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1 Introduction

Affine jump-diffusion (AJD) processes constitute a large class of continuous-time asset pricing

models that balance tractability and flexibility in matching market data. In an AJD model, the

drift vector, the diffusion matrix and the jump intensity all have affine dependence on the state

vector. As shown by Duffie, Pan and Singleton [28], this restriction leads to considerable tractability

in term structure modeling and option pricing, while at the same time allowing model features like

state-dependent conditional variances and flexible correlations between state variables that are

absent from simpler models. The objective of this article is to further expand the scope of tractable

AJD models through the use of approximate transform inversion techniques.

The AJD family of models includes many widely used special cases, such as the Gaussian model

of Vasicek [49], the square-root diffusion of Cox, Ingersoll and Ross [20], the Heston [36] stochastic

volatility model, and extensions of these models to include jumps. AJD processes have been used

extensively in empirical work, including, for example, Bakshi, Cao and Chen [3], Bates [6, 7],

Broadie, Chernov and Johannes [11], Chernov [15], Duffie, Pedersen and Singleton [29], Duffie and

Singleton [30], Eraker [32], Eraker, Johannes and Polson [33] and Pan [44]. The yield factor models

of Dai and Singleton [21] and Duffie and Kan [26] fall within the AJD family. Duffie, Filipović and

Schachermayer [25] develop the theoretical foundations of AJD processes. A detailed account of

the econometric aspects of AJD models is given in Singleton [48].

As demonstrated in Duffie, Pan and Singleton [28] (henceforth DPS), the tractability of AJD

models lies in the special form taken by a wide class of transforms, including various Fourier and

Laplace transforms as special cases. These transforms have an exponential-affine form, meaning

that they are exponentials of affine functions of the state vector; the coefficients of these affine

functions are in some cases available explicitly and, more generally, can be characterized through

solutions of ordinary differential equations. Through their transform analysis, DPS derive what

could be viewed as a far-reaching generalization of the Black-Scholes formula for option prices.

This makes the AJD family of models particularly attractive for empirical studies that combine

option prices with time series data on underlying prices or rates. Studies of this type include

Andersen, Benzoni and Lund [2], Bakshi, Cao and Chen [3], Bates [6, 7, 8], Broadie, Chernov and

Johannes [11], Chen and Scott [13], Chernov [15], Chernov and Ghysels [16], Eraker [32], Eraker,

Johannes and Polson [33] and Pan [44].

Despite the many examples of studies using AJD models, the models used in empirical work

have remained limited to a relatively small subclass for which the pricing transforms are available

in closed form. This restriction appears to be driven more by convenience of implementation than

by considerations of empirical validity. In the general framework of DPS, the pricing transforms are

characterized in terms of solutions of ordinary differential equations (ODEs). The AJD models used

in practice (such as those of Cox, Ingersoll and Ross [20] and Heston [36]) are those for which these

ODEs can be solved explicitly, thus providing explicit expressions for the pricing transforms. In this
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setting, each model-price calculation requires the numerical inversion of a closed-form transform,

which can be accomplished with relatively modest computational effort.

For more general AJD models — those for which the pricing transforms are not available in

closed form — each price calculation requires, in principle, embedding the numerical solution of a

system of ODEs within a numerical inversion routine. Numerical transform inversion is a numerical

integration problem that typically uses hundreds or thousands of evaluations of the transform, and

each such function evaluation requires the solution of a system of ODEs. It is the impracticality of

this combination that has limited the application of AJD models to the most tractable cases.

In this article, we develop the use of saddlepoint approximations as alternatives to numerical

transform inversion in order to widen the scope of practical AJD models. The saddlepoint method

is rooted in asymptotic expansions for evaluating contour integrals in the complex plane. It was

introduced in statistics by Daniels [22] to approximate the probability density function of the sum

of independent random variables. Lugannani and Rice [42] derive a saddlepoint approximation for

the distribution function. See Daniels [23] and Jensen [37] for overviews of applications in statistics.

Rogers and Zane [45] apply saddlepoint approximations to option pricing; applications in credit

risk include Dembo, Deuschel and Duffie [24], Gordy [35], Martin, Thompson and Browne [43],

and Yang, Hurd and Zhang [52]. Aı̈t-Sahalia and Yu [1] derive saddlepoint approximations for

transition densities of continuous-time Markov processes with applications to statistical inference.

In the affine framework, Collin-Dufresne and Goldstein [18] use Edgeworth expansions for swaption

pricing. Saddlepoint approximations also have potential applicability to risk management in the

setting of Duffie and Pan [27].

Saddlepoint approximations rely on the solution to an equation defined by the derivative of

the transform to be inverted; this solution is the saddlepoint. We investigate various ways of

computing or approximating the saddlepoint in the setting of AJD models. We also compare

alternative versions of saddlepoint approximations for price calculations. We find that saddlepoint

approximations do indeed provide an effective way to calculate prices in AJD models whose ODEs

do not admit explicit solutions.

This paper consists of five sections. After this introductory section, in Section 2 we present the

extended transforms of AJD models that are necessary in calculating the derivatives used in the

approximations. In Section 3, we review the saddlepoint method and associated approximations,

and we explain how the saddlepoint method applies to AJD models. We test the approximations

numerically in Section 4, and find that saddlepoint techniques yield surprisingly small relative errors

over a wide range of parameters. We conclude the paper in Section 5.
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2 Affine Jump-diffusion Model and Extended Transforms

We start by reviewing basic facts about AJD processes. Following the notation in DPS, an AJD

process X ∈ Rn is defined as a solution of the stochastic differential equation (SDE)

dXt = µ(Xt)dt + σ(Xt)dWt + dZt

where W is an (Ft)-adapted Brownian motion in Rn, Ft stands for the σ-field of information

sets available up to time t, and Z is a pure jump process whose jumps have a fixed probability

distribution ν on Rn and arrive with intensity λ(Xt). The asset price of interest, St, at time t is

assumed to be (at + bt · Xt) exp(at + bt · Xt) for deterministic at, bt, at and bt; for simplicity we

assume St = ed·Xt . The more general case can be reduced to this case at the expense of introducing

time-dependency in the characteristics of X defined below. The dynamics of other assets, stochastic

interest rates or stochastic volatility can be included as coordinates of the vector-valued process X.

The functional forms of µ(Xt), σ(Xt), λ(Xt) and the interest rate r(Xt) are specified as follows:

µ(x) = K0 + K1x, K0 ∈ Rn, K1 ∈ Rn×n, x ∈ Rn

(σ(x)σ(x)>)ij = H0ij + H1ij · x, H0ij ∈ R, H1ij ∈ Rn

λ(x) = l0 + l1 · x, l = (l0, l1) ∈ R× Rn

r(x) = ρ0 + ρ1 · x, ρ = (ρ0, ρ1) ∈ R× Rn

θ(c) =
∫

Rn

exp(c · z)dν(z) for c ∈ Cn, “jump transform”.

The process X is said to have the characteristic (K,H, l, θ, ρ).

The state variable Xt at time t takes values in a domain D ⊂ Rn on which the process is

defined. For instance, (σ(Xt)σ(Xt)>)ii should be non-negative for each i. A discussion of the state

space D and constraints on the charateristic of X can be found in Chapter 5 of Singleton [48], and

Duffie, Filipović and Schachermayer [25] deal with this issue in a more general framework. The

definition above implies that the process X is Markovian and that when a jump occurs, its jump

size is independent of the jump arrival rate or the past history of X.

In DPS, the authors prove that certain Fourier-type transforms of an AJD process can be found

by solving the following set of ODEs:

β̇(t) = −ρ1 + K>
1 β(t) +

1
2
β(t)>H1β(t) + l1(θ(β(t))− 1) (1)

α̇(t) = −ρ0 + K0 · β(t) +
1
2
β(t)>H0β(t) + l0(θ(β(t))− 1) (2)

Ḃ(t) = K>
1 B(t) + β(t)>H1B(t) + l1∇θ(β(t))B(t) (3)

Ȧ(t) = K0 ·B(t) + β(t)>H0B(t) + l0∇θ(β(t))B(t) (4)

with β(0) = u, α(0) = 0, B(0) = v, A(0) = 0 for some u ∈ Cn, v ∈ Rn, with ∇θ(c) a row vector.

