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Abstract

This addendum provides a detailed proof of Theorem 6.1 in Glasserman and Merener [1],
establishing the convergence order of a discretization scheme.

1 Introduction

The purpose of this addendum is to present a detailed proof of Theorem 6.1 in Glasserman and

Merener [1], establishing the convergence order of a discretization scheme for a class of processes

constructed from Brownian motion and Poisson random measure. The scheme is based on a tech-

nique of Mikulevicius and Platen [3], but is analyzed under a different set of assumptions.

For clarity, we recount here the notation and framework of Section 5 and Section 6 in [1]. We

consider an M -dimensional process X(t), t ∈ [0, T ] with dynamics

dX(t) = ã(X(t)) dt + b(X(t)) dW (t) +
∫

Rd
c(X(t), z)p(dz, dt), (1)

where p(dz, dt) is a Poisson random measure on Rd × [0, T ] with intensity λ0 h(z), h a probability

density on Rd. Define

a(y) = ã(y) +
∫

Rd
c(y, z)h(z)λ0 dz,

so the dynamics (1) can be written as

dX(t) = a(X(t)) dt + b(X(t)) dW (t) +
∫

Rd
c(X(t), z) q(dz, dt)

where q(dz, dt) = p(dz, dt) − h(z)λ0 dz is a Poisson martingale measure on Rd × [0, T ]. In the

application that motivates our analysis, the support of h is [0,∞)× [0, 1].
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Let Bξ(C) be the class of 2(ξ + 1)-times continuously differentiable real-valued functions for

which the function itself and its partial derivatives up to order 2(ξ + 1) are uniformly bounded by

a constant C.

For bounded ψ : �M → � let

φ(x) =
∫

Rd
ψ(x+ c(x, z))h(z) dz (2)

and let

φ̄(x) =
∫

Rd
(x+ c(x, z))h(z) dz. (3)

The coefficients of the first order, or Euler, scheme introduced in Mikulevicius and Platen [3] and

used in Section 5 of Glasserman and Merener [1] are

f0(x) = ã(x) and f1(x) = b(x). (4)

The coefficients of the second order, or Milstein, scheme are f0 and f1 in (4), and

f00(x) =
M∑

j=1

ãj(x)∂j ã(x) +
1
2

M∑
j=1

M∑
k=1

bj(x)bk(x)∂jkã(x), f11(x) =
M∑

j=1

bj(x)∂jb(x),

f10(x) =
M∑

j=1

bj(x)∂j ã(x), f01(x) =
M∑

j=1

ãj(x)∂jb(x) +
1
2

M∑
j=1

M∑
k=1

bj(x)bk(x)∂jkb(x). (5)

where ∂j denotes partial derivative with respect to the jth component of x.

We are concerned with the numerical calculation of E[g(X(T ))] for some payoff function g :

�M → �. Theorem 6.1 in Glasserman and Merener [1] reads:

THEOREM 1.1 (Theorem 6.1 in [1])

Fix ξ ∈ {1, 2}. Let the payoff function g : �M → � be in Bξ(G) for some G and let {X(t), t ∈ [0, T ]}
be as in (1). We assume:

(i) φ̄(x) is 2(ξ + 1)-times continuously differentiable with uniformly bounded derivatives;

(ii) there is a constant K such that if ψ ∈ Bξ(Ψ) for some Ψ then φ(x) ∈ Bξ(KΨ) in (2);

(iii) a and b are 2(ξ + 1)-times continuously differentiable with uniformly bounded derivatives;

(iv) there is a constant K2 such that any f ∈ Sξ satisfies |f(y)| ≤ K2(1+ ‖y‖), with S1 = {f0, f1}
as in (4) and S2 = {f0, f1, f00, f10, f01, f11} as in (5).

Then the approximation defined by (28), (29), and (30) in [1] has weak convergence order one and

the approximation defined by (31) and (32) in [1] has weak convergence order two.
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Before proceeding with the proof of Theorem 1.1 we briefly discuss its connection with Theorem

3.3 of Mikulevicius and Platen [3] which is also a weak convergence result. As mentioned in Section

6 of [1], Mikulevicius and Platen [3] introduced a hierarchy of schemes which, under regularity

conditions on a, b, c and the payoff function g, are shown to have arbitrarily high order of weak

convergence. In particular, the scheme defined by (28), (29), and (30) in [1] converges weakly with

order one and the scheme defined by (31) and (32) in [1] converges weakly with order two.

