than a scenario
and then asks what scenarios would lead to that outcome.
For a portfolio exposed to multiple risk factors, many dif-
ferent combinations of stresses might result in similar losses,
so interest centres on the most likely combinations. The most
likely scenario (for a given outcome) is portfolio-specific and,
by construction, directly relevant to the portfolio in question
in a way that a standard stress test may not be. A reverse
stress test might reveal, for example, that while a portfolio
is adequately hedged against movements in individual mar-
ket factors, it remains exposed to a plausible combination of
shocks across multiple market factors. By identifying specific
vulnerabilities, a reverse stress test points to steps that should
be taken to reduce these vulnerabilities. Focusing on the most
likely adverse scenarios identifies the most important risks and
removes much of the arbitrariness of a standard stress test based
on a hypothetical scenario.
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Stress scenario selection by empirical likelihood 3

Our objective is thus to estimate most likely loss scenarios.
Because information in extremes is necessarily limited, we are
also interested in estimating confidence regions around these
scenarios. Confidence regions measure uncertainty around the
estimated scenarios and suggest important regions of factor
stresses that go beyond a single combination of stresses.

To formulate these ideas precisely, let Z be a random
d-dimensional vector representing the changes in market fac-
tors relevant to a portfolio – rates, prices, and economic vari-
ables. (We use boldface letters for vectors and matrices.)
Suppose Z has a probability density f on R

d . For a given
portfolio exposed to these market factors, let (Z, L) have the
joint distribution of the factors and the portfolio loss L . Write
f (z|L ≥ �) for the conditional density of Z given L ≥ �,
assuming it exists. The generic problem of reverse stress test-
ing, for a loss threshold �, is to find the most likely scenario
(or scenarios) given a loss greater than or equal to �; in other
words, to solve

(RST) z∗(�) = argmax
z∈Rd

f (z|L ≥ �).

We refer to a solution z∗(�) of this problem as a most likely
loss scenario or as a solution to the reverse stress test. This
is called the ‘design point’ in De and Tamarchenko (2002)
and Koyluoglu (2006), based on an analogy with structural
reliability.

3. Empirical likelihood estimation of the conditional mean

To reduce reliance on specific distributional assumptions, we
adopt a nonparametric approach. Our objective remains to find
the solution to (RST), but as an intermediate step we first
focus on estimating E[Z|L ≥ �], the conditional mean of the
factors given a large loss. Ordinarily, the conditional mean
overestimates the most likely loss scenario. To offset this effect,
we will derive a scaling correction based on the tail decay of Z.

But first we need to estimate the conditional mean. We
assume we have observations (zi , Li ), i = 1, 2, . . . , of past
scenarios zi and corresponding losses Li . From these, we dis-
card all observations except those for which the loss is at
least �. Through appropriate re-indexing, we are left with n
observations (z1, L1), . . . , (zn, Ln), all of which have Li ≥ �.

Once we have culled those observations for which Li ≥ �,
the original problem of estimating a conditional mean reduces
to one of estimating an unconditional mean. For this problem,
we apply Owen’s (2001) empirical likelihood (EL) method.
This method considers convex combinations of the observa-
tions as candidate estimates of the mean:

w1z1+w2z2+· · ·+wnzn,

n∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , n,

The profile empirical likelihood associated with a candidate
value x is

R(x) = max

{
n∏

i=1

nwi :
n∑

i=1

wi zi = x,

n∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , n

}
. (1)

The product inside the braces is the likelihood ratio of the
probability vector (w1, . . . , wn) to the uniform distribution
(1/n, . . . , 1/n); R(x) is larger when x is a more uniform
convex combination of the weights on the observations, and it
is maximized at the sample mean of the observations.

Suppose that the observations are i.i.d. with mean μ0
(= E[Z|L ≥ �]), and suppose that the convex hull of the
observations contains μ0 with probability approaching 1 as
the number of observations increases. Then Owen’s (2001)
Theorem 3.2 states that −2 log R(μ0) has an asymptotic χ2

d
distribution for large n. This provides the basis for EL con-
fidence regions: Fix a confidence level 1 − α and find the
quantile xα for which P(χ2

d ≥ xα) = α; the corresponding
1 − α confidence region for μ0 is the set

C1−α,n =
{

n∑
i=1

wi zi :
n∏

i=1

nwi ≥ exp(−xα/2),

n∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , n

}
. (2)

As discussed in Owen (2001), the maximization problem
defining the profile empirical likelihood is easy to solve by
first reformulating it as

max
w1,...,wn

n∑
i=1

logwi subject to
n∑

i=1

wi = 1,
n∑

i=1

wi zi = x.

The resulting confidence regions are appealing, if n is not
too small, because they make minimal assumptions about the
distribution of the underlying data and are able to capture
skewness and other notable shape characteristics in the data.

4. From conditional mean to most likely loss scenario

4.1. Multivariate models: elliptically contoured distributions

Recall that our objective is to estimate the solution z∗(�) to
the reverse stress testing problem (RST), and in the previous
section we have estimated a conditional mean E[Z|L ≥ �],
which we denote by z̄(�). The next step is therefore to relate
these quantities. We will do so under the assumption that the
loss level � is large and that the joint distribution of the market
factors and the portfolio loss is elliptically contoured.

In more detail, a random vector X in R
d has a spherical

distribution if it admits a representation

X = RS, (3)

in which S is uniformly distributed on the (d −1)-dimensional
unit sphere and R is a nonnegative random variable indepen-
dent of S. (This is one of several equivalent definitions; see
p. 31 of Fang et al. (1990).) We have R = √

X�X in (3), so
the distribution of R is uniquely determined by that of X. A
random vector Y has an elliptically contoured distribution if it
admits a representation (p. 31 of Fang et al. (1990))

Y = μ + AX, (4)

in which the vector μ and matrix A are constants and X has a
spherical distribution. The distribution of Y is centred at μ, and
if the components of Y have finite second moments then Y has
covariance matrix � = wAA�, wherew = E[R2]/d . We will
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4 P. Glasserman et al.

assume that A is d × d so Y has the same dimension as X. If A
is invertible, then � > 0 (meaning that it is positive definite).
If R has a density and � > 0, then Y has a density, and this
density is constant on the ellipses {y ∈ R

d : y��−1y = a},
a > 0; see p. 35 of Fang et al. (1990).

The multivariate normal distribution N (0,�) is clearly
elliptically contoured and corresponds to taking R2 ∼ χ2

d ,
the chi-square distribution with d degrees of freedom. More
generally, (4) includes all mixtures of normals of the form

Y = μ + √
W N (0,�), (5)

with W an independent mixing random variable. For exam-
ple, taking W exponentially distributed yields the multivariate
Laplace distribution, and taking W = ν/χ2

ν yields the multi-
variate t distribution with ν degrees of freedom.

We distinguish different categories of tail behaviour among
elliptically contoured distributions based on the concept of
regular variation, discussed in greater detail in the appendix
and in, for example, Resnick (2007). Loosely speaking, a ran-
dom variable is regularly varying with index ν > 0 if its tail
distribution decays like the power x−ν . A smaller index ν thus
indicates a heavier tail.

As shown in the appendix, linear combinations of the com-
ponents of Y or X are regularly varying with index ν if the
radial random variable R has this property, in which case we
will refer to Y or X as regularly varying with index ν. We use
the notation RV(ν) to refer to this class of distributions.

We will say that R is in the class ERV(α, ν), α, ν > 0, if
exp(Rα) is regularly varying with index ν. As discussed in
the appendix, if R ∈ ERV(α, ν), then so is each coordinate
of X in (3), and we write X ∈ ERV(α, ν) for brevity. Among
distributions in the classes ERV(α, ν), those with larger α have
lighter tails, and among those with the sameα, those with larger
ν have lighter tails. The standard normal distribution has α = 2
and ν = 1/2; the Laplace distribution with E[W ] = 1/λ and
� = I in (5) has α = 1 and ν = √

2λ. These are both special
cases of the d-dimensional spherical Kotz distribution (Fang
et al. 1990, p. 69) with ERV(α, ν) density

f (x) ∝ ‖x‖m exp(−ν‖x‖α), ν, α > 0, 2m + d > 0,

in which the roles of α and ν are evident. Another example is
provided by the symmetric generalized hyperbolic distribution

f (x) ∝ Kλ−d/2(
√
ψ(χ + ‖x‖2))

(
√
ψ(χ + ‖x‖2))d/2−λ , λ ∈ R, ψ, χ > 0,

where Kr denotes a Bessel function of the third kind with pa-
rameter r . It can be shown that this distribution is ERV(1,

√
ψ),

and the boundary case ψ = 0, λ < 0 is RV(−2λ).
The categories of distributions RV(ν) and ERV(α, ν) allow

a great deal of flexibility in capturing tail behaviour of market
factors, with the regularly varying case the most relevant in ap-
plications.† Among elliptically contoured distributions, these
cases also have qualitatively different tail dependence, with the
multivariate normal having no tail dependence (except when
perfectly correlated), and the multivariate t exhibiting positive
tail dependence even with negative correlation (except when
perfectly negatively correlated); see Schmidt (2002). The mix-
ture representation in (5) and the associated tail behaviour can

†However, see Heyde and Kou (2004) for a comparison of empirical
estimates of t tails and Laplace tails.

be interpreted as the result of heteroskedasticity or stochastic
volatility in a dynamic model.