These transforms facilitate the pricing of many financial derivatives such as European calls or puts,

4



quanto options, Asian options and others using Fourier inversion. To apply saddepoint techniques,

we will need ODEs that characterize cumulant generating functions (CGFs) and their derivatives.

See DPS for the proof of the next theorem.

Theorem 2.1 (DPS) Suppose the system of ODEs (1)–(4) has a unique solution and the other

technical conditions in [28], p.1351, hold. Then

ψ0(u,Xt, t, T ) = E
[
exp

(
−

∫ T

t
r(Xs)ds

)
eu·XT

∣∣∣Ft

]

= eα(T−t)+β(T−t)·Xt

ψ1(v, u, Xt, t, T ) = E
[
exp

(
−

∫ T

t
r(Xs)ds

)
(v ·XT )eu·XT

∣∣∣Ft

]

= ψ0(u,Xt, t, T )
(
A(T − t) + B(T − t) ·Xt

)

where u ∈ Cn, v ∈ Rn, t ≤ T and the process X has the characteristic (K, H, l, θ, ρ).

The integral that we shall consider in later sections is E[exp(− ∫ T
t r(Xs)ds)(b ·XT )ke(a+zb)·XT |

Ft] for some a, b ∈ Rn and z ∈ R. When k = 0 and t = 0, it becomes ψ0(a + zb, X0, 0, T ) =

exp(α(T, z) + β(T, z) · X0). Note that here we include z to express the dependence of α, β on z

through the initial conditions α(0, z) = 0, β(0, z) = a+ zb. If k = 1, t = 0, then by Theorem 2.1 we

get ψ1(b, a+zb, X0, 0, T ) = (A(T, z)+B(T, z) ·X0) exp(α(T, z)+β(T, z) ·X0) with initial conditions

A(0, z) = 0, B(0, z) = b. Provided we can interchange differentiation and expectation in

∂ψ0(a + zb,Xt, t, T )
∂z

=
∂

∂z
E

[
exp

(
−

∫ T

t
r(Xs)ds

)
e(a+zb)·XT

∣∣∣Ft

]
,

viewing ψ0 as a function of two variables z and t, we get

∂α(T − t, z)
∂z

+
∂β(T − t, z)

∂z
·Xt = A(T − t, z) + B(T − t, z) ·Xt

for all t and Xt, so we conclude ∂α(t, z)/∂z = A(t, z), ∂β(t, z)/∂z = B(t, z). One condition that

justifies the interchange of differentiation and integration is the finiteness of ψ0 for some interval

z ∈ (−l, l) containing 0 as an interior point. This can be proved by the Dominated Convergence

Theorem and the Mean Value Theorem; see, e.g., page 43 of Shreve [47]. By repeating the same

argument, one can calculate the k-th partial derivative of ψ0, ∂kψ0/∂zk, by interchanging the order

of differentiation and integration without changing the interval in which ∂kψ0/∂zk becomes finite.

Through this line of reasoning, we arrive at Theorem 2.3, below, and the following new set of

ODEs:

Ḋ(t) = K>
1 D(t) + β(t)>H1D(t) + l1∇θ(β(t))D(t) + B(t)>H1B(t) + l1B(t)>∇2θ(β(t))B(t)(5)

Ċ(t) = K0 ·D(t) + β(t)>H0D(t) + l0∇θ(β(t))D(t) + B(t)>H0B(t) + l0B(t)>∇2θ(β(t))B(t)(6)

with α(t), β(t), A(t), B(t),∇(θ(c)) as before, C(0) = 0, D(0) = 0, and (∇2θ(c)i,j) = (
∫

ec·zzizjdν(z))

the Hessian of θ(c). We also need the following technical conditions, which extend conditions in
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DPS. The proof of Theorem 2.3 is based on showing that a certain process is a martingale; these

conditions are useful in verifying the martingale property.

Definition 2.2 (K, H, l, θ, ρ) is well-behaved at (v, u, T ) if ODEs (1)–(6) are solved uniquely 1, if

θ is twice differentiable at β(t) for all t ≤ T , and if the following conditions are satisfied:

(i) E
[ ∫ T

0
|γ(t)λ(Xt)|dt

]
< ∞, where γ(t) =

(
Φ′t(θ(βt)− 1) + 2Φt∇θ(βt)Bt + ΨtB

>
t ∇2θ(βt)Bt

+Ψ′
t (θ(βt)− 1) + Ψt∇θ(βt)Dt

)

(ii) E
[( ∫ T

0
η(t) · η(t)dt

)1/2]
< ∞, where η(t) =

(
Φ′tβ

>
t + 2ΦtB

>
t + Ψ′

tβ
>
t + ΨtD

>
t

)
σ(Xt)

(iii) E
[
|Φ′T + Ψ′

T |
]

< ∞

Here Φt, Φ′t, Ψt, Ψ′
t are processes defined in the appendix and βt = β(T − t), Bt = B(T − t),

Dt = D(T − t) for notational convenience. The next theorem is a natural extension of Theorem 2.1

and will play a key role in later sections.

Theorem 2.3 Suppose (K, H, l, θ, ρ) is well-behaved at (v, u, T ). Then

ψ2(v, u, Xt, t, T ) = E
[
exp

(
−

∫ T

t
r(Xs)ds

)
(v ·XT )2eu·XT | Ft

]

= ψ0(u, Xt, t, T )
(
(A(T − t) + B(T − t) ·Xt)2 + (C(T − t) + D(T − t) ·Xt)

)

where v ∈ Rn, u ∈ Cn, t ≤ T , the process X has the characteristic (K, H, l, θ, ρ).

Proof See the appendix.

Again assuming that we can interchange the order of differentiation and expectation (for exam-

ple, supposing | ψ0 |< ∞ for all z ∈ (−l, l) for some l and treating ψ0 as a function of z and t), we

have

∂2ψ0(a + zb, Xt, t, T )
∂z2

= E
[
exp

(
−

∫ T

t
r(Xs)ds

)
(b ·XT )2 e(a+zb)·XT

∣∣∣Ft

]
= ψ2(b, a + zb, Xt, t, T );

and from this we conclude

∂2α(t, z)
∂z2

= C(t, z),
∂2β(t, z)

∂z2
= D(t, z).

These transforms can be continued as long as we are working with a sufficiently well behaved

AJD process. Indeed, it is easy to find a pattern in the related ODEs. From the relationships above

between α, β, A, B, C and D and the corresponding ODEs (1)–(6), we observe that if we have a set

of ODEs for the k-th derivative of ψ0, then we get a new set of ODEs for the (k + 1)-th derivative
1Conditions that ensure this are presented in Duffie et al. [25] in a more general framework.
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just by differentiating the previous ODEs with respect to the variable z.2 For a rigorous proof we

would need to define suitable processes as in Theorem 2.3 and give some extended conditions to

make the Brownian part and the jump part martingales. We write the next set of ODEs for later

use.

Theorem 2.4 Under the conditions in the appendix we have

ψ3(v, u, Xt, t, T ) = E
[
exp

(
−

∫ T

t
r(Xs)ds

)
(v ·XT )3eu·XT

∣∣∣Ft

]

= ψ0(u,Xt, t, T )
(
(A(T − t) + B(T − t) ·Xt)3 + 3(A(T − t) + B(T − t) ·Xt)

×(C(T − t) + D(T − t) ·Xt) + (E(T − t) + F (T − t) ·Xt)
)

where v ∈ Rn, u ∈ Cn, t ≤ T , the process X has the characteristic (K, H, l, θ, ρ) and

Ḟ (t) = K>
1 F (t) + β(t)>H1F (t) + l1∇θ(β(t))F (t)

+3B(t)>H1D(t) + 3l1B(t)>∇2θ(β(t))D(t) + l1

∫

Rn

ez·β(t)(z ·B(t))3dν(z) (7)

Ė(t) = K0 · F (t) + β(t)>H0F (t) + l0∇θ(β(t))F (t)

+3B(t)>H0D(t) + 3l0B(t)>∇2θ(β(t))D(t) + l0

∫

Rn

ez·β(t)(z ·B(t))3dν(z) (8)

with α(t), β(t), A(t), B(t), C(t), D(t), ∇(θ(c)), ∇2(θ(c)) as before, and E(0) = 0, F (0) = 0.

Proof See the appendix.