More precisely, Mikulevicius and Platen [3] assume that the payoff g is 2(ξ + 1)-times continu-

ously differentiable and with polynomial growth, and that the coefficients a, b, and c satisfy:

(a) a, b and c are 2(ξ + 1)-times continuously differentiable with uniformly bounded derivatives;

(b) there is a constant K2 such that the functions f(y) in Sξ satisfy |f(y)| ≤ K2(1 + ‖y‖), with
S1 = {f0, f1} as in (4) and S2 = {f0, f1, f00, f10, f01, f11} as in (5).

We show below (in the proof of Theorem 1.1) that assumptions (i) and (iii) of Theorem 1.1 guarantee

that the functions f ∈ Sξ are well defined. This fact, and assumption (iv) in Theorem 1.1, are

equivalent to assumption (b) of Mikulevicius and Platen. Also, it is clear that regularity conditions

for a and b are identical for both convergence results. The results differ in their requirements for c

and the payoff g. Theorem 1.1 allows for discontinuous c, though it imposes stronger requirements

on g. Next, we will show explicitly that the requirements for c in Mikulevicius and Platen indeed

imply assumptions (i) and (ii) in Theorem 1.1. Though not necessary for the proof of Theorem

1.1, this observation helps clarify the relationship between this result and the one of Mikulevicius

and Platen.

PROPOSITION 1.1 If the function c in (1) is 2(γ + 1)-times continuously differentiable with

derivatives uniformly bounded by a constant C, then assumptions (i) and (ii) in Theorem 1.1 are

satisfied.

Proof. We denote by 1k ∈ �M the vector with kth component equal to one, and the rest equal to

zero. For (i) in Theorem 1.1 observe that

∂φ̄(x)
∂xk

=
∂

∂xk

∫
Rd
(x+ c(x, z))h(z) dz =

∫
Rd
(1k +

∂

∂xk
c(x, z))h(z) dz, k = 1 . . . ,M (6)

where the boundedness of ∂
∂xk

c(x, z) has allowed us to invoke the Bounded Convergence Theorem

and exchange differentiation and integration to show that ∂φ̄(x)
∂xk

exists, and can be written as in

the rightmost expression in (6). Furthermore, since ∂
∂xk

c(x, z) is uniformly bounded, and h(z) is

a probability density, then ∂φ̄(x)
∂xk

is also uniformly bounded. The same argument applies to show
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that derivatives of φ̄ up to order 2(γ +1) exist and are uniformly bounded. Therefore, assumption

(i) in Theorem 1.1 holds.

For assumption (ii) in Theorem 1.1 we take ψ ∈ Bξ(Ψ). That φ in (2) is uniformly bounded

follows from the fact that ψ is uniformly bounded. Next, we consider the derivatives of φ. Differ-

entiating, we have that ∣∣∣∣ ∂

∂xk
ψ(x+ c(x, z))

∣∣∣∣ =
∣∣∣∣∇ψ · (1k +

∂c(x, z)
∂xk

)
∣∣∣∣

which is bounded by MΨ(1+C). Therefore, we can invoke the Bounded Convergence Theorem to

write
∂φ(x)
∂xk

=
∂

∂xk

∫
Rd
ψ(x+ c(x, z))h(z) dz =

∫
Rd

∂

∂xk
ψ(x+ c(x, z))h(z) dz

Furthermore, |∂φ(x)
∂xk

| < MΨ(1 + C). Computation of the bound for higher order derivatives is

straightforward. Therefore, assumption (ii) in Theorem 1.1 holds. ✷

This verifies that hypotheses (i) and (ii) in Theorem 1.1 are implied by the regularity condition

for c in Theorem 3.3 of Mikulevicius and Platen [3]. But, as mentioned above, Theorem 1.1 is

obtained under more restrictive conditions for g than in the result of Mikulevicius and Platen [3].

Thus, neither complete set of conditions implies the other.

Next we present a proof of Theorem 1.1. The proof holds in fact for the entire hierarchy of

schemes proposed in Mikulevicius and Platen [3], which have arbitrarily high orders of convergence.

Schemes of order higher than two are constructed using the funcions f in Sξ which are defined in

a recursive way below.