For our theoretical results, we will assume that the joint
distribution of (Z, L), the market factors and the portfolio loss
has the representation in (4), and that the underlying spherical
X belongs to one of the families RV(ν) or ERV(α, ν). We do
not require L to be a deterministic function of Z. We may think
of Z as recording the most important factors influencing the
portfolio, and then the model assumes that the tail behaviour of
the portfolio loss is consistent with that of the most important
factors. We will always assume that the restriction of � to the
d × d covariance matrix of Z is positive definite, so that none
of factors is redundant. This is sufficient to ensure that the most
likely loss scenario z∗(�) is well defined.

4.2. Estimation

We now turn to the problem of estimating the most likely
loss scenario through the conditional mean, beginning with
the following result.

Proposition 1 Suppose the distribution of Y = (Z, L) is
elliptical as in (4), with X either ERV(α, ν), for someα, ν > 0,
or RV(ν), with ν > 1. Let z∗(�) ∈ R

d be the most likely
loss scenario and let z̄(�) ∈ R

d denote the conditional mean
E[Z|L ≥ �]. Then there exists a positive scalar sequence κ�
such that

z∗(�) = κ�z̄(�), and κ� → κ as � → ∞, (6)

where

• κ = 1 for all ERV(α, ν) distributions;
• κ = (ν − 1)/ν for all RV(ν) distributions, ν > 1.

Based on this result, we can estimate the most likely loss
scenario z∗(�) by estimating the conditional mean z̄(�) and
then scaling the result as needed. In the lighter tailed cases,
no scaling is needed; in the RV(ν) case, we multiply the esti-
mate of the conditional mean by (ν − 1)/ν asymptotically to
estimate the most likely loss scenario. Market data are often
well approximated using a tν distribution with ν in the range
of 5–7, corresponding to scale factors in the range of 0.80–
0.86. In addition to scaling the point estimate, we would like,
more importantly, to scale the confidence regions for z̄(�) to
get confidence regions for z∗(�). Such a procedure involves
two limits, because Proposition 1 applies as � → ∞ whereas
the chi-square limit that underpins the EL method holds as
the number of observations grows. For a combined result,
we therefore need an array version of the EL limit theorem,
building on Owen’s (2001) Theorem 4.1.

In the following, we let Z1(�),Z2(�), . . . ,Zn� (�) denote
i.i.d. observations from the conditional distribution of Z given
L ≥ �, with n� → ∞. As before, let xα be the quantile defined
by P(χ2

d ≥ xα) = α. Write R�(x) for the profile empirical
likelihood in (1) with n = n�. For a set C ⊆ R

d and a constant
κ , κC denotes the set of points of the form κx with x ∈ C.

Theorem 1 Suppose the distribution of Y = (Z, L) is ellip-
tical as in (4), with X either ERV(α, ν), for some α, ν > 0, or
RV(ν), with ν > 4. Then
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Stress scenario selection by empirical likelihood 5

−2 log R�(z̄(�)) = −2 log R�(κ
−1
� z∗(�)) → χ2

d

in distribution, and κ�C1−α,n� is an asymptotic 100(1 − α)%
confidence region for the most likely loss scenario z∗(�); i.e.

P(z∗(�) ∈ κ�C1−α,n� ) → 1 − α,

as � → ∞, where κ� → κ , with κ as in Proposition 1.

This result leads to the following procedure. As in section 3,
we extract the large loss scenarios from the available data.
Using these observations, we construct EL confidence regions
(2) for the conditional mean z̄(�). We then scale the confidence
regions by the factor κ� to get confidence regions for the most
likely loss scenario z∗(�). As a simplifying approximation, one
could use the limiting value κ in place of κ�.

We have described this procedure through its application to
historical data. The same approach could be used with sim-
ulated data. In some settings – stress testing an entire bank
portfolio, for example – fully evaluating each scenario is
extremely time-consuming. A simplified model could then be
applied to simulated scenarios from which one would then
estimate the most likely loss scenarios for a more extensive
evaluation. However, building a simulation model requires
estimating parameters that would not be needed in a purely
data-driven approach.

The EL procedure is nonparametric. The asymptotic scaling
factor κ is ‘lightly’ parametric in the sense that it is determined
by the tail decay of the factors. It should be noted that the
procedure provided by Theorem 1 does not involve estimation
of �, which can be particularly difficult in high dimensions.

4.3. Coverage

Theorem 1 provides asymptotic support for confidence regions
as the sample size and loss level increase. In practice, data on
large losses are limited. Our procedure can still be implemented
with limited number of observations; the drawback is that the
actual coverage of the estimated confidence regions may differ
from the nominal coverage.

To test the performance of the confidence regions at finite
sample sizes and loss levels, we use simulation. We gener-
ate points from a multivariate t distribution with uncorrelated
marginals. The loss is given by the linear function c�Z with
c = (1, 0, . . . , 0)�, so the most likely scenario producing a
loss of � is z∗(�) = (�, 0, . . . , 0)�. (Because of the symmetry
of the distribution, this choice entails no loss of generality; see
section A.1 or Fang et al. 1990, p. 31.) To test performance
at sample size n, we generate enough points to get n obser-
vations for which the loss is at least �; we then construct the
confidence region, scaled by κ�, and check if it contains z∗(�).
We repeat this 1000 times and record the percentage of times
the confidence region contains z∗(�) as the estimated coverage.

Table 1 shows the results at degrees of freedom ν = 5, 6 and
7; dimensions d = 2, 5 and 10; sample sizes n = 10, 50 and
500; and loss levels at the 95th, 99th and 99.9th percentile of
the tν distribution. The top half of the table uses a confidence
level of 95%, and the bottom half uses 50%. We need at least
d + 1 points in dimension d to get a confidence region with
nonzero volume, so the entries with n = d = 10 are blank.
As expected, the observed coverage approaches the nominal

coverage as the sample size increases. (We have included the
case n = 500 to illustrate the convergence; in practice, one is
unlikely to have this many observations in the extremes.) The
most significant shortfalls in coverage occur in high dimen-
sions with few points. The coverage is not very sensitive to the
loss level �.

5. Application to equity and currency scenarios

In this section, we provide simple examples to illustrate our
method. We consider an equity portfolio and a currency port-
folio.

5.1. An equity portfolio

For our first application, we consider a portfolio of world equity
indices: the S&P 500, FTSE, DAX, Nikkei 225, Hang Seng
and Bovespa. We consider weekly returns from 3 May, 1993
to 26 December, 2011, and monthly returns from 1 June, 1993
to 1 December, 2011. We select portfolio weights based on
the market capitalization traded on each exchange, as listed
in table 2. This gives us a linear loss L = c�Z, with c =
[−0.5050;−0.1362;−0.0539; −0.1443;−0.1022;−0.0583].
For purposes of illustration, we choose � to correspond to a 1%
loss level with weekly data and a 5% loss level with monthly
data.

Before proceeding with the application of our method, it
is worth pausing to ask how existing methods would design
a stress test for this portfolio. To the best of our knowledge,
current practice offers no standard approach, even in this rather
simple setting. One might envision generating a stress scenario
by, for example, shocking each index by some number of
standard deviations. Such an approach would ignore the nature
of the dependence between indices in extremes, and it would
ignore the specific construction of the portfolio in question.

To apply our method, we model the returns on the equity
indices using a multivariate t distribution. The density with
parameters μ, �, ν is given by

f (x|μ,�, ν) = 	( 1
2 (ν + d))

	( 1
2ν)(πν)

d/2|�|1/2

×
(

1 + (x − μ)��−1(x − μ)

ν

)−(ν+d)/2

,

for x ∈ R
d .

The mean and variance of the distribution are given by

E[X ] = μ, V(X) = ν

ν − 2
�,

assuming ν > 2. To estimate ν, we first estimate the sample
mean and covariance and then maximize the likelihood over
ν. We get ν̂ = 5.0 with weekly data and ν̂ = 5.8 with monthly
data. We have used the assumption of a t distribution solely to
estimate the tail index ν; one might alternatively estimate this
index directly without introducing a specific distribution.