3 Saddlepoint Approximation and Option Pricing

3.1 Option Pricing

When we price options with the log of underlying asset following an AJD process, St = ed·Xt , the

basic building block is

Ga,b(y; X0, T ) = E
[
exp

(
−

∫ T

0
r(Xs)ds

)
ea·XT 1{b·XT≤y}

]

so that, as shown in DPS, a European call option price, for example, can be calculated as follows:

C(T, c) = E
[
exp

(
−

∫ T

0
r(Xs)ds

)
(ed·XT − c)+

]

= E
[
exp

(
−

∫ T

0
r(Xs)ds

)
(ed·XT − c)1{d·XT≥ln c}

]

= Gd,−d(− ln c ; X0, T )− c G0,−d(− ln c ; X0, T ).

2This leads us to conjecture the functional form of E[exp(− ∫ T

t
r(Xs)ds)(b ·XT )Ne(a+zb)·XT | Ft] should be

∑

(m1,...,mN ):
∑

kmk=N

N !

m1!m2! · · ·mN !
ψ0(a + zb, Xt, t, T )

∏

j:mj 6=0

(
∂jα

j!∂zj
(T − t, z) +

∂jβ

j!∂zj
(T − t, z) ·Xt

)mj

from the Faà di Bruno’s formula and the ODEs satisfied by ∂jα/∂zj , ∂jβ/∂zj can be derived by applying the same
formula to the ODEs (1), (2).
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To facilitate the application of saddlepoint approximations, we will express this as a difference

of two probabilities, after some possible scaling and change of measure. This will reduce the

calculation of the option price to the task of calculating those probabilities. To this end, first

suppose the characteristic (K,H, l, θ, ρ) of the AJD process X is well-behaved at (b, a, T ). Then

there exist α̃(t), β̃(t) solving the ODEs (1), (2) in Theorem 2.1 with the boundary conditions

α̃(0) = 0, β̃(0) = a. On the other hand, it is easy to show, as noted in DPS, that

ξt = exp
(
−

∫ t

0
r(Xs)ds

)
eα̃(T−t)+β̃(T−t)·Xt

is a positive martingale, using Itô’s formula and (1), (2). So an equivalent probability measure Q
given by dQ/dP = ξT /ξ0 is well defined. Also note that from the definition of ψ0 in Section 2,

ψ0(a,X0, 0, T ) = E[exp(− ∫ T
0 r(Xs)ds)ea·XT ] = ξ0. Thus the random variable Y := b · Xt has a

moment generating function under Q given by

eK(z) = EQ
[
ezY

]
=

1
ξ0
E

[
exp

(
−

∫ T

0
r(Xs)ds

)
e(a+zb)·XT

]

=
ψ0(a + zb,X0, 0, T )

ψ0(a,X0, 0, T )
= exp

(
α(T, z)− α(T, 0) + (β(T, z)− β(T, 0)) ·X0

)

where α(t, z), β(t, z) denote the solutions of (1), (2) with α(0, z) = 0, β(0, z) = a + zb so that

α̃(t) = α(t, 0), β̃(t) = β(t, 0).

The CGF of Y is K(z) under Q. Unless Y is a constant almost surely, Y has a positive variance

and so K(z) is strictly convex in z. Proposition 5 in DPS implies that X is again an AJD process

under Q with the characteristic (KQ,H, lQ, θQ) where

KQ
0 (t) = K0 + H0β̃(T − t), KQ

1 (t) = K1 + H1β̃(T − t),

lQ0 (t) = l0θ(β̃(T − t)), lQ1 (t) = l1θ(β̃(T − t)),

θQ(c, t) = θ(c + β̃(T − t))/θ(β̃(T − t)).

Finally we note that Ga,b(y; X0, T ) = E[exp(− ∫ T
0 r(Xs)ds)ea·XT 1{b·XT≤y}] = ξ0Q(Y ≤ y). So the

option-pricing problem is reduced to the calculation of the cumulative distribution function (CDF)

Q(Y ≤ y) or its complement Q(Y > y).

In the AJD setting, this tail probability can be represented through the Fourier inversion for-

mula,

Q(Y > y) =
1

2πi

∫ τ+i∞

τ−i∞
e(K(z)−zy) dz

z
, τ > 0.3

Numerical calculation of this integral requires evaluation of the integrand at hundreds or thousands

of points. Unless K(z) is available in closed form, we would need to solve the ODEs (1), (2)

numerically at each evaluation point. This computational burden limits the scope of AJD models
3This can be shown using the Plancherel Theorem and the Dominated Convergence Theorem (see the appendix

of Rogers and Zane [45]).
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amenable to practical application and motivates our investigation of approximations. In the next

subsection, we review the saddlepoint method and explain how we apply this method to option

pricing in AJD models.

Remark For European call options, a simpler calculation is possible. To simplify the measure

transform, suppose the short rate is a constant r. Then the option price is given by

C(T, c) = E
[
e−rT (ST − c)+

]

= e−rT
{
EeXT − E [

eXT ∧ c
] }

= e−rT
{

eK(1) − c P(XT + Y > ln c)
}

where ST = eXT , Y is exponentially distributed with unit mean, independent of XT , and eK(z) =

E[ezXT ]. So

E
[
ez(XT +Y )

]
= eK(z) 1

1− z
= eK(z)−ln(1−z), z < 1.

This means we need to calculate only one tail probability. If we want to use the Fourier inversion

formula, this reduces the workload by almost a half. A similar but different use of exponential den-

sity functions was made in Butler and Wood [12] to approximate the moment generating functions

of truncated random variables.

3.2 Saddlepoint Approximation

Daniels [22] introduced the saddlepoint method to statistics in order to approximate the probability

density function (PDF) of the mean of i.i.d. random variables Xi’s. Assuming we know the CGF

K(z) where eK(z) = E[ezX1 ], the PDF fn(x) of X =
∑n

1 Xi/n is given by

fn(x) =
n

2πi

∫ τ+i∞

τ−i∞
en(K(z)−zx)dz, for any τ ∈ {x ∈ R : |K(x)| < ∞}.

Daniels [22] used the method of steepest descent to expand this contour integral. The saddlepoint ẑ

is defined by the saddlepoint equation K′(ẑ) = x; the modulus of the integrand is minimized along

the real axis at ẑ and maximized at ẑ along the contour parallel to the imaginary axis passing

through ẑ. So, the region outside a neighborhood of the saddlepoint contributes little to the inte-

gration, and we get Daniels’ formula through a Taylor expansion of the exponent K(z)− zx around

ẑ. (The method of steepest descent is explained in Chapter 7 of Bleistein and Handelsman [9].)

Lugannani and Rice [42] approximated tail probabilities rather than densities. The following

form of the Lugannani-Rice (LR) formula can be found in Daniels [23]:

P(X > x) = 1− Φ(
√

nŵ) + φ(
√

nŵ)
{

b0

n1/2
+

b1

n3/2
+ o(n−3/2)

}
(9)

where b0 = 1/û−1/ŵ, b1 = (λ4/8−5λ2
3/24)/û−λ3/(2û2)−1/û3+1/ŵ3 and ŵ = sgn(ẑ)

√
2(ẑy −K(ẑ)),

û = ẑ
√
K′′(ẑ), λ3 = K(3)(ẑ)/K′′(ẑ)3/2, λ4 = K(4)(ẑ)/K′′(ẑ)4/2. When x = E[X1] = K′(0), the for-

mula reduces to

P(X > K′(0)) =
1
2
− λ3(0)

6
√

2πn
+ O(n−3/2). (10)
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Here Φ, φ are the CDF and the PDF of the standard normal distribution, respectively. We will use

this formula with n = 1 and b0 in test cases. The accuracy of the approximation (9) for small n

depends on the proximity of the underlying distribution to the normal distribution. Wood, Booth

and Butler [51] study the saddlepoint approximation with a non-normal distribution replacing Φ

and φ for a better approximation. We will test such a variant with a stochastic volatility jump-

diffusion model using a gamma distribution as the base distribution in the approximation.

To apply the LR formula (9), we need to find the solution ẑ of the saddlepoint equation K′(z) = y

for some given real number y and compute K(ẑ) and its derivatives. In an AJD setting, from Section

2 we have

K(z) = α(T, z)− α(T, 0) + (β(T, z)− β(T, 0)) ·X0

K′(z) = A(T, z) + B(T, z) ·X0

K′′(z) = C(T, z) + D(T, z) ·X0, etc.,

and these functions can be evaluated by solving a set of ODEs, the size of which depends on the

order of derivatives one wants to compute. Once ẑ is found, each system of ODEs need only be

solved once. The total number of ODE solutions required depends on the approximation chosen

through the number of derivatives ofK(ẑ) used. In contrast, numerical inversion of the characteristic

function requires the solution of ODEs (1), (2) for each evaluation point in the numerical integration.