2 Proof of Theorem 1.1

The result will follow from the proof of Theorem 3.3 of Mikulevicius and Platen [3] once we establish

that two key properties used in their proof hold in our setting as well: the existence of a stochastic

Taylor formula, and smoothness of the solution v of a backward Kolmogorov equation and associated

functionals.

The stochastic Taylor formula of Mikulevicius and Platen [3] requires the existence of a set of

coefficient functions f ∈ Sξ+1. The functions in Sξ+1 are defined through up to ξ + 1 recursive

applications of the differential operators

Π0f(x) ≡
M∑

j=1

ãj(x)∂jf(x) + 1/2
M∑

i,r=1

bj(x)br(x)∂jrf(x), and Π1 ≡
M∑

j=1

bj(x)∂jf(x), (7)

and involve derivatives up to order 2ξ. The functions in S1 and S2 are displayed in (4) and (5),

and appear in condition (iv) of Theorem 1.1.
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The solution of a Kolmogorov equation used in Lemma 4.3 of Mikulevicius and Platen [3] is

v(s, x) ≡ E
[
g(X(T ))|X(s) = x

]
,

and we will also use the functional

Πv(s, x) ≡
∫

Rd

[
v(s, x+ c(x, z)) − v(s, x)

]
h(z) λ0 dz. (8)

The following lemma presents sufficient conditions on g, v, Πv and the coefficients functions

f ∈ Sξ+1 in order to prove Theorem 1.1 using the approach of Mikulevicius and Platen [3].

LEMMA 2.1 Fix ξ ∈ {1, 2}. Let the payoff function g : �M → � be in Bξ(G) and let {X(t), t ∈
[0, T ]} be as in (1). We assume:

(i) v(s, x) and Πv(s, x) are 2(ξ + 1)-times continuously differentiable on the initial condition x;

(ii) a and b are 2(ξ + 1)-times continuously differentiable with uniformly bounded derivatives;

(iii) the functions f ∈ Sξ+1 are well defined;

(iv) there is a constant K2 such that any f ∈ Sξ satisfies |f(y)| ≤ K2(1+ ‖y‖), with S1 = {f0, f1}
as in (4) and S2 = {f0, f1, f00, f10, f01, f11} as in (5).

Then the approximation defined by (28), (29), and (30) in [1] has weak convergence order one and

the approximation defined by (31) and (32) in [1] has weak convergence order two.

This follows from the proof of Theorem 3.3 of Mikulevicius and Platen [3] because its conditions

imply the conditions needed for the proof. In more detail, g ∈ Bξ(G) implies that g is 2(ξ + 1)-

times continuously differentiable and with polynomial growth, as assumed in Theorem 3.3 of [3].

Assumption (i) ensures the conclusions of Lemma 4.3 and Lemma 4.8 in [3]. Assumptions (ii) and

(iv) are explicit in Theorem 3.3 of [3]. Assumption (iii) is needed for the existence of a stochastic

Taylor formula.

Armed with Lemma 2.1, it is clear that to prove Theorem 1.1 it will suffice to show that the

assumptions of Theorem 1.1 imply the assumptions of Lemma 2.1. In particular, we need to check

that the functions f in Sξ+1 are well defined and that smoothness properties of v and Πv hold.

Verification of these two properties divides the proof into two parts.

Part 1 of proof. As mentioned above, the stochastic Taylor formula requires that the coefficient

functions f ∈ Sξ+1, computed through the repeated application of Π0 and Π1 (7), are well defined.

In order to be able to apply Π0 and Π1 it will suffice to show 2ξ-times continuous differentiability

of

ã(x) = a(x)−
∫

Rd
c(x, z)h(z)λ0 dz.
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From (3) we have that ∫
Rd
c(x, z)h(z)λ0 dz = λ0 φ̄(x)− λ0 x

leading to

ã(x) = a(x)− λ0 φ̄(x) + λ0 x . (9)

Therefore, both ã and the right hand side of the equality are 2(ξ +1) -times continuously differen-

tiable, the latter by assumptions (i) and (iii) in Theorem 1.1.

This ends the first part of the proof. Next we introduce an auxiliary result that we will later use

to prove the 2(ξ + 1)-fold continuous differentiability of the solution v of a Kolmogorov equation

and associated functionals (8).