The results are illustrated in figures 1–4.As one might expect
for a portfolio of long positions in the equity indices, the most
likely loss scenario has all indices declining. Less obviously,
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6 P. Glasserman et al.

Table 1. Estimated coverage of the most likely loss scenario for dimension d , sample size n ≥ d + 1, loss level � and degrees of freedom ν
at confidence levels of 95 and 50%.

ν = 5 ν = 6 ν = 7

95% confidence n = 10 50 500 10 50 500 10 50 500

d = 2, � = F−1
ν (.95) 73.4 90.0 94.8 75.7 93.1 93.6 74.8 91.4 95.0

F−1
ν (.99) 71.6 90.2 95.7 74.6 92.3 95.7 75.6 91.8 94.0

F−1
ν (.999) 72.4 91.2 95.2 72.3 92.4 96.3 77.6 93.4 94.2

d = 5, � = F−1
ν (.95) 30.1 84.4 94.6 29.2 86.8 94.3 30.4 86.6 95.2

F−1
ν (.99) 26.3 85.9 94.2 28.6 89.1 93.7 28.5 87.2 93.9

F−1
ν (.999) 25.2 86.6 93.8 28.5 89.1 95.1 31.0 86.3 94.4

d = 10, � = F−1
ν (.95) 69.6 93.8 71.8 94.2 73.6 93.6

F−1
ν (.99) 68.0 92.3 69.5 92.9 71.0 94.4

F−1
ν (.999) 68.2 94.1 73.5 93.8 74.3 94.0

50% confidence n = 10 50 500 10 50 500 10 50 500

d = 2, � = F−1
ν (.95) 35.4 45.0 48.0 35.8 47.8 48.8 36.8 47.0 46.4

F−1
ν (.99) 30.8 43.2 48.4 32.5 44.4 50.2 35.4 47.0 49.1

F−1
ν (.999) 33.6 45.4 51.5 35.9 46.2 50.4 35.4 50.6 52.0

d = 5 � = F−1
ν (.95) 10.7 39.2 50.6 12.6 40.6 48.4 11.3 39.7 50.1

F−1
ν (.99) 9.4 37.8 46.5 10.7 40.8 46.6 11.5 41.8 51.2

F−1
ν (.999) 8.8 37.3 45.2 11.9 39.8 51.1 12.0 39.0 46.0

d = 10, � = F−1
ν (.95) 22.7 46.5 26.3 51.4 26.6 47.6

F−1
ν (.99) 23.1 44.9 24.3 48.0 25.7 49.6

F−1
ν (.999) 23.6 46.6 28.0 47.0 26.7 49.7

Table 2. Market caps of exchanges at 2010, in USD millions, from www.world-exchanges.org/statistics.

Exchange Market cap Proportion(%)

NYSE Euronext 13,394,081.8 50.50
London SE Group 3,613,064.0 13.62
Deutsche Börse 1,429,719.1 5.39
Tokyo SE Group 3,827,774.2 14.43
Hong Kong Exchanges 2,711,316.2 10.22
BM&FBOVESPA 1,545,565.7 5.83

the declines in the various indices in the most likely scenario
are similar, despite the wide disparity in the portfolio weights.

The confidence regions provide a more nuanced picture.
For purposes of illustration, we show confidence regions for
pairs of indices at a time, though having an automated method
is particularly valuable in multiple dimensions where visual-
ization is difficult. Figures 1 and 2 show results for weekly
data. The circles show the observations, and the crosses show
the extreme observations – those beyond the loss threshold.
The contours show 99 and 50% confidence regions for the
conditional mean and (after scaling) for the most likely loss
scenario. The confidence regions are clearly shaped by the data,
yet tempered compared to the most extreme points.

In figure 1, for example, we see a marked difference in the
comovements of two pairs of indices. The left panel indicates a
high degree of confidence in the FTSE and S&P 500 declining
together whereas the right panel shows a much weaker link
between the Hang Seng and the Nikkei in extremes. Figures 3
and 4 suggest somewhat weaker dependence in extremes at
monthly frequencies than at weekly frequencies. We interpret
the confidence regions as sets of additional scenarios that merit

exploration along with the most likely scenario, so the shapes
in the figures indicate further combinations of index moves
to consider. Indeed, in Glasserman et al. (2013) we propose a
sampling algorithm motivated by the EL regions to generate
additional scenarios by simulation.

The confidence regions in the figures take ν as fixed, but
they could be modified to reflect uncertainty in this parameter.
The mapping ν → (ν − 1)/ν is monotonic, so a confidence
interval (ν̂1, ν̂2) for ν implies a confidence interval for the
scaling factor; one might therefore replace a single confidence
region κνC with the convex hull of confidence regions κν̂1C and
κν̂2C. A full justification of this procedure is beyond the scope
of Theorem 1. As a practical matter, we consider uncertainty
about ν less significant than the uncertainty about combina-
tions of factor moves leading to large losses. The survey in
Haas and Pigorsch (2013) provides extensive references to the
literature on tail index estimation for financial data, most of
which finds indices falling in a fairly narrow range for equities
and currencies.

In the example of this section and the next, we take the
distribution of Z to be the distribution of i.i.d. market returns.
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Stress scenario selection by empirical likelihood 7
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Figure 1. Equity indices, weekly data.
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Figure 2. Equity indices, weekly data.

A more complex application is developed in Glasserman et al.
(2013), based on the Federal Reserve’s Comprehensive Cap-
ital Analysis and Review Board of Governors of the Federal
Reserve System (2012), the supervisory stress test applied to
the largest bank holding companies in the USA One of the
extensions considered in Glasserman et al. (2013) is to treat
Z as the distribution of innovations in a vector autoregressive
model of financial and economic variables, thus allowing for
serial dependence in these variables.

5.2. A currency portfolio

Next we consider a basket of currencies, half held in British
pounds (GBP), the rest divided evenly among the Australian
dollar (AUD), the euro (EUR), the Japanese yen (JPY) and
the Swiss franc (CHF). We use monthly returns against the US
dollar from February 2000 through December 2011. A maxi-
mum likelihood fit of the data to a multivariate t distribution

yields an estimate of ν̂ = 5.2 to the degrees-of-freedom
parameter. For the loss severity �, we choose the loss threshold
� at the level of the worst 5% of losses in the sample period.
Our estimated most likely loss scenario is

(AUD, EUR, JPY, CHF, GBP)

= (−5.5907%,−4.1142%, 1.0402%,−4.0246%,−4.4338%),

the values on the right indicating one-month returns against
the US dollar.

Figure 5 illustrates the results. The circles show the observa-
tions, and the crosses show the 5% most extreme observations
– those beyond the loss threshold. The contours show 99 and
50% confidence regions for the conditional mean and (after
scaling) for the most likely loss scenario. The squares indicate
the point estimates.

In the left panel, we see that the confidence regions for the
most likely loss reflect the skewness in the joint distribution
of the EUR/USD and CHF/USD returns. The most likely loss
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8 P. Glasserman et al.
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Figure 3. Equity indices, monthly data.
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Figure 4. Equity indices, monthly data.

scenario involves an increase in the JPY/USD rate, even though
this increase would, by itself, generate a gain, not a loss, for
the portfolio. This outcome is a nonobvious reflection of the
joint distribution of the returns: the largest drops in the GBP
(which makes up 50% of the portfolio) coincide with increases
in the JPY/USD rate. However, the confidence regions in the
right panel of figure 5 also indicate a wide range of outcomes
for the JPY/USD rate when the GBP drops, suggesting that one
should explore other scenarios in the large-loss region.

6. Conditional moments and marginal shortfall

Our approach to estimating the most likely loss scenario through
the conditional mean is closely related to the problem of es-
timating marginal expected shortfall (MES), the conditional
loss in a stress scenario. Indeed, the problem of estimating the
conditional mean is formally equivalent to estimating MES.

MES was originally introduced as a mechanism for attribut-
ing a portfolio’s overall loss to parts of the portfolio or to
individual factors. (See, for example, the discussion in McNeil
et al. (2005).) A subportfolio’s MES is its expected loss con-
ditional on the total portfolio loss exceeding some threshold.
More recently, MES and MES-like measures have become part
of the stress testing toolkit as measures of systemic risk; see,
in particular, Acharya et al. (2010), Adrian and Brunnermeier
(2009) and Huang et al. (2012). In this context, one looks at
the expected loss suffered by a financial institution (rather than
a subportfolio) conditional on a large shock to the system as
a whole, just as in a conventional stress test. Indeed, Acharya
et al. (2013) use their version of an MES measure to evaluate
macroprudential stress tests and propose their method as an
alternative to current regulatory stress testing. Huang et al.
(2012) make a similar comparison between their method and an
earlier round of bank stress tests. Oura and Schumacher (2012)
include MES in their list of stress testing methodologies.
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Figure 5. Foreign currencies, monthly data.