Finding ẑ is therefore critical to the method.

Under rather mild conditions, the saddlepoint equation K′(z) = y has a unique root. We will,

in particular, impose the following two conditions on the AJD process X, option maturity T and

real vectors a, b.

Assumption 1 There exists an l > 0 such that |ψ0(a + zb,X0, 0, T )| < ∞ for all
z ∈ (−l, l).

Assumption 2 The CGF K(z) of b ·XT is strictly convex and steep at the boundary of
D = {z ∈ R : |K(z)| < ∞} .

Unless b ·XT is constant almost surely, K(z) is strictly convex and the convexity of K(z) implies

that D is an interval. Steepness means limz→v K′(z) = −∞ and limz→uK′(z) = ∞ where v = inf D
and u = supD (see Barndorff-Nielsen [5] for more details). These assumptions are conditions

on the tails of the random variable b · XT . Assumption 1 allows us to interchange the order of

differentiation and integration as discussed in Section 2. Assumption 2 ensures the existence of a

unique solution of the saddlepoint equation for any given y ∈ R and is not restrictive in practice.

Remark Although we focus on AJD models, the same approximations can be applied to quadratic

term structure models (see, e.g., Leippold and Wu [40] or Cheng and Scaillet [14]) where extended

transforms are again given by systems of ODEs. We also note that such systems of equations

10



can be derived by re-writing quadratic term structure models as AJD models as observed in [14],

Proposition 3.

3.3 Approximating the Saddlepoint

As already noted, solving the saddlepoint equation is a key step in applying the saddlepoint method.

Numerical solution of the equation might require many iterations, each iteration requiring evalua-

tion of the derivative of the CGF. This could be problematic in high-dimensional models without

a closed-form CGF. The approximations to the saddlepoint ẑ discussed in this section address this

difficulty.

Several authors have addressed the problem of analytically intractable CGFs. Easton and

Ronchetti [31] approximate K(z) by

K̃(z) = µz +
1
2
σ2z2 +

1
6
κ3z

3 +
1
24

κ4z
4

using the first four cumulants, and use z̃ for which K̃′(z̃) = y instead of the true saddlepoint ẑ.

This approximate saddlepoint equation for K̃ might have multiple roots, so Wang [50] modifies this

method and uses

K̃(z; b) = µz +
1
2
σ2z2 +

(
1
6
κ3z

3 +
1
24

κ4z
4

)
gb(z)

where gb(z) = exp(−κ2b
2z2/2) with a properly chosen constant b > 0.

Starting from a Taylor expansion of K′(z) around z = 0, Lieberman [41] presents a series

reversion of the saddlepoint equation K′(ẑ) = y as a power series in (y − µ)/σ2. When expanded

to third order, this yields

ẑ3 =
y − µ

σ2
− κ3

2σ2

(
y − µ

σ2

)2

+
(

κ2
3

2σ4
− κ4

6σ2

) (
y − µ

σ2

)3

(11)

as an approximation to the exact saddlepoint ẑ. Here, (y−µ)/σ2 is the first iteration of a Newton-

Raphson algorithm starting from z0 = 0. Lieberman [41] then derives a saddlepoint approximation

based on ẑ3. With v̂3 = ẑ3

√
nK′′(ẑ3), λ̂3 = K(3)(ẑ3)/K′′(ẑ3)3/2, λ̂4 = K(4)(ẑ3)/K′′(ẑ3)4/2 and

H(x) = 1{x>0} + 1
21{x=0}, Lieberman’s approximation is

P(X > y) = H(−v̂3) + exp
(

n(K(ẑ3)− yẑ3) +
v̂2
3

2

)

×
[

(H(v̂3)− Φ(v̂3))

(
1− λ̂3v̂

3
3

6
√

n
+

1
n

(
λ̂4v̂

4
3

24
+

λ2
3v̂

6
3

72

))
(12)

+φ(v̂3)

(
λ̂3(v̂2

3 − 1)
6
√

n
− 1

n

(
λ̂4(v̂3

3 − v̂3)
24

+ λ̂2
3

v̂5
3 − v̂3

3 + 3v̂3

72

)) ](
1 + O(n−3/2)

)
.

We will test this approximation in the next section. We will see that Lieberman’s method is

not uniformly accurate over a large range of strikes because the error in Lieberman’s approximate

saddlepoint, ẑ3 which is an expansion in terms of (y − µ)/σ2, becomes large as y increases.

11



We propose an improvement that proceeds one more step. We expand K′(z) around z = ẑ3

(rather than z = 0) to third order to get

z̃3 = ẑ3 +
y −K′(ẑ3)
K′′(ẑ3)

− K′′′(ẑ3)
2K′′(ẑ3)

(
y −K′(ẑ3)
K′′(ẑ3)

)2

+

(
K(3)(ẑ3)2

2K′′(ẑ3)2
− K(4)(ẑ3)

6K′′(ẑ3)

)(
y −K′(ẑ3)
K′′(ẑ3)

)3

. (13)

Note that (13) reduces to (11) if ẑ3 is replaced by zero. Evaluation of z̃3 uses the same set of ODEs

which are used to get ẑ3; we do not need higher order derivatives of K(z) or any extra set of ODEs

for (13). To evaluate (13), we solve one set of ODEs associated with K(z) through K(4)(z) to get

ẑ3, and then solve the same set of ODEs to get z̃3.

In our numerical tests, we will test the effectiveness of using the approximate saddlepoints ẑ3

and z̃3 in the LR formula (9) in place of the exact value ẑ. The approximations ẑ3 and z̃3 can also

be used to initialize the root-finding procedure to solve for ẑ, and we will test this idea with ẑ3.

Remark The problem of solving the saddlepoint equation can be transformed from a root-finding

problem into a matter of function evaluation through a duality relation. If we define

H(t, x, z) = α(t, z) + β(t, z) · x,

then E[e−
∫ T

t rsdse(a+zb)·XT | Ft, Xt = x] = eH(T−t,x,z) and thus H(T, X0, z) = K(z) + α(T, 0) +

β(T, 0) · X0. The function H(t, x, z) is convex in z, and strictly convex as long as b · Xt is not

constant almost surely. This allows us to apply a technique developed by Jonsson and Sircar [38]

in their analysis of a partial hedging strategy. We define the convex dual

H∗(t, x, y) = sup
z∈D(t)

{yz −H(t, x, z)}, D(t) = {z ∈ R : |H(t, x, z)| < ∞}.

Then, it can be shown that there exists a continuously differentiable function ẑ(t, x, y) for (t, x, y) ∈
(0, T ] × Rn × R such that (∂H∗/∂y)(t, x, y) = ẑ(t, x, y) and H∗, ẑ satisfy some partial differential

equations (PDEs). An approximate saddlepoint is then obtained by solving these PDEs numerically.

However, in a numerical test using the Heston stochastic volatility model, an explicit finite different

method applied to associated PDEs does not perform uniformly better than the methods considered

in this paper. A further investigation in this direction using other numerical methods for PDEs

remains as a future research. For more details, see Kim [39].

4 Test Cases

In this section we test the performance of saddlepoint approximation technique, for the Heston

model, a stochastic volatility jump-diffusion (SVJ) model and the Scott model. Particularly, we

look at the following methods:

LR method equation (9) with numerical calculation of the saddlepoint ẑ
Lieberman method equation (12)

L-LR method equation (9) with ẑ approximated using ẑ3 in (11)
App-LR method equation (9) with ẑ approximated using z̃3 in (13)
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In applying the LR method, we exclude b1 and higher order terms as their inclusion does not

consistently improve the results. The motivation for testing the last three methods lies in avoiding

potentially time-consuming calculation of ẑ.

4.1 Heston Model

In the Heston model [36], the pricing transforms are available in closed form, so no approximations

are necessary. We use this as a test case for the approximations precisely because the tractability

of the model allows us to compare the approximations with values computed through transform

inversion.