We have assumed in Theorem 1.1 that a, b and φ̄ are 2(ξ +1)-times continuously differentiable

with bounded derivatives, so (9) implies that the derivatives of ã are also bounded. We have also

assumed in Theorem 1.1 that both f0 = ã(y) and f1 = b(y) are of linear growth. Therefore, the

assumptions of the following auxiliary lemma are implicit in the hypotheses of Theorem 1.1.

LEMMA 2.2 Let Z(t) ∈ �M be an Ito process, t ∈ [0, T ], Z(0) = x a.s., with

dZ(t) = ã(Z(t)) dt + b(Z(t)) dW (t) (10)

where the functions ã, b are 2(ξ + 1)-times continuously differentiable with uniformly bounded

partial derivatives. Let a, b be of linear growth; i.e., ‖ã(y)‖ + ‖b(y)‖ ≤ K2 (1 + ‖y‖) for some

constant K2. Let g : �M → � be in Bξ(G) and define φD(s, t, x) = E[g(Z(t))|Z(s) = x]. Then

φD(s, t, ·) ∈ Bξ(D(ξ)G) where D(ξ) is independent of g

Proof of lemma. We need to prove that φD is bounded and that φD(s, t, ·) has continuous bounded
partial derivatives up to order 2(ξ + 1). That |φD| ≤ G follows from the fact that |g| ≤ G.

We analyze the derivatives of φD within the framework of Chapter V of Krylov [2] in which,

under technical conditions, it is possible to exchange differentiation and expectation. We introduce

the following notation. The vector ηk1...kn(t) ∈ �M is obtained by formally differentiating Z(t)

with respect to the components xk1, . . . , xkn of x, n ∈ {1, . . . , 2(ξ + 1)}. These processes will be
derivatives of Z(t) in probability though we will not need to check this explicitly. We need to show

that these processes are solvable by Euler’s method in the mean (SEM) as defined in V.3 of Krylov

[2]. The dynamics of the i-th component of the first order derivative process is

dηk1
i = (∇ãi · ηk1) dt + (∇bi · ηk1) dW (11)

with ηk1
k1
(0) = 1, ηk1

j (0) = 0 for j �= k1, ∇ãi, ∇bi ∈ �M . The components of the second order

derivative processes evolve as

dηk1k2
i = (ηk�

2 · (∇∇ãi) · ηk1) +∇ãi · ηk1k2)dt+ (ηk�
2 · (∇∇bi) · ηk1 +∇bi · ηk1k2) dW
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with ηk1k2(0) = 0 (and ∇∇ denoting the Hessian). In general, for each k1, . . . , kn through repeated

differentiation we define a∗ and b∗ and then

dηk1k2...kn
i = ã∗i dt+ b∗i dW

with ηk1k2...kn(0) = 0 for derivatives of order higher than two. It is easy to check, as is clear for

the lowest two derivatives, that for a derivative of order n, both ã∗ and b∗ are polynomials in the

derivative processes of order less than n and affine functions of ηk1k2...kn . Viewing a∗ and b∗ as

functions of ηk1k2...kn with all other derivative processes held fixed, we therefore have

‖ã∗(ηk1k2...kn)‖+ ‖b∗(ηk1k2...kn)‖ ≤ K1(1 + ‖ηk1k2...kn‖),
‖ã∗(ηk1k2...kn)− ã∗(ηk1k2...kn + h)‖+ ‖b∗(ηk1k2...kn)− b∗(ηk1k2...kn + h)‖ ≤ K2‖h‖ (12)

where K1, K2 are independent of ηk1k2...kn . These are Lipschitz and linear growth conditions.

Furthermore, ã∗ and b∗ are continuously differentiable in ηk1k2...kn . Remark V.7.3 in Krylov [2] and

the hypotheses of Lemma 2.2 imply that the system of equations formed by (10) and (11) is SEM.

Then, as in Remark V.3.5 of [2], we can inductively add higher order derivatives to the system.

These derivatives satisfy the regularity conditions (12) so the expanded system is SEM. Let η be the

vector formed by all derivatives processes up to order 2(ξ+1). It follows from Remark V.3.2 in [2]

that for any positive p there exist positive constants q,M∗ such that E[‖η(t)‖p] ≤M∗(1+‖η(0)‖q).

The norm of each derivative process at time 0 is bounded by one, so M∗ may be chosen to satisfy

E[‖ηk1...kn(t)‖p] ≤M∗.