Table 3. Conditional means and variances of factors, given an extreme outcome of X1.

Conditional moment ERV(α, ν) RV(ν), ν > 2

E[X1|X1 ≥ �] �+ o(�) ν
ν−1�+ o(�)

E[X2
1|X1 ≥ �] �2 + o(�2) ν

ν−2�
2 + o(�2)

V(X1|X1 ≥ �) 1
(να)2

�−2(α−1) + o(�−2(α−1)) ν
(ν−2)(ν−1)2

�2 + o(�2)

E[X2|X1 ≥ �] 0 0
V(X2|X1 ≥ �) = E[X2

2|X1 ≥ �] 1
(να)2

�−(α−2) + o(�−(α−2)) ν
(ν−2)(ν−1) �

2 + o(�2)

The analysis underlying Proposition 1 and Theorem 1
allows us to characterize how MES and a corresponding con-
ditional variance behave across the families of distributions
we consider. Moreover, the EL procedure provides a way to
measure the precision of MES estimates used for systemic risk
rankings.

6.1. Conditional moments in extremes

The key to this analysis (and to the proof of Theorem 1) is
the calculation of conditional moments in extremes for the
multivariate distributions we consider. In fact, it suffices (see
the appendix) to consider a pair (X1, X2) with a spherical
distribution. Table 3 summarizes the conditional means and
variances of the factors, given an extreme outcome of one of
the factors.

Moving from left to right in the table, we have heavier tails.
As one might expect, all the conditional moments increase (for
large �) as we move from the ERV category to the RV category.
Among the ERV(α, ν) distributions, the conditional moments
are decreasing in α and ν, and among the RV(ν) distributions
they are decreasing in ν. In specific cases, more explicit results
are sometimes available; for example, the last row is exactly
1 for the normal distribution, and all rows can be evaluated
explicitly for the Laplace distribution. The results in the table
suffice for our purposes, so we omit the details of specific cases.

6.2. Marginal shortfall

Using the asymptotic moments in table 3, we can analyse the
MES conditional on a large loss in the portfolio. Let Y be
elliptically contoured as in (4). We will condition on large
values of c�Y for a fixed vector c. For each component Yi of Y,
define the marginal expected shortfall and the corresponding
variance by

MESi = E[Yi |c�Y ≥ �]
MVSi = V[Yi |c�Y ≥ �].

We analyse these quantities for large loss levels �. The marginal
shortfall contribution for the i th subportfolio or factor is ci

times the expression given here for MESi .
To lighten notation, let (β1, . . . , βd) = c��/(c��c) and

write, for each i = 1, . . . , d ,

Yi = μi + βi c�(Y − μ)+ εi ; (7)

this representation defines εi and makes it uncorrelated with
c�Y. Letting σ 2

εi
denote the variance of εi , we get σ 2

εi
/w =

σ 2
i − β2

i c��c, with σ 2
i = �i i , and with w as defined fol-

lowing (4). Denote by μc = c�μ the expected loss and by
σ 2

c = wc��c its variance.

Proposition 2 Suppose that Y is elliptically distributed as
in (4). As � → ∞, MESi and MVSi behave as follows.
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10 P. Glasserman et al.

Table 4. Estimates of MES and top 50 rankings based on daily returns from June 2006 through June 2007, as in Acharya et al. (2010). The
last three columns show EL confidence levels for the significance of pairwise comparisons of rankings. NMX and WU traded for only part of

the time period and are omitted from the comparison.

MES Name of company Ticker MES (%) Confidence (MESi > MES j )

ranking, i j = i + 1 j = i + 10 j = 100

1 INTERCONTINENTALEXCHANGE INC ICE 3.36 0.47% 37.29% 98.88%
2 E TRADE FINANCIAL CORP ETFC 3.29 4.57% ** 100.00%
3 BEAR STEARNS COMPANIES INC BSC 3.15 1.33% 48.85% 100.00%
4 N Y S E EURONEXT NYX 3.05 4.82% 39.18% 99.99%
5 C B RICHARD ELLIS GROUP INC CBG 2.84 0.16% 82.10% 100.00%
6 LEHMAN BROTHERS HOLDINGS INC LEH 2.83 5.10% 90.70% 100.00%
7 MORGAN STANLEY DEAN WITTER & CO MS 2.72 1.57% 44.53% 100.00%
8 AMERIPRISE FINANCIAL INC AMP 2.68 0.27% 53.85% 100.00%
9 GOLDMAN SACHS GROUP INC GS 2.64 0.05% 67.56% 100.00%
10 MERRILL LYNCH & CO INC MER 2.64 2.82% 40.74% 100.00%
11 SCHWAB CHARLES CORP NEW SCHW 2.57 ** 22.66% 99.97%
12 NYMEX HOLDINGS INC NMX 2.47 ** ** **
13 C I T GROUP INC NEW CIT 2.45 0.06% ** 100.00%
14 T D AMERITRADE HOLDING CORP AMTD 2.43 7.68% 11.21% 99.99%
15 T ROWE PRICE GROUP INC TROW 2.27 0.76% 12.06% 100.00%
16 EDWARDS A G INC AGE 2.26 0.08% 19.52% 100.00%
17 FEDERAL NATIONAL MORTGAGE ASSN FNM 2.25 0.43% 22.70% 100.00%
18 JANUS CAP GROUP INC JNS 2.23 0.56% 20.89% 99.89%
19 FRANKLIN RESOURCES INC BEN 2.20 0.96% 19.79% 99.94%
20 LEGG MASON INC LM 2.19 0.34% 25.82% 99.88%
21 AMERICAN CAPITAL STRATEGIES LTD ACAS 2.15 0.28% 38.14% 100.00%
22 STATE STREET CORP STT 2.12 ** 39.60% 100.00%
23 WESTERN UNION CO WU 2.10 ** ** **
24 COUNTRYWIDE FINANCIAL CORP CFC 2.09 0.11% 29.19% 96.14%
25 EATON VANCE CORP EV 2.09 2.08% 51.50% 99.72%
26 S E I INVESTMENTS COMPANY SEIC 2.00 0.72% 12.18% 99.86%
27 BERKLEY W R CORP BER 1.95 0.08% 16.95% 99.85%
28 SOVEREIGN BANCORP INC SOV 1.95 0.61% 37.21% 100.00%
29 JPMORGAN CHASE & CO JPM 1.93 2.20% 45.10% 100.00%
30 BANK NEW YORK INC BK 1.90 1.79% 63.02% 100.00%
31 M B I A INC MBI 1.84 0.09% 17.72% 99.54%
32 BLACKROCK INC BLK 1.83 0.53% 13.39% 99.58%
33 LEUCADIA NATIONAL CORP LUK 1.80 0.00% 13.79% 99.89%
34 WASHINGTON MUTUAL INC WM 1.80 2.20% 44.33% 99.95%
35 NORTHERN TRUST CORP NTRS 1.75 0.39% 12.06% 100.00%
36 C B O T HOLDINGS INC BOT 1.71 0.01% 5.91% 82.07%
37 PRINCIPAL FINANCIAL GROUP INC PFG 1.71 4.21% 38.22% 99.97%
38 CITIGROUP INC C 1.66 0.69% 18.75% 99.92%
39 LOEWS CORP LTR 1.63 0.99% 11.10% 98.09%
40 GENWORTH FINANCIAL INC GNW 1.59 0.23% 11.51% 99.77%
41 LINCOLN NATIONAL CORP IN LNC 1.59 0.05% 100.00%
42 UNION PACIFIC CORP UNP 1.58 0.86% 92.23%
43 AMERICAN EXPRESS CO AXP 1.56 0.57% 99.94%
44 COMERICA INC CMA 1.55 0.75% 99.92%
45 C I G N A CORP CI 1.54 0.09% 76.81%
46 FIDELITY NATIONAL INFO SVCS INC FIS 1.54 0.36% 99.65%
47 METLIFE INC MET 1.52 0.61% 96.81%
48 PROGRESSIVE CORP OH PGR 1.51 1.05% 99.50%
49 M & T BANK CORP MTB 1.49 0.21% 98.13%
50 NATIONAL CITY CORP NCC 1.48 91.21%

100 AMERICAN INTERNATIONAL GROUP INC AIG 0.71

(i) If X is ERV(α, ν), then

MESi = μi + βi (�− μc)+ o(�)

MVSi = σ 2
εi
σα−2

c

ν2α2wα/2
(�− μc)

−(α−2) + o(�−(α−2)).