The stock price and the volatility in the Heston model [36] under a risk-neutral measure are

assumed to follow

dSt = rStdt +
√

vtStdW 1
t

dvt = κ(θ − vt)dt + σ
√

vtdW 2
t

where r is the constant interest rate and (dW 1
t , dW 2

t ) is a 2-dimensional Brownian motion with

< dW 1
t , dW 2

t >= ρdt. We define Xt = log St and apply Itô’s formula to Xt to get an AJD process

(X, v) with

dXt =
(

r − 1
2
vt

)
dt +

√
vtdW 1

t

and v is as above. See the appendix for the characteristic of this process. The price of a European

call option is then given by

C(T, c) = E
[
e−rT (ST − c)+

]
= S0Q(XT > ln c)− c e−rTP(XT > ln c),

where Q is defined by the measure transform dQ/dP = e−rT eXT−X0 , which corresponds to taking

ST as numeraire asset. The dynamics of (X, v) can be written as

dXt = (r + vt/2)dt +
√

vtdW 1,Q
t

dvt = (κθ − (κ− ρσ)vt)dt + σ
√

vtdW 2,Q
t ,

where W 1,Q and W 2,Q are standard Brownian motions under Q with correlation parameter ρ. The

CGF of XT under P is defined by eK(z) = E[ezXT ] = exp(α(T )+β(T ) ·(X0, v0)) where β(0) = (z, 0),

α(0) = 0. Through Heston [36], we have an explicit solution for the CGF of XT given by

K(z) = C + Dv0 + zX0

C = rzT +
κθ

σ2

{
(κ− ρσz + d)T − 2 ln

[
1− gedT

1− g

]}

D =
κ− ρσz + d

σ2

[
1− edT

1− gedT

]

g =
κ− ρσz + d

κ− ρσz − d

d =
√

(ρσz − κ)2 − σ2(−z + z2).
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60 70 80 90 100 110 120 130 140

48 45 42 36 20 35 39 43 45
13 9 7 7 5 6 8 12 15

Table 1: Average number of function evaluations in the numerical solution of the saddlepoint
equation in the Heston model, by strike price. The first row corresponds to initializing the root-
finding procedure at zero; the second row corresponds to starting at Lieberman’s approximate
saddlepoint.

Again the idea is that when this kind of analytic solution is not available, we use the associated

ODEs to find the saddlepoint and apply the saddlepoint method. How many calculations does

this require? Let us suppose, for simplicity, that the computation times in solving ODEs for (α, β),

(A,B) or (C,D) are approximately the same, say τ . Although the dimensions of the ODEs will grow

exponentially as we differentiate repeatedly, we are interested in ODEs associated withK(j) for j = 4

at most. Also some special structure of the models helps to simplify the equations. For example,

B1(t) = 1, D1(t) = F1(t) = H1(t) = 0 in the Heston model. With the assumption of constant τ ,

we can compare the computational loads of different saddlepoint approximations. The computing

time to approximate Ga,b(y;X0, T ) = ξ0Q(Y ≤ y) using the LR method is about τ + 2kτ + 3τ ,

where k is the number of iterations to solve the saddlepoint equation numerically. Here the first

term is for eK(0) = ξ0 and the last term is for K(ẑ), K′′(ẑ). On the other hand, the time needed to

apply the Lieberman method is then about 5τ + 5τ because we have to find K(0), . . . ,K(4)(0) and

evaluate K(ẑ3), . . . ,K(4)(ẑ3), while the L-LR method would require approximately 5τ + 3τ because

we evaluate only up to K′′(ẑ3). The time for the App-LR method is 10τ +3τ . In each case, the most

time-consuming step is getting an accurate or approximate saddlepoint, and the computational load

of this step determines the efficiency of the approximation. It will become clear in our examples

that the cost of this step depends on option moneyness and maturity.

4.1.1 Numerical Results

The LR method. In our numerical tests, the initial asset price S0 is set equal to 100, the strike c

varies from 60 to 140 and the option maturity T is in the range of 0.1 to 2 years. We solve the

saddlepoint equation numerically by using the fzero function in MATLAB (which uses a bisection

and interpolation algorithm) and solving the ODEs (1)–(4) at each iteration. Table 1 shows the

average number of iterations in this step for each strike. Initializing fzero at the approximate

saddlepoint ẑ3 in (11) reduces the number of iterations by 66%–84%. The lower half of Table 4

shows the relative errors of the LR method with respect to the accurate prices shown in the upper

half.4 The relative errors are less than 0.1% over the whole range considered.

The Lieberman method and the L-LR method. Tables 5 and 6 show the relative errors of
4The analytic prices presented here for the Heston model and the SVJ model are produced using the program

SecPrcV2.7 by Mark Broadie, Ozgur Kaya and Guy Shahar. They employed a modified trapezoidal-type routine for
transform inversion. We thank Mark Broadie for providing us with a copy of this program.
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the Lieberman method and the L-LR method, respectively. As mentioned earlier, the approximate

saddlepoint ẑ3 incurs large errors as y (log of strike) moves away from the mean µ. So the Lieberman

method works best for at-the-money (ATM) options while the L-LR method yields the smallest

errors for deep in-the-money (ITM) calls. Also, we find that relative errors are enormous in the

upper right part of the tables, but the out-of-the-money (OTM) call prices in that section are very

small, so even small absolute errors become very large relative errors.

The App-LR method. In Table 7, we use the App-LR method. This method solves the ODEs

for ∂αj/∂zj , ∂βj/∂zj , j = 0, . . . , 4, one more time, but it reduces the relative errors a lot compared

to the Lieberman method and the L-LR method. An important advantage of this method is that,

while keeping the errors small, we solve the ODEs a fixed number of times. Using a root-finding

iteration like fzero requires solving ODEs an unpredictable number of times.

In light of the greater accuracy of the App-LR method compared with the Lieberman method

and the L-LR method, in the subsequent examples we restrict attention to the LR method and the

App-LR method.

Dependence of Approximation on Saddlepoint. The results above have the implication that the

accuracy of saddlepoint approximations largely depends on how well we approximate the saddle-

point itself. To illustrate this more clearly, we display the shapes of the curves K(z) and K′(z) in

Figure 1.5 The shape of K′(z) looks approximately cubic. This suggests the following approach:

solve ODEs (1)–(4) for some fixed values of z and for a fixed maturity, and apply a cubic spline

interpolation to get an approximation for K(z).6 The results are reported in Table 8. In most

cases, the relative errors are close to the values from the LR method in Table 4 except in the upper

right section of the table where we have small option prices. However, this approximation has an

exceptionally large relative error at T = 1.9, c = 110. This again shows the importance of accurate

evaluation of the saddlepoint. Any user who wants to adopt this approach should be very careful

regarding this matter. One advantage of this spline approach is, first, the time for computation is

relatively small (in the example, it resolves ODEs (1)–(4) 30 times for each maturity) and, second,

a single approximation can be used for options with the same maturity but different strikes.

4.2 SVJ Model

As in Bates [6], the asset price and volatility processes in the SVJ model under a risk-neutral

measure P are as follows:

dSt

St−
= (r − λk)dt +

√
vtdW 1

t + (ξNt− − 1)dNt

dvt = κ(θ − vt)dt + σ
√

vtdW 2
t

where N is a Poisson process with rate λ and the ξi’s are i.i.d. lognormal random variables with

mean µJ and variance σ2
J . Since {e−rtSt} is a martingale under the risk-neutral measure, this

5The graph of K(z) shows the moment generating function explodes around 20 + ε and −25− ε.
6interp1 in MATLAB
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60 70 80 90 100 110 120 130 140

47 43 41 35 18 35 40 43 44
27 16 9 7 6 6 6 7 8

Table 2: Average number of function evaluations used in the numerical solution of the saddlepoint
equation for each strike in the SVJ model. The first row initiates the root-finding at zero and the
second row initiates it at Lieberman’s approximate saddlepoint.

condition gives the relation k = eµJ+σ2
J/2 − 1. Also, W 1 and W 2 are standard Brownian motions

with correlation parameter ρ as in the Heston model. We define Xt = log St as usual and then Itô’s

formula yields

dXt = (r − λk − vt/2)dt +
√

vtdW 1
t + ηNt−dNt,

where ηi ∼ N(µJ , σ2
J). The characteristic of this AJD process (X, v) is given in the appendix. Its

CGF K(z) under P is defined by eK(z) = E[ezXT ].