We consider now ∂φD/∂xk1 . By Lemma V.7.1 of [2], the hypotheses of Lemma 2.2 and the fact

that the derivative processes are SEM, we have that φD is continuously differentiable and we may

exchange differentiation and expectation to get

∂φD

∂xk1

(t) = E[∇g · ηk1(t)] ≤ E[‖∇g‖‖ηk1(t)‖] ≤ (E[‖∇g‖2])
1
2 (E[‖ηk1(t)‖2])

1
2

where last step is the Cauchy-Schwarz inequality. Also, (E‖∇g‖2)
1
2 ≤ Gd

1
2 because ∇g ∈ �M , g ∈

Bξ(G). We also have that E‖ηk1(t)‖2 is bounded as shown above. Therefore |∂φD/∂xk1(t)| ≤ GD

with D independent of g.

Next we consider second order derivatives. These are
∂2φD

∂2xk1xk2

=
∂

∂xk2

E[∇g · ηk1 ]. (13)

The quantity between brackets in (13) is of polynomial growth, and the derivative processes

ηk1 , ηk1k2 satisfy the hypotheses of Lemma V.7.1 in [2]. This, again, ensures continuous differ-

entiability of ∂φD/∂xk1 and allows us to interchange differentiation and expectation to get

E[ηk�
2 · (∇∇g) · ηk1 +∇g · ηk1k2 ] ≤ E[‖ηk�

2 · (∇∇g) · ηk1 +∇g · ηk1k2‖]
≤ E[‖ηk�

2 · (∇∇g) · ηk1‖] + E[‖∇g · ηk1,k2‖].
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All partial derivatives of g have been assumed bounded by G and we have shown before that the

norm of the derivative processes have bounded moments for finite time t. Thus, Hölder’s inequality

and some algebra lead to |∂2φD/∂2xk1xk2(t)| ≤ GD with D independent of g.

We avoid presenting here the cumbersome but straightforward computations that generalize the

result to higher derivatives. The proof repeatedly uses the regularity of the derivative processes to

apply Lemma V.7.1 in [2]. These computations are analogous to those made explicit above and

prove that, for finite ξ, partial derivatives of φD up to order 2(ξ + 1) exist, are continuous, and

bounded in absolute value by D(ξ,G) = D(ξ)G. ✷

Part 2 of proof. We continue now with the proof of Theorem 1.1. The remaining step is the

2(ξ+1)-fold continuous differentiability of the solution v of a Kolmogorov equation and associated

functionals (8). That is, we need to show that

v(s, x) = E
[
g(X(T ))|X(s) = x

]
,

Πv(s, x) =
∫

Rd

[
v(s, x+ c(x, z)) − v(s, x)

]
h(z)λ0 dz

are 2(ξ + 1)-times continuously differentiable in the initial condition x.

We begin with v(s, x). Let N be the number of points in [s, T ] of the Poisson random measure

in (1), with strictly increasing jump times {τ1, . . . , τN}, N < ∞ a.s. We take the paths of X to be

right-continuous and write X(τj−) for limt→τj−X(t). Conditioning on the jump times we define

vn(s, s1, . . . , sn, x) = E [g(X(T ))|X(s) = x,N = n, τi = si, i = 1, . . . , n]

with s ≤ s1 < . . . < sn. We show by induction in the number of jumps that vn(s, s1, . . . , sn, ·) is in
Bξ(KnDn+1G) for all s, s1, . . . , sn, with G and K as in Theorem 1.1. For n = 1 we have

v1(s, s1, x)

= E

[
E

[
E[g(X(T ))|X(s1), N = 1, τ1 = s1]

∣∣∣X(s1−), N = 1, τ1 = s1
] ∣∣∣∣∣X(s) = x,N = 1, τ1 = s1

]
.

The innermost expectation is computed conditional on no jumps in (s1, T ]; in the notation of

Lemma 2.2, it is φD(s1, T,X(s1)), which is in Bξ(DG). Thus,

v1(s, s1, x) = E
[
E

[
φD(s1, T,X(s1))|X(s1−), N = 1, τ1 = s1

]
|X(s) = x,N = 1, τ1 = s1

]
.

Since φD(s1, T, ·) is in Bξ(DG), by hypothesis (ii) of Theorem 1.1 the inner conditional expectation

is in Bξ(KDG). The outer conditional expectation is computed conditional on no jumps in [s, s1)

so again applying Lemma 2.2 we conclude that v1(s, s1, ·) ∈ Bξ(KD2G).