(ii) If X is RV(ν), ν > 2, then

MESi = μi + ν

ν − 1
βi (�− μc)+ o(�)

MVSi =
(

β2
i ν

(ν − 1)2(ν − 2)
− σ 2

εi
ν

σ 2
c (ν − 1)(ν − 2)

)

×(�− μc)
2 + o(�2).
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Stress scenario selection by empirical likelihood 11

−0.02 0 0.02 0.04 0.06 0.08

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

− Log Return on ICE

− 
Lo

g 
R

et
ur

n 
on

 E
TF

C
Data points
MES estimates
0.47% confidence region
Diagonal axis

−0.02 0 0.02 0.04 0.06 0.08

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

− Log Return on ICE

− 
Lo

g 
R

et
ur

n 
on

 S
C

H
W

Data points
MES estimates
37.29% confidence region
Diagonal axis

−0.02 0 0.02 0.04 0.06 0.08

−0.02

0

0.02

0.04

0.06

0.08

− Log Return on ICE

− 
Lo

g 
R

et
ur

n 
on

 A
IG

Data points
MES estimates
98.88% confidence region
Diagonal axis

Figure 6. The figures show the largest EL confidence regions for (MESi ,MES j ) below the 45o degree line for the cases (i, j) = (1, 2),
(1, 11), and (1, 100).

Proof The results follow from substituting (7) into the defi-
nitions of MES and MVS and then using table 3 to evaluate the
conditional mean and the conditional variance, taking W1 =√
w(c�Y−μc)/σc and W2 = √

wεi/σεi . To see that (W1,W2)

is in either RV(ν) or ERV(α, ν), we recall that Y − μ = AX,
where X has a spherical distribution in RV(ν) or ERV(α, ν).
So

W1 =
√
w

σc
c� AX =

(√
w

σc
A�c

)�
X,

W2 =
√
w

σεi

(ei − βi c)� AX =
(√

w

σεi

A�(ei − βi c)
)�

X

By our choices of βi , σc, and σεi , we have

(A�c) · (A�(ei − βi c)) = c��(ei − βi c) = 0,

‖
√
w

σc
A�c‖2 = w

σ 2
c

c��c = 1,

‖
√
w

σεi

(A�(ei − βi c))‖2 = w

σεi

(σ 2
i − β2

i c��c) = 1.

That is,
√
w
σc

A�c and
√
w
σεi

A�(ei −βi c) are orthonormal vectors.
So there exists an orthogonal matrix U whose first two rows
are

(√
w
σc

A�c
)� and

(√
w
σεi

A�(ei −βi c)
)�. Since X is spherical,

UX has the same distribution as X. By Propositions 3 and 6 in
the appendix, (W1,W2) is a two-dimensional spherical random
vector in RV(ν) or ERV(α, ν). �

Proposition 2 shows, as one might expect, that the MES is
larger under heavier-tailed distributions. The result also high-
lights important differences in how the MVS depends on the
loss level �: the MVS is essentially constant with α = 2 (as
in the normal distribution), it grows linearly with � for α = 1
(as in the Laplace distribution), and it is quadratic in � in the
regularly varying case. A large MVS suggests that estimates of
MES are likely to be imprecise, an issue we examine next.

6.3. EL significance of MES rankings

The EL method in section 3 can be used to estimate confidence
regions for a full vector (MES1, . . . , MESd). Here we extend
these ideas to measure the significance of MES rankings.

Acharya et al. (2010) use an MES measure as part of their
analysis of systemic risk. Their MES for a company is the

expected decline in the company’s stock price conditional on
a large decline in the whole market, as measured by a broad
market index. This is a stress test in which the stress scenario is
a decline in the market index. Acharya et al. (2010) rank firms
by their MES as an indication of their systemic importance.
Closely related measures are used in Adrian and Brunnermeier
(2009) and Huang et al. (2012). Acharya et al. (2013) use their
measure to evaluate macroprudential stress tests.

A ranking MESi > MES j of firm i higher than firm j is
equivalent to the point (MESi ,MES j ) lying below the 45o

line in the plane. In practice, we estimate MES values from
historical data and check if the point estimate falls in this
halfspace. We can supplement the point estimate with an EL
confidence region using the procedure in section 3. If a 95%
confidence region is fully contained within the halfspace but
a 99% confidence region is not, then the significance of the
ranking is between 1 and 5%. Indeed, we can measure the
significance of an estimated ranking by the smallest p for
which the (1 − p) confidence region is contained within the
halfspace.The same idea can be applied to test the simultaneous
significance of an ordering of three or more firms.

Following Appendix B of Acharya et al. (2010), we estimate
MES values using daily stock returns for the 13 months from
June 2006 through June 2007. We find the 5% of days with
the largest declines in the CRSP value-weighted index and
estimate the MES of each firm in Appendix B by averaging the
firm’s stock return over those days.† The resulting top 50 values
and rankings, displayed in table 4, match those in Acharya
et al. (2010). See Brownlees and Engle (2011) for a dynamic
approach to MES estimation.

In table 4, we also report EL confidence levels (i.e. 1 minus
significance levels) for pairwise comparisons between firms
ranked consecutively, firms ranked ten apart, and between each
firm and AIG, which is ranked 100th. None of the compar-
isons between consecutive firms or firms ranked 10 apart ap-
proaches conventional thresholds for statistical significance,
corresponding to a confidence level of 90% or higher. There
is too much conditional variability in the tails to draw reliable
conclusions about the MES comparisons, as one might sus-
pect from the MVS asymptotics in Proposition 2. Nearly all

†The worst days are, in decreasing order of severity, Feb 27, Mar 13,
Jun 5, 2006, Jun 7, 2007, Jun 12, 2006, Nov 27, Jul 13, May 10, Jun
13, 2006, Jun 20, 2007, Mar 2, Mar 5, Sep 6, and May 24.
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the comparisons with AIG are highly significant. The overall
picture that emerges from the table is that the top 50 firms
can be confidently ranked higher than the 100th, but all of the
top 50 should be viewed as of roughly equal importance, as
measured by MES.

The pairwise comparison for ICE with ETFC, SCHW and
AIG is illustrated in figure 6. Each panel plots the negative log
returns for the indicated stocks on the worst 5% of days for the
index. Each panel also shows the largest EL confidence region
contained below the 45o line. The corresponding confidence
level (or, more precisely, the amount by which the confidence
level falls short of 100%) measures the significance of each
pairwise ordering. These are the values reported in table 4.
The rightmost panel of figure 6 indicates substantial skewness
in the extreme outcomes (possibly due in part to the small
number of observations) and how this skewness is reflected in
the confidence region.

7. Concluding remarks

We have developed a method for estimating the most likely
scenario leading to large losses, which is the defining problem
of reverse stress testing. Our method uses historical data and
combines an empirical likelihood estimate with an asymptotic
adjustment based on the heaviness of the tails of the underlying
market factors. The adjustment has the same simple form for
a wide class of multivariate distributions: it is determined by
the index of regular variation in the heavy-tailed case, and
no adjustment is needed with lighter tails. The same analysis
allows us to examine the marginal expected shortfall and its
associated variance, conditional on a stress scenario. Here, too,
the behaviour is characterized by the heaviness of the tails. The
empirical likelihood methodology then allows us to estimate
the significance of rankings based on MES.
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Appendix A. Proofs

A.1. Main results

Most of the work in proving Proposition 1 and Theorem 1 lies in
establishing the limits in table 3. Before detailing these limits, we
show how they lead to the stated results. For Proposition 1 we need
finite means, hence the condition ν > 1; the variance limits in table 3
and Proposition 2 require finite variance, thus ν > 2; and Theorem 1
requires finite fourth moments, hence ν > 4.

Recall our standing assumption that the covariance matrix � of Z
is positive definite. By relabelling L as the (d + 1)st coordinate of Z̃,
we may rewrite (Z, L) simply as Z̃ ∈ R

d+1. Conditioning on L ≥ �

then reduces to conditioning on c�
1 Z̃ ≥ � with c�

1 = (0, . . . , 0, 1) ∈
R

d+1, provided the covariance matrix �̃ of (Z, L) remains positive
definite. If �̃ fails to be positive definite, then there exists a vector
c2 ∈ R

d such that L = c�
2 Z + h, a.s., where h is a constant. Thus,

for both cases, it suffices to consider conditioning on the form of
ĉ�Ẑ ≥ �̂, for some �̂ and some ĉ �= 0, with Ẑ (=Z̃ or Z) having a
positive definite covariance matrix. We may therefore drop the hats.

Proof of Proposition 1 By replacing � with �− c�μ, we may take
μ = 0 in the representation (4). Consider, then, Z = AX, with X
spherical. Set ĉ = A�c. Suppose we condition on c�Z = c�AX =
ĉ�X. We can find an orthogonal matrix U such that ĉ�U = ‖ĉ‖
(1, 0, . . . , 0), and by Theorem 2.5 of Fang et al. (1990), U−1X has
the same distribution as X. That is, c�Z has the same distribution as

(ĉ�U)(U−1X) = ‖ĉ‖Ẑ1

where Ẑ = U−1X. Hence, we can reduce an arbitrary linear combi-
nation to one of the form c = (1, 0, . . . , 0)� with Z spherical.