A European call option price is, with a new probability measureQ defined by dQ/dP = eXT−K(1),

C(T, c) = e−rT
{

eK(1)Q(XT > ln c)− c P(XT > ln c)
}

.

And eKQ(z) = EQ[ezXT ] = eK(1+z)−K(1), KQ(z) denoting the CGF of XT under Q. From this

relation between KQ(z) and K(z), the solution z̃ of K′Q(z) = y is given by ẑ − 1 with K′(ẑ) = y.

4.2.1 Numerical Results

The LR method. As in Section 5.1.1, we test the LR method and compare the results with analytical

option prices. Table 2 shows the effectiveness of using the approximate saddlepoint ẑ3 in (11) as

a starting point for the root-finding routine for the saddlepoint equation. The average number of

function evaluations for each strike is reduced considerably, as we noted in the Heston model. We

use the parameters r = 3%, κ = 2, θ = 4% (long run mean volatility = 20%), v0 = 4% (initial

volatility = 20%), σ = 20%, ρ = −20%, µJ = −3%, σJ = 2%, λ = 100%, S0 = 100. The second

part of Table 9 shows that the relative errors of the LR method are less than 0.4% in the whole

region.

The App-LR method. With the same parameters, the App-LR method produces small relative

errors close to those of Table 9, as reported in Table 10, except the one fairly extreme case of T = 0.1

and c = 60. The reason that the method fails for this case is that the approximate saddlepoint,

ẑ3 = 23.9788, from (11) is too far from the true saddlepoint, ẑ = −64.4843, resulting in the huge

error of the modified approximate saddlepoint, z̃3 = 63.4224, from (13). In fact, this error makes

ŵ in the LR formula (9) imaginary. More precisely, ẑy − K(ẑ) becomes negative, as illustrated in

Figure 2. (One could address this problem by checking if ẑy − K(ẑ) is positive and reverting to

a root-finding iteration if it is not.) This indicates the potential limitation of the application of
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the App-LR method when a call option is deep ITM with a short maturity. We will see a similar

pattern in the Scott model.

Sensitivity of Approximation. With the option strike 100, T = 0.1 and c = 100, the effects of λ,

µJ , and σJ are shown in Figures 3, 4 and 5. As the jump arrival rate λ increases from 0 to 200%,

relative errors increase linearly up to 0.085%. As the mean of the jump size µJ decreases from 0

to −20%, relative errors make a smooth curve with a peak of 1.4% at µJ = −16%. The volatility

of the jump size has the biggest effect, making the relative error more than 10% as σJ grows.7

However, empirical values found in the literature stay small enough for the LR method to produce

small relative errors. More specifically, as Broadie et al. [11] summarize in their paper, Eraker et

al. [33], Andersen et al. [2], Chernov et al. [17] and Eraker [32] report 4.07%, 1.95%, 0.7% and

6.63% for σJ , respectively. Broadie et al. [11] report σJ between 9% and 10% when a risk premium

for σJ is assumed to exist.

Nonnormal-based Approximation. The added skewness due to the jump component in the SVJ

model makes the saddlepoint approximation using a gamma distribution for the base distribution

attractive. We test this method for two strikes in Table 11.8 The gamma-based approximation is

better for c = 90, but not for c = 100. This result reasserts the conclusion of Wood et al. [51],

“. . . any gains are likely to be small when the normal-based approximation does well.”

4.3 Scott Model

As the last test case, we apply the methods to Scott [46]’s jump-diffusion model with stochastic

volatility and stochastic interest rates. Under a risk-neutral measure P, the dynamics of the state

variables are given by

dXt = (rt − λk − σ2y1
t /2)dt + σ

√
y1

t dWt + ηNt−dNt

dy1
t = κ1(θ1 − y1

t )dt + σ1

√
y1

t dW 1
t

dy2
t = κ2(θ2 − y2

t )dt + σ2

√
y2

t dW 2
t

where Wt, W 1
t , W 2

t are Brownian motions with < dWt, dW 1
t >= ρdt, < dWt, dW 2

t >= 0, rt =

y1
t + y2

t , ηi
iid∼ N(µJ , σ2

J) and k = eµJ+σ2
J/2 − 1. The stock price St is exp(Xt).

The characteristics for this model are given in the appendix. A function K(z) is defined by

eK(z) = E[e−
∫ T
0 rsdsezXT ]. Note that K(z) is not the CGF of XT under P. The European call option

price is

C(T, c) = eK(1)Q1(XT > ln c)− c eK(0)Q2(XT > ln c),
7Figure 5 shows the relative errors grow as σJ becomes larger. Numerical values are obtained from (9) with n = 1

and b0 only or (10) if ẑ is close to zero (in our case, (10) is used if ẑ < 10−4). Indeed, when σJ = 14%, we have
ẑ = 4.38× 10−5 and (9) yields a 184.86% relative error while (10) gives a relative error of 6.97%.

8The PDF of a gamma distribution Gamma(k, θ) is expressed as f(x, k, θ) = xk−1e−(x/θ)/(Γ(k)θk) for x > 0,
the shape parameter k and the scale parameter θ. We use a chi-square distribution χ2(ν) of which PDF is that of
Gamma(ν/2, 2) where ν is the degree of freedom. In Table 11, ν is set equal to 4. Other values for ν have similar
results.
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60 70 80 90 100 110 120 130 140

47 45 43 38 29 34 42 43 46
21 17 10 7 7 5 7 8 10

Table 3: Average number of function evaluations used in the numerical solution of the saddlepoint
equation for each strike in the Scott model. The first row initiates the root-finding at zero and the
second row initiates it at Lieberman’s approximate saddlepoint.

where the probability measures Qi, i = 1, 2, are defined by dQ1/dP = e−
∫ T
0 rsdseXT−K(1) and

dQ2/dP = e−
∫ T
0 rsds−K(0), so that

eKQ1
(z) = EQ1

[
ezXT

]
= eK(1+z)−K(1), eKQ2

(z) = EQ2
[
ezXT

]
= eK(z)−K(0)

and KQi is the CGF of XT under Qi. The saddlepoint equation is given by K′Q1
(z̃) = K′(1+ z̃) = y

for Q1 and K′Q2
(ẑ) = K′(ẑ) = y for Q2. So implementing the LR method requires solving K′(z) = y

only.

There are two ways to use the App-LR method. One is to use this method for each of Qi(XT >

ln c), i = 1, 2, trying to approximate the corresponding saddlepoints separately. The other is to set

the approximation of z̃ equal to the approximation of ẑ minus one, based on the relation z̃ = ẑ− 1.

Using this consistent approximation requires solving half as many ODEs. In more detail, the first

method solves the ODEs for ∂αj/∂zj , ∂βj/∂zj , j = 0, . . . , 4, four times to get two approximate

saddlepoints ẑ and z̃, while the latter one solves the same ODEs just twice. In our tests, the second

method produces smaller errors, particularly at short maturities.

4.3.1 Numerical Results

The LR method. The analytical values in the upper section of Table 12 were computed using Fourier

inversion, using the quad function in MATLAB with a large interval for the numerical integration.

Different integration intervals give different values, but we find the errors to be very small. Again in

Table 3, we find that initiating fzero at the approximate saddlepoint ẑ3 in (11) helps to reduce the

computation time for solving the saddlepoint equation, and in Table 12 we observe small relative

errors (less than 0.1% in most cases) for the LR method with respect to the analytical valuation.

The App-LR method. The first part of Table 13 is the result of the App-LR method. As

noted in Section 5.2.1, we see that the method is not applicable to some deep ITM calls with

short maturities. There are also two big errors in the upper right part of the table that do not

have counterparts in the SVJ model. These errors, however, disappear when we use the second

implementation, setting the approximation of z̃ equal to the approximation of ẑ minus one. We

find that this method dominates the first method throughout the whole region considered. Even

though this second method still cannot be applied to some deep ITM calls with short maturities,

it produces relative errors very close to those of the LR method.
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5 Conclusion

When a closed-form solution for the characteristic function in an affine jump-diffusion model is

not available, transform inversion combining numerical integration with hundreds or thousands of

ODE solutions can be very time consuming. We have seen that saddlepoint approximations can be

an effective alternative computational tool for calculating prices in affine jump-diffusion models.