For the inductive step define Sn = {s1, . . . , sn} and Θn = {τ1, . . . , τn}. Take as induction

hypothesis that

vn−1(s, s1, . . . , sn−1, x) = E [g∗(X(t))|X(s) = x,N = n− 1,Θn−1 = Sn−1]
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belongs to Bξ(Kn−1DnG∗) for any fixed t ≤ T and g∗ ∈ Bξ(G∗). Now

vn(s, s1, . . . , sn, x) = E [g(X(T ))|X(s) = x,N = n,Θn = Sn]

= E

[
E

[
E[g(X(T ))|X(sn), N = n, τn = sn]

∣∣∣X(sn−), N = n, τn = sn

] ∣∣∣∣∣X(s) = x,N = n,Θn = Sn

]
.

The same argument as in the case of one jump applies for the two innermost expectations, allowing

us to write

vn(s, s1, . . . , sn, x) = E [φ(sn,X(sn−))|X(s) = x,Θn−1 = Sn−1]

for some φ(sn, ·) in Bξ(KDG). For the last expectation we apply the induction hypothesis with

G∗ = KDG to conclude that vn(s, s1, . . . , sn, x) ∈ Bξ(KnDn+1G).

Next we integrate over the jump times and write

v(s, x, n) =
∫
. . .

∫
qn(s1, . . . , sn)vn(s, s1, . . . , sn, x) ds1, . . . , dsn,

where qn is the joint density of the jump times in [s, T ] of the Poisson random measure, conditional

on N = n. Because v(s, s1, . . . , sn, x) ∈ Bξ(KnDn+1G), the Bounded Convergence Theorem allows

us to interchange differentiation (in x) and integration and conclude that the derivatives of v(s, x, n)

up to order 2(ξ + 1) exist and are continuous. Furthermore, vn(s, s1, . . . , sn, ·) ∈ Bξ(KnDn+1G)

implies that v(s, x, n) ∈ Bξ(KnDn+1G) too.

Finally we treat v(s, x) = E[g(X(T ))|X(s) = x]. This can be written as

v(s, x) =
∞∑

n=0

P (N = n)v(s, x, n), with P (N = n) =
e−λ0(T−s)(λ0(T − s))n

n!
.

Any series of the form
∑∞

n=0 P (N = n)fn with |fn| ≤ Cn for some constant C is absolutely

convergent. Therefore v(s, x) is bounded. Notice that ∂mv(s,x,n)
∂xk1

...∂xkm
is continuous and that

∞∑
n=0

P (N = n)
∂mv(s, x, n)
∂xk1 . . . ∂xkm

≤
∞∑

n=0

|P (N = n)
∂mv(s, x, n)
∂xk1 . . . ∂xkm

| ≤
∞∑

n=0

P (N = n)KnDn+1G = C <∞.

Then
∑∞

n=0 P (N = n) ∂mv(s,x,n)
∂xk1

...∂xkm
converges uniformly and is continuous. Therefore

∂mv(s, x)
∂xk1 . . . ∂xkm

=
∞∑

n=0

P (N = n)
∂mv(s, x, n)
∂xk1 . . . ∂xkm

which implies that ∂mv(s,x)
∂xk1

...∂xkm
exists and is continuous. Furthermore, v(s, x) ∈ Bξ(C).

To complete the proof of the theorem we need to show that

Πv(s, x) = λ0

∫
Rd
v(s, x+ c(x, z))h(z) dz − λ0 v(s, x)

is 2(ξ + 1)-times continuously differentiable in x. We only need to consider the first term. The

function v(s, ·) is in Bξ(C) so by hypothesis (ii) of Theorem 1.1 the integral (viewed as a function

of x) is in Bξ(KC) and in particular is 2(ξ + 1)-times continuously differentiable. ✷

9



References

[1] Glasserman, P., Merener, N., Numerical Solution of Jump-Diffusion Libor Market Models,
working paper, Columbia University (2001).
Available at http://www.gsb.columbia.edu/faculty/pglasserman/Other/.

[2] Krylov, N. V., Introduction to the Theory of Diffusion Processes Translations of Mathematical
Monographs, 142. American Mathematical Society, (1995).

[3] Mikulevicius, R., and Platen, E., Time Discrete Taylor Approximations for Ito Processes with
Jump Component, Mathematische Nachrichten, 138, 93-104, (1988).

10