In the setting of the proposition, this shows that we can find an in-
vertible matrix B = U−1A−1 such that Bz∗(�) = �× (1, 0, . . . , 0)�
and Bz̄(�) = E[Z1|Z1 ≥ �] × (1, 0, . . . , 0)�. By setting κ� =
�/E[Z1|Z1 ≥ �], we obtain equation (6). The first row of table 3
then gives the stated limits for κ�. �

Owen (2001) provides a triangular array version of his EL theorem
for data of the form Z1,n, . . . ,Zn,n , n = 1, 2, . . . , in which variables
with a shared second subscript are independent of each other and have
a common mean. His result requires two conditions:

(i) For some c > 0, λm,n
λM,n

≥ c, where λm,n and λM,n are the
minimum and maximum eigenvalues of the covariance
matrix associated with the n-th row of the array, respec-
tively.

(ii) 1
n2

∑n
i=1 E

[‖Zi,n − μn‖4λ−2
M,n

] → 0.

An additional convex hull condition required for the theorem is auto-
matically satisfied by elliptical distributions.

Define

Dn =
{

diag{�α−1
n , �

α/2−1
n , . . . , �

α/2−1
n } for ERV(α, ν) case;

diag{ 1
�n
, . . . , 1

�n
} for RV(ν) case

where diag represents a diagonal matrix with specified elements. Let
Z1,Z2, . . . be i.i.d. factor changes. Choose those satisfying c�Z j ≥
�n , so that Z′

1,n, . . . ,Z′
n,n are i.i.d. samples from the distribution of

Z|{c�Z ≥ �n}. Then, we can apply the EL theorem for triangular
arrays to the scaled factors Zk,n = DnBZ′

k,n where B is the matrix
introduced in the proof of Proposition 1. Theorem 1 follows once we
verify conditions (i) and (ii) for this array and apply Proposition 1. We
will show that the off-diagonal conditional covariances all vanish in
section A.2, so (i) will follow from limits of the conditional variances
in table 3. For (ii), we need to extend these limits to higher moments
and these computations are shown in sections A.4 and A.5.

We apply Theorem 1 to DnBZ′
k,n for the estimation of

DnBE[Z|c�Z ≥ �n]. To estimate E[Z|c�Z ≥ �n], we can apply
the procedure to the original data Z′

k,n since the confidence region
C1−α,n consists of convex (so linear) combination of observed data.

A.2. Vanishing conditional covariances

Let Z have a spherical distribution. For all 1 ≤ i < j , by the
invariance under orthogonal transformations, (Z1, Zi , Z j ) and
(Z1,−Zi , Z j ) share the same distribution. Hence E[Zi |Z1 ≥ �] =
1
2

(
E[Zi |Z1 ≥ �] + E[−Zi |Z1 ≥ �]) = 0 and

COV(Zi , Z j |Z1 ≥ �)

= E[Zi Z j |Z1 ≥ �] − E[Zi |Z1 ≥ �] × E[Z j |Z1 ≥ �]
= E[Zi Z j |Z1 ≥ �]
= 1

2

(
E[Zi Z j |Z1 ≥ �] + E[−Zi Z j |Z1 ≥ �]

)
= 0 . (8)

Hence, it is enough to consider the conditional variances to check the
eigenvalue conditions (i) of conditional covariance matrices.

A.3. Tail integration representation

We make frequent use of the following representation result:

Lemma 1 Let X be a real-valued random variable and f : R → R

be an absolutely continuous function. Then, for � ∈ R, we have

E[ f (X)1{X≥�}] = f (�)P(X ≥ �)+
∫ ∞
�

f ′(x)P(X ≥ x)dx .

Proof Since f is absolutely continuous, f (u) = f (�)+∫ u
� f ′(x)dx

for � ≥ u. Therefore,

E[ f (X)1{X≥�}] = E

[(
f (�)+

∫ X

�
f ′(x)dx

)
1{X≥�}

]

= f (�)P(X ≥ �)+ E

[ ∫ ∞
�

f ′(x)1{X≥x}dx
]

= f (�)P(X ≥ �)+
∫ ∞
�

f ′(x)P(X ≥ x)dx .

�

A.4. Regularly varying tails

In this section, we consider a regularly varying spherically distributed
random vector X. We begin by recalling (see e.g. Resnick 2007,
p. 20) that a positive function h is regularly varying (at ∞) with
index ρ ∈ R if

lim
�→∞

h(�x)

h(�)
= xρ,

for all x > 0. A random variable X is regularly varying with index ν
(RV(ν)) if the function � → P(X ≥ �) is regularly varying with index
−ν. Proposition 2.6 of Resnick (2007) shows that if h is regularly
varying with index −ν < 0, then for any ε > 0 there exists K > 0
such that

(1 − ε)x−ν−ε < h(�x)

h(�)
< (1 + ε)x−ν+ε (9)

for all � ≥ K and x ≥ 1.
Recall that we defined a spherical random vector X = RS to be

RV(ν) if R is RV(ν). This definition is justified by the following
properties:

Proposition 3 Suppose that the spherically distributed random vec-
tor X is RV(ν).

(i) For 1 ≤ k ≤ d, Xk = (X1, · · · , Xk)
� is a k-dimensional

RV(ν) spherical random vector.
(ii) For any u ∈ R

d , u�X is RV(ν).

Proof (i) See Proposition 3.1 of Schmidt (2002). (ii) By Theorem

2.4 of Fang et al. (1990), u�X d= ‖u‖X1. By (i), X1 is RV(ν), and
then so is cX1, for any c > 0. �

D
ow

nl
oa

de
d 

by
 [

C
hi

a-
Y

i D
iv

is
io

n 
T

ai
w

an
 C

ol
le

ge
 o

f 
Ph

ys
ic

al
 E

du
ca

tio
n]

 a
t 1

2:
09

 1
1 

Ju
ly

 2
01

4 



14 P. Glasserman et al.

Proposition 4 Suppose that the spherical random vector X is RV(ν),
ν > 0. For p ∈ [0, ν), we have

lim
�→∞

1

�p E[X p
1 |X1 ≥ �] = ν

ν − p
, (10)

lim
�→∞

1

�p E[|X2|p|X1 ≥ �] = ν

ν − p

	
( p+1

2

)
	
( ν−p+1

2

)
	
( 1

2

)
	
(
ν+1

2

) . (11)

In particular, for integer m ≥ 1 with 2m < ν,

lim
�→∞

1

�2m
E[X2m

2 |X1 ≥ �] = ν

ν − 2m

m∏
k=1

2k − 1

ν − (2k − 1)
.

Proof First we shall prove (10). By Lemma 1,

E[X p
1 1{X1≥�}] = �p

P(X1 ≥ �)+
∫ ∞
�

px p−1
P(X1 ≥ x)dx

= �p
P(X1 ≥ �)+ �p

∫ ∞
1

px p−1
P(X1 ≥ �x)dx .

It follows that

1

�p E[X p
1 |X1 ≥ �] = E[X p

1 1{X1≥�}]
�pP(X1 ≥ �)

= 1 +
∫ ∞

1
px p−1 P(X1 ≥ �x)

P(X1 ≥ �)
dx .

By (9) and the assumption p < ν, the integrand of the above equation
can be bounded by an integrable function. We apply the dominated
convergence theorem to get

lim
�→∞

1

�p E[X p
1 |X1 ≥ �] = 1 +

∫ ∞
1

px p−ν−1dx = ν

ν − p
.

Now, we turn to (11). By Proposition 3, the pair (X1, X2)
� ex-

tracted from X is itself a spherical random vector having regularly
varying tail with index ν. Thus, it has a representation

(X1, X2)
d= (R2 cos�, R2 sin�),

where R2 is a nonnegative RV(ν) random variable, and� is uniformly
distributed on (−π, π ], independent of R2. Then we apply Lemma 1
to obtain

E[|X2|p1{X1≥�}]
= E[|R2 sin�|p1{R2 cos�≥�}]
= E

[| sin�|p
E[R p

2 1{R2 cos�≥�}|�]1{−π/2≤�≤π/2}
]

= 1

2π

∫ π/2

−π/2
| sin θ |p

E[R p
2 1{R2≥�/ cos θ}]dθ

= 1

π

∫ π/2

0
sin p θ

�p

cosp θ
P(R2 ≥ �/ cos θ)dθ

+ 1

π

∫ π/2

0
sin p θ

∫ ∞
�/ cos θ

px p−1
P(R2 ≥ x)dxdθ

= �p

π

∫ π/2

0
tan p θ P(R2 ≥ �/ cos θ)dθ

+ �p

π

∫ π/2

0
sin p θ

∫ ∞
1/ cos θ

px p−1
P(R2 ≥ �x)dxdθ.