In saddlepoint approximations, we find that accurate calculation of the saddlepoint is the most

critical and often the most challenging task. We can address this issue either by solving the

saddlepoint equation numerically or by obtaining an approximate saddlepoint. Results in this

paper can be summarized as follows:

• The LR method (the Lugannani-Rice formula with a numerical solution of the saddlepoint

equation) yields the smallest relative errors, ranging from 0.0% – 0.3% in most cases for the

models considered here.

• Initiating a root-finding iteration at the approximate saddlepoint ẑ3 of Lieberman substan-

tially reduces the number of iterations.

• The App-LR method (the LR formula with an improved series approximation to the saddle-

point) gives small relative errors close to those of the LR method. However, it gives poor

results for some deep ITM options with short maturities.

• For ATM options, the LR method dominates. For OTM or ITM options, the App-LR method

is better, considering speed and accuracy together.

• If speed is of greater concern than accuracy, then it is best to use the Lieberman method for

ATM options and to use the LR method for ITM options.

In our numerical tests, we have considered a wide range of strikes and maturities. Empirical

work with AJD models generally focuses on a much more limited range, and this further supports

the use of saddlepoint approximations.

Acknowledgment

The authors thank the referees for their careful reading of the paper and many helpful comments.

Appendix

Proof of Theorem 2.3. We follow the approach used in Theorem 1 in DPS. Throughout the proof,

let us denote α(T − t), β(T − t), A(T − t), B(T − t), C(T − t) and D(T − t) by αt, βt, At, Bt, Ct,
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Dt, respectively, for notational convenience. We also write r(Xt), µ(Xt), σ(Xt), λ(Xt) as rt, µt, σt

and λt. We use a dot, as in ḟ , to denote a time derivative df/dt. Next we define

Ψt = exp
(
−

∫ t

0
r(Xs)ds

)
eαt+βt·Xt

and Φt = Ψt(At +Bt ·Xt). In addition, we set Φ′t = Ψt(At +Bt ·Xt)2 and Ψ′
t = Ψt(Ct +Dt ·Xt). If

we show that Φ′t + Ψ′
t is a martingale, then Φ′t + Ψ′

t = E[Φ′T + Ψ′
T | Ft] leads to the desired result.

Itô’s formula for jump-diffusion processes (as in Cont and Tankov [19]) yields

dΦ′t = Φ′t

(
(−rt + α̇t + β̇t ·Xt)dt + (βt · µtdt + β>t σtdWt) +

1
2
β>(σtσ

>
t )βtdt

)

+2Φt

(
(Ȧt + Ḃt ·Xt)dt + (Bt · µtdt + B>

t σtdWt) + β>t (σtσ
>
t )Btdt

)

+ΨtB
>
t (σtσ

>
t )Btdt + dJt

= Πtdt + ΥtdWt + dJt

for appropriate drift and volatility coefficients Πt, Υt and Jt =
∑

0<τ(i)≤t(Φ
′
τ(i) − Φ′τ(i)−) with

τ(i) = inf{t : Nt = i}. Here Nt is the counting process with intensity λt. Letting Et be the

Ft-conditional expectation under P for 0 ≤ t ≤ s ≤ T , and writing 4Xi for the increment in X at

τ(i), we have

Et

[ ∑

t<τ(i)≤s

(Φ′τ(i) − Φ′τ(i)−)
]

= Et

[ ∑

t<τ(i)≤s

E[Φ′τ(i) − Φ′τ(i)− | Xτ(i)−, τ(i)]
]

= Et

[ ∑

t<τ(i)≤s

{
Φ′τ(i)−

(
Eτ(i)−eβτ(i)·4Xi − 1

)
+ 2Φτ(i)−Eτ(i)−[eβτ(i)·4XiBτ(i) · 4Xi]

+Ψτ(i)−Eτ(i)−[eβτ(i)·4Xi(Bτ(i) · 4Xi)2]
}]

= Et

[ ∫ s

t+

{
Φ′u−(θ(βu)− 1) + 2Φu−∇θ(βu)Bu + Ψu−B>

u ∇2θ(βu)Bu

}
dNu

]
.

Proceeding similarly,

dΨ′
t = Π̃tdt + Υ̃tdWt + dJ̃t

for suitable coefficients Π̃t, Υ̃t (they are straightforward to compute, but omitted to save some

space) and J̃t =
∑

0<τ(i)≤t(Ψ
′
τ(i) −Ψ′

τ(i)−). The last term satisfies

Et

[ ∑

t<τ(i)≤s

(Ψ′
τ(i) −Ψ′

τ(i)−)
]

= Et

[ ∫ s

t+

{
Ψ′

u−(θ(βu)− 1) + Ψu−∇θ(βu)Du

}
dNu

]
.

Now, we observe that if the condition (i) of Definition 2.2 is satisfied, then

Et

[
Js + J̃s − Jt − J̃t

]
= Et

[ ∫ s

t+
γ(u−)dNu

]
= Et

[ ∫ s

t
γ(u)λudu

]
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and Jt + J̃t −
∫ t
0 γ(u)λudu becomes a martingale thanks to the Integration theorem in p.27 of

Brémaud [10].

From these observations, by adding and subtracting γ(t)λtdt we get

d(Φ′t + Ψ′
t) = d(Jt + J̃t)− γ(t)λtdt + (Υt + Υ̃t)dWt

+Φ′t

(
−rt + α̇t + β̇t ·Xt + βt · µt +

1
2
β>(σtσ

>
t )βt + (θ(βt)− 1)λt

)
dt

+2Φt

(
Ȧt + Ḃt ·Xt + Bt · µt + β>t (σtσ

>
t )Bt +∇θ(βt)Btλt

)
dt

+Ψt

(
B>

t (σtσ
>
t )Bt + B>

t ∇2θ(βt)Btλt

)
dt

+Ψ′
t

(
−rt + α̇t + β̇t ·Xt + βt · µt +

1
2
β>(σtσ

>
t )βt + (θ(βt)− 1)λt

)
dt

+Ψt

(
Ċt + Ḋt ·Xt + Dt · µt + β>t (σtσ

>
t )Dt +∇θ(βt)Dtλt

)
dt

= d(Jt + J̃t)− γ(t)λtdt + (Υt + Υ̃t)dWt (14)

as αt, βt, At, Bt, Ct and Dt are solutions to (1)–(6). The condition (ii) of Definition 2.2 ensures

that
∫ t
0 (Υu +Υ̃u)dWu is a martingale. Therefore, Φ′t +Ψ′

t is a martingale and the proof is complete.

Theorem 2.3 can also be established as a consequence of Proposition 2 in Cheng and Scaillet [14];

for higher-order derivatives we need to consider higher powers of b ·XT , and these require separate

treatment.

Conditions for Theorem 2.4. The characteristics (K, H, l, θ, ρ) are well-behaved at (v, u, T ), if

all ODEs in Theorems 2.1, 2.3, 2.4 are solved uniquely, if θ is three times differentiable at β(t) for

all t ≤ T , and if the following conditions are satisfied:

(i) E
[ ∫ T

0
|γ(t)λ(Xt)|dt

]
< ∞,

where γ(t) = f1(t) + f2(t) + f3(t),

f1(t) := Φ1
t (θ(βt)− 1) + 3Ψt

{
(At + Bt ·Xt)2∇θ(βt)Bt

+(At + Bt ·Xt)B>
t ∇2θ(βt)Bt

}
+ Ψt

∫

Rn

ez·βt(z ·Bt)3dν(z)

f2(t) := Φ2
t (θ(βt)− 1) + 3Ψt

{
(At + Bt ·Xt)∇θ(βt)Dt

+(Ct + Dt ·Xt)∇θ(βt)Bt

}
+ ΨtB

>
t ∇2θ(βt)Dt

f3(t) := Φ3
t (θ(βt)− 1) + Ψt∇θ(βt)Ft

(ii) E
[( ∫ T

0
η(t) · η(t)dt

)1/2]
< ∞, where η(t) = (g1(t) + g2(t) + g3(t))σ(Xt)

g1(t) := Φ1
t β
>
t + 3Ψt(At + Bt ·Xt)2B>

t

g2(t) := Φ2
t β
>
t + 3Ψt

{
(Ct + Dt ·Xt)B>

t + (At + Bt ·Xt)D>
t

}

g3(t) := Φ3
t β
>
t + ΨtF

>
t

(iii) E
[
|Φ1

T + Φ2
T + Φ3

T |
]

< ∞
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where Ψt, Φi
t for i = 1, 2, 3 are defined in the proof of Theorem 2.4 and αt, . . . , Ft stand for

α(T − t), . . . , F (T − t) which are the solutions to (1)–(8).