It follows that

πE[|X2|p1{X1≥�}]
�pP(R2 ≥ �)

=
∫ π/2

0
tan p θ

P(R2 ≥ �/ cos θ)

P(R2 ≥ �)
dθ

+
∫ π/2

0
sin p θ

∫ ∞
1/ cos θ

px p−1 P(R2 ≥ �x)

P(R2 ≥ �)
dxdθ.

Again by (9) and the assumption p < ν, the integrands of the above
equation can be bounded by integrable functions. Therefore, by the

dominated convergence theorem,

lim
�→∞

π

�pP(R2 ≥ �)
E[|X2|p1{X1≥�}]

=
∫ π/2

0
tan p θ cosν θdθ +

∫ π/2

0
sin p θ

∫ ∞
1/ cos θ

px p−ν−1dxdθ

= ν

ν − p

∫ π/2

0
sin p θ cosν−p θdθ

= ν

2(ν − p)
B
( p + 1

2
,
ν − p + 1

2

)
,

with B(·, ·) the Beta function. Then

lim
�→∞

1

�p E[|X2|p|X1 ≥ �]

= lim
�→∞

π
�pP(R2≥�)E[|X2|p1{X1≥�}]

π
P(R2≥�)E[1{X1≥�}]

=
ν

2(ν−p) B
(

p+1
2 ,

ν−p+1
2

)
ν
2ν B

(
1
2 ,
ν+1

2

)

= ν

ν − p

	
( p+1

2

)
	
( ν−p+1

2

)
	
( 1

2

)
	
(
ν+1

2

) .

�
Corollary 1 Suppose that the spherical random vector X is RV(ν),
ν > 0.

(i) If ν > 2, then

lim
�→∞ V

( X1

�
| X1 ≥ �

)
= ν

(ν − 2)(ν − 1)2
,

lim
�→∞ V

( X2

�
| X1 ≥ �

)
= ν

(ν − 2)(ν − 1)
.

(ii) If ν > 4, then

lim
�→∞ E

[( X1

�
− E

[ X1

�
|X1 ≥ �

])4 | X1 ≥ �

]

= 3ν(3ν2 + ν + 2)

(ν − 1)4(ν − 2)(ν − 3)(ν − 4)
,

lim
�→∞ E

[( X2

�
− E

[ X2

�
|X1 ≥ �

])4 | X1 ≥ �

]

= 3ν

(ν − 4)(ν − 1)(ν − 3)
.

Proof For m = 1, 2 and i = 1, 2, we apply the binomial theorem to
obtain

lim
�→∞ E

[(
Xi

�
− E

[
Xi

�
|X1 ≥ �

])2m

| X1 ≥ �

]

= lim
�→∞

2m∑
k=0

(
2m

k

)
(−1)2m−k

�k
E[Xk

i |X1 ≥ �]
{

1

�
E[Xi |X1 ≥ �]

}2m−k

.

Recall that E[X2k+1
2 |X1 ≥ �] = 0 for k ∈ N. Then proof is now

easily completed by substituting (10) and (11) into this identity. �

A.5. The ERV(α, ν) case

Recall that we define a nonnegative random variable R to be ERV(α, ν)
if exp(Rα) is RV(ν), in which case we also say that the spherical
random vector X = RS is ERV(α, ν).

We start with a simple lemma.
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Lemma 2 Let α > 0 and x > 0. Then

lim
�→∞

{
�α−1(x + �α)1/α − �α

}
= x

α
,

lim
�→∞

{
�α−2(x + �α)2/α − �α

}
= 2x

α
.

Proof For p > 0 and x > 0,

(1 + x)p − 1 = p
∫ x

0
(1 + t)p−1dt = px

∫ 1

0
(1 + xt)p−1dt.

Therefore,

lim
�→∞

{
�α−1(x + �α)1/α − �α

}
= lim
�→∞ �α

{(
1 + x

�α

)1/α − 1
}

= x

α
lim
�→∞

∫ 1

0

(
1 + x

�α
t
)1/α−1dt

= x

α
.

Similarly,

lim
�→∞

{
�α−2(x + �α)2/α − �α

}
= 2x

α
lim
�→∞

∫ 1

0

(
1 + x

�α
t
)2/α−1dt

= 2x

α
.

�
Lemma 3 characterizes the random variables in ERV(α, ν).

Lemma 3 Let X be a nonnegative random variable. Then, X is
ERV(α, ν) if and only if

lim
�→∞

P(Xα ≥ �+ x)

P(Xα ≥ �)
= e−νx , ∀x > 0.

Proof This is an immediate consequence of the definition. �
Proposition 5 Suppose that the nonnegative random variable X is
ERV(α, ν).

(i) For any ε > 0 there exists K > 0 such that

(1 − ε)e−(ν+ε)x < P(Xα ≥ �+ x)

P(Xα ≥ �)
< (1 + ε)e−(ν−ε)x

for all � ≥ K and x ≥ 0.
(ii) For any x > 1,

lim
�→∞

P(X ≥ �x)

P(X ≥ �)
= 0.

(iii) For any c > 0, cX ∈ ERV(α, ν/cα).
(iv) If B is independent of X and B2 ∼ Beta(a, b), then

B X is ERV(α, ν).

Proof (i) follows from (9). (ii) Let x > 1 and take 0 < ε < ν.
Then, by (i), there exists K > 0 such that

(1 − ε)e−(ν+ε)t < P(Xα ≥ �+ t)

P(Xα ≥ �)
< (1 + ε)e−(ν−ε)t

holds for all � ≥ K and t ≥ 0. Thus,

lim sup
�→∞

P(X ≥ �x)

P(X ≥ �)
≤ lim sup

�→∞
P(Xα ≥ �α + �α(xα − 1))

P(Xα ≥ �α)

≤ lim
�→∞(1 + ε)e−(ν−ε)�α(xα−1) = 0.

(iii) For any x ≥ 0,

lim
�→∞

P
(
(cX)α ≥ �+ x

)
P
(
(cX)α ≥ �

)
= lim
�→∞

P
(
Xα ≥ �/cα + x/cα

)
P
(
Xα ≥ �/cα

) = e−(ν/cα)x .

Thus, by Lemma 3, cX is in ERV(α, ν/cα). (iv) We define

F(u; a, b) = P(B2 ≥ u)

= 1

B(a, b)

∫ 1

u
ta−1(1 − t)b−1dt, 0 ≤ u ≤ 1.

Then, for r ≥ �,

d

dr
F
(�2

r2
; a, b

)
= 2�2a

B(a, b)

(r2 − �2)b−1

r2a+2b−1
.

By Lemma 1, we have

P(B X ≥ �)

= E

[
P

(
B2 ≥ �2

X2
| X
)
1{X≥�}

]

= E

[
F
( �2

X2
; a, b

)
1{X≥�}

]

= 2�2a

B(a, b)

∫ ∞
�

(r2 − �2)b−1

r2a+2b−1
P(X ≥ r)dr

= 2�2a

B(a, b)α

∫ ∞
0

{
(x + �α)2/α − �2}b−1

(x + �α)(2a+2b−2)/α+1
P(Xα ≥ x + �α)dx

= 2�−αb

B(a, b)α

∫ ∞
0

{
�α−2(x + �α)2/α − �α

}b−1(
1 + x

�α

)(2a+2b−2)/α+1
P(Xα ≥ x + �α)dx

Therefore, by Lemma 2,

lim
�→∞

�αb
P(B X ≥ �)

P(X ≥ �)
= 2

B(a, b)α

∫ ∞
0

(2x

α

)b−1
e−νx dx

= 2

B(a, b)α

( 2

α

)b−1	(b)

νb
.

Finally, we have

lim
�→∞

P
(
(B X)α ≥ �α + x

)
P
(
(B X)α ≥ �α

)

= lim
�→∞

(�α + x)b
P

(
B X≥(�α+x)1/α

)
P

(
X≥(�α+x)1/α

)
�αb P(B X≥�)

P(X≥�)
× P

(
Xα ≥ �α + x

)
P
(
Xα ≥ �α

)
= e−νx .

Hence, by Lemma 3, B X is ERV(α, ν). �
Proposition 6 states invariance properties of spherical distributions

in ERV(α, ν)

Proposition 6 Suppose that the spherical random vector X is in
ERV(α, ν).

(i) For 1 ≤ k ≤ d, Xk = (X1, · · · , Xk)
� is a k-dimensional

spherical random vector ERV(α, ν).
(ii) For any u ∈ R

d , the conditional distribution (u�
X | u�X ≥ 0) is in ERV(α, ν/‖u‖α).

Proof (6) By Lemma 2.5 of Schmidt (2002), Xk has a representation

Xk
d= B RS(k)

in which R
d= ‖X‖, B2 ∼ Beta

( k
2 ,

d−k
2

)
, S(k) is uniformly dis-

tributed on S
k−1, and R, B, and S(k) are mutually independent.

Proposition 5 implies that ‖Xk‖ d= B R is ERV(α, ν). Hence, Xk =
(X1, · · · , Xk)

� is a k-dimensional spherical random vector in

ERV(α, ν). (6) Using the argument in section A.1, u�X d= ‖u‖X1.

By Proposition 5 and (6), ‖u�X‖ d= ‖u‖|X1| is ERV(α, ν/‖u‖α).
Since u�X is symmetric around zero, ‖u�X‖ d= (u�X | u�X ≥ 0).
Hence, (u�X | u�X ≥ 0) is ERV(α, ν/‖u‖α). �

We can now calculate the asymptotics of tail moments of ERV(α, ν)
spherical distributions.
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16 P. Glasserman et al.

Proposition 7 Suppose that the spherical random vector X is in
ERV(α, ν). For p ≥ 0, we have

lim
�→∞

1

�p E
[
X p

1 |X1 ≥ �] = 1, (12)

lim
�→∞ E

[
(�α−1 X1 − �α)p|X1 ≥ �

] = 	(p + 1)

(να)p (13)

lim
�→∞ �

p(α−2)
2 E[|X2|p|X1 ≥ �] =

( 2

να

)p/2	(
p+1

2 )

	( 1
2 )

. (14)

In particular, if m ∈ N, then

lim
�→∞ �m(α−2)

E[X2m
2 |X1 ≥ �] = (2m − 1)!!

(να)m
.

Proof First we shall prove (12). By Lemma 1 and Proposition 5(ii),

lim
�→∞

1

�p E
[
X p

1 |X1 ≥ �]=1+p lim
�→∞

∫ ∞
1

x p−1 P(X ≥ �x)

P(X ≥ �)
dx=1.

Next, we consider (13). Again by Lemma 1,

E
[
(�α−1 X1 − �α)p1{X1≥�}

]
= p�α−1

∫ ∞
�

(
�α−1x − �α

)p−1
P(X1 ≥ x)dx

= p

α

∫ ∞
0

{
�α−1(x + �α)1/α − �α

}p−1(
1 + x

�α

)1−1/α
P(Xα1 ≥ �α + x)dx

By Proposition 6, (X1 | X1 ≥ 0) is ERV(α, ν), so we apply Lemma
3 to obtain

lim
�→∞ E

[
(�α−1 X1 − �α)p|X1 ≥ �

]
= lim
�→∞

E
[
(�α−1 X1 − �α)p1{X1≥�}

]
P(X1 ≥ �)

= lim
�→∞

p

α

∫ ∞
0

{
�α−1(x + �α)1/α − �α

}p−1(
1 + x

�α

)1−1/α

P(Xα1 ≥ �α + x)

P(Xα1 ≥ �α)
dx

= p

α

∫ ∞
0

( x

α

)p−1
e−νx dx

= p

α p
	(p)

ν p

= 	(p + 1)

(να)p .

Next, we turn to (14). By Proposition 6, the 2-dimensional spher-
ical random vector X2 = (X1, X2)

� is ERV(α, ν), so it has the
representation

(X1, X2)
d= (R2 cos�, R2 sin�),

where the radial variable R2 is ERV(α, ν), and � is uniformly dis-
tributed on (−π, π ], independent of R2. We define

f (x; �) = 2x p
∫ cos−1( �x )

0
sin p θdθ

= x p
∫ 1−( �x )2

0

( t p−1

1 − t

)1/2
dt, x ≥ �.

Then

f ′(x; �) = p

x
f (x; �)+ 2�

x

(
x2 − �2)(p−1)/2

.

Using Lemma 1,

E
[|X2|p1{X1≥�}

] = E
[
R p

2 | sin�|p1{R2 cos�≥�}
]

= E
[
R p

2 E
[| sin�|p1{R2 cos�≥�} | R2

]
1{R2≥�}

]
= 1

2π
E

[
2R p

2

( ∫ cos−1( �
R2
)

0
sin p θdθ

)
1{R2≥�}

]
= 1

2π
E

[
f (R2; �)1{R2≥�}

]
= 1

2π

∫ ∞

�

f ′(x; �)P(R2 ≥ x)dx

= 1

2απ

∫ ∞

0

f ′((x + �α)1/α; �)
(x + �α)1−1/α

P(Rα2 ≥ �α + x)dx .

Here,

p

(x + �α)1/α
f ((x + �α)1/α; �)

= p(x + �α)(p−1)/α
∫ 1− �2

(x+�α)2/α

0

( t p−1

1 − t2

)1/2
dt

= p�−
(p−1)(α−2)

2 −α(1 + x

�α

)(p−1)/α

×
∫ �α(1− �2

(x+�α)2/α )

0

( t p−1

1 − �−α t

)1/2
dt.

By Lemma 2,

lim
�→∞ �α

(
1 − �2

(x + �α)2/α

)

= lim
�→∞

( �α

x + �α

)2/α{
�α−2(x + �α)2/α − �α

}
= 2x

α
.

It follows that

lim
�→∞

p�
(p−1)(α−2)

2

(x + �α)1/α
f ((x + �α)1/α; �) = 0.

On the other hand,

lim
�→∞

�
(p−1)(α−2)

2 +1

(x + �α)1/α

{
(x + �α)2/α − �2}(p−1)/2

= lim
�→∞

( �α

x + �α

)1/α{
�α−2(x + �α)2/α − �α

}(p−1)/2

=
(2x

α

)(p−1)/2
.

Therefore,

lim
�→∞ �

(p−1)(α−2)
2 f ′((x + �α)1/α; �) = 2

(2x

α

)(p−1)/2
.

Now we combine the identities above to obtain

lim
�→∞

�α−1+ (p−1)(α−2)
2 E

[|X2|p1{X1≥�}
]

P(Rα2 ≥ �α)

= 1

2απ
lim
�→∞

∫ ∞

0

�
(p−1)(α−2)

2 f ′((x + �α)1/α; �)
(1 + x

�α
)1−1/α

P(Rα2 ≥ �α + x)

P(Rα2 ≥ �α)
dx .

= 1

απ

∫ ∞

0

(2x

α

) p−1
2

e−νx dx

= 1

απ

( 2

α

) p−1
2
ν− p+1

2 	
( p + 1

2

)
.
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Stress scenario selection by empirical likelihood 17

Hence

lim
�→∞ �

p(α−2)
2 E

[|X2|p | X1 ≥ �
]

= lim
�→∞

�α−1+ (p−1)(α−2)
2

E[|X2|p1{X1≥�}]
P(Rα2 ≥�α)

�α−1− α−2
2

E[1{X1≥�}]
P(Rα2 ≥�α)

=
( 2

να

)p/2	(
p+1

2 )

	( 1
2 )

.

�

Corollary 2 Suppose that that spherical random vector X is
ERV(α, ν). Then

lim
�→∞ V

(
�α−1 X1 | X1 ≥ �

) = 1

(να)2
,

lim
�→∞ V

(
�
α−2

2 X2 | X1 ≥ �
) = 1

(να)2
,

lim
�→∞ E

[
(�α−1 X1 − E[�α−1 X1|X1 ≥ �])4 | X1 ≥ �

] = 9

(να)4
,

lim
�→∞ E

[
(�

α−2
2 X2 − E[� α−2

2 X2|X1 ≥ �])4 | X1 ≥ �
] = 3

(να)4
.

Proof For n ∈ N, we apply the binomial theorem to obtain

lim
�→∞ E

[
(�α−1 X1 − E[�α−1 X1|X1 ≥ �])n | X1 ≥ �

]

= lim
�→∞

n∑
k=0

(
n

k

)
(−1)n−k

E
[
(�α−1 X1 − �α)k |X1 ≥ �

]
×{E[�α−1 X1 − �α |X1 ≥ �

]}n−k

=
n∑

k=0

(
n

k

)
(−1)n−k k!

(να)k

( 1

να

)n−k

= n!
(να)n

n∑
k=0

(−1)k

k!

=
{ 1
(να)2

, n = 2,
9

(να)4
, n = 4.

Recall that E[X2|X1 ≥ �] = 0. For m = 1, 2,

lim
�→∞ E

[
(�

α−2
2 X2 − E[� α−2

2 X2|X1 ≥ �])2m | X1 ≥ �
]

= lim
�→∞ �m(α−2)

E[X2m
2 |X1 ≥ �] = (2m − 1)!!

(να)m

=
{ 1
(να)2

, m = 1,
3

(να)4
, m = 2.

�
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