Proof of Theorem 2.4. This can be proved by defining appropriate functions, as in the previous

theorems. We set Ψt = exp(− ∫ t
0 r(Xs)ds)eα(T−t)+β(T−t)·Xt as before and

Φ1
t = (A(T − t) + B(T − t) ·Xt)3Ψt

Φ2
t = 3(A(T − t) + B(T − t) ·Xt)(C(T − t) + D(T − t) ·Xt)Ψt

Φ3
t = (E(T − t) + F (T − t) ·Xt)Ψt

and apply Itô’s formula. Under the assumed conditions, Φ1
t + Φ2

t + Φ3
t becomes a martingale.

Characteristic of the model dynamics in the Heston model:

K0 =
(

r
κθ

)
, K1 =

(
0 1

2
0 −κ

)
, H0 = 0

H1,11 =
(

0
1

)
, H1,12 = H1,21 =

(
0
σρ

)
, H1,22 =

(
0
σ2

)

Characteristic of the model dynamics in the SVJ model:

K0 =
(

r − λk
κθ

)
, K1 =

(
0 −1

2
0 −κ

)
, H0 = 0

H1,11 =
(

0
1

)
, H1,12 = H1,21 =

(
0
σρ

)
, H1,22 =

(
0
σ2

)

θ(c) =
∫

R2

exp(c · z)dν(z) = exp(c1µJ + c2
1σ

2
J/2), l0 = λ, l1 = 0

Characteristic of the model dynamics in the Scott model:

K0 =



−λk
κ1θ1

κ2θ2


 , K1 =




0 1− 1
2σ2 1

0 −κ1 0
0 0 −κ2


 , H0 = 0

H1,11 =




0
σ2

0


 , H1,12 = H1,21 =




0
ρσσ1

0


 , H1,22 =




0
σ2

1

0


 , H1,33 =




0
0
σ2

2




H1,13 = H1,31 = H1,23 = H1,32 = 0

θ(c) =
∫

R2

exp(c · z)dν(z) = exp(c1µJ + c2
1σ

2
J/2), l0 = λ, l1 = 0
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Table 4: Heston Model: (1) Analytic values (2) Relative errors of the LR method. Parameters:
S0 = 100, v0 = 4%, κ = 2, θ = 4%, σ = 0.2, ρ = 20%, r = 3%, maturities (column), strikes (row)

(1) 60 70 80 90 100 110 120 130 140

0.1 40.180 30.210 20.240 10.366 2.662 0.236 0.008 1.7E-04 2.4E-06
0.2 40.359 30.419 20.490 10.940 3.840 0.826 0.121 0.014 0.001
0.3 40.538 30.628 20.769 11.546 4.773 1.455 0.353 0.075 0.015
0.4 40.716 30.840 21.077 12.141 5.581 2.068 0.656 0.190 0.052
0.5 40.894 31.057 21.403 12.714 6.308 2.658 0.997 0.349 0.119
0.6 41.072 31.279 21.743 13.266 6.979 3.224 1.360 0.544 0.212
0.7 41.250 31.507 22.089 13.799 7.608 3.770 1.734 0.764 0.330
0.8 41.429 31.739 22.440 14.313 8.202 4.297 2.115 1.004 0.469
0.9 41.608 31.976 22.793 14.812 8.769 4.807 2.499 1.260 0.626
1.0 41.789 32.217 23.145 15.296 9.313 5.304 2.884 1.527 0.799
1.1 41.970 32.460 23.497 15.767 9.837 5.787 3.269 1.803 0.985
1.2 42.153 32.706 23.848 16.225 10.343 6.258 3.653 2.087 1.182
1.3 42.336 32.954 24.196 16.673 10.834 6.719 4.035 2.377 1.388
1.4 42.521 33.204 24.542 17.111 11.312 7.170 4.414 2.671 1.604
1.5 42.706 33.455 24.885 17.539 11.777 7.612 4.792 2.969 1.827
1.6 42.893 33.707 25.225 17.959 12.231 8.046 5.167 3.270 2.056
1.7 43.079 33.959 25.562 18.370 12.675 8.472 5.539 3.574 2.291
1.8 43.267 34.211 25.896 18.774 13.109 8.890 5.908 3.879 2.532
1.9 43.455 34.463 26.227 19.171 13.535 9.302 6.275 4.185 2.776
2.0 43.644 34.716 26.554 19.561 13.953 9.707 6.638 4.492 3.025

(2) 60 70 80 90 100 110 120 130 140

0.1 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.001% 0.002%
0.2 0.000% 0.000% 0.000% 0.000% -0.001% -0.001% 0.000% 0.002% 0.005%
0.3 0.000% 0.000% 0.000% -0.001% -0.004% -0.005% -0.003% 0.002% 0.008%
0.4 0.000% 0.000% 0.000% -0.003% -0.008% -0.011% -0.008% -0.001% 0.008%
0.5 0.000% 0.000% -0.001% -0.005% -0.013% -0.018% -0.015% -0.006% 0.004%
0.6 0.000% 0.000% -0.001% -0.007% -0.017% -0.025% -0.023% -0.014% -0.002%
0.7 0.000% 0.000% -0.002% -0.009% -0.022% -0.031% -0.032% -0.024% -0.012%
0.8 0.000% 0.000% -0.003% -0.011% -0.025% -0.037% -0.040% -0.035% -0.024%
0.9 0.000% -0.001% -0.004% -0.013% -0.028% -0.042% -0.048% -0.045% -0.036%
1.0 0.000% -0.001% -0.004% -0.014% -0.030% -0.045% -0.054% -0.055% -0.048%
1.1 0.000% -0.001% -0.005% -0.016% -0.031% -0.048% -0.059% -0.063% -0.060%
1.2 0.000% -0.001% -0.006% -0.016% -0.032% -0.049% -0.063% -0.069% -0.069%
1.3 0.000% -0.002% -0.006% -0.017% -0.033% -0.050% -0.065% -0.074% -0.077%
1.4 0.000% -0.002% -0.007% -0.017% -0.033% -0.050% -0.066% -0.077% -0.083%
1.5 0.000% -0.002% -0.007% -0.018% -0.033% -0.050% -0.066% -0.079% -0.088%
1.6 0.000% -0.002% -0.007% -0.018% -0.032% -0.049% -0.066% -0.080% -0.090%
1.7 0.000% -0.002% -0.008% -0.017% -0.031% -0.048% -0.065% -0.080% -0.092%
1.8 -0.001% -0.003% -0.008% -0.017% -0.031% -0.047% -0.063% -0.079% -0.092%
1.9 -0.001% -0.003% -0.008% -0.017% -0.030% -0.045% -0.062% -0.077% -0.091%
2.0 -0.001% -0.003% -0.008% -0.017% -0.029% -0.044% -0.059% -0.075% -0.090%
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Table 5: Heston Model: Relative errors of the Lieberman method

60 70 80 90 100 110 120 130 140

0.1 0.00% 0.00% 0.12% 0.23% 0.00% -19.46% -602.61% -2.1E+3% -1.9E+4%
0.2 0.00% 0.23% 1.13% 0.27% 0.00% -4.29% -116.01% -428.92% -1.3E+3%
0.3 0.05% 1.65% 1.79% 0.28% 0.00% -2.04% -45.91% -200.64% -466.73%
0.4 0.55% 3.58% 1.90% 0.28% 0.00% -1.26% -24.07% -117.31% -265.96%
0.5 2.03% 4.93% 1.78% 0.28% 0.00% -0.88% -14.60% -75.62% -181.11%
0.6 4.32% 5.46% 1.58% 0.27% 0.00% -0.66% -9.67% -51.56% -132.77%
0.7 6.66% 5.38% 1.38% 0.26% 0.00% -0.51% -6.78% -36.52% -100.62%
0.8 8.37% 4.98% 1.20% 0.24% 0.00% -0.40% -4.96% -26.63% -77.58%
0.9 9.21% 4.44% 1.04% 0.23% 0.00% -0.33% -3.73% -19.87% -60.47%
1.0 9.29% 3.89% 0.91% 0.22% 0.00% -0.27% -2.88% -15.11% -47.55%
1.1 8.84% 3.37% 0.80% 0.20% 0.00% -0.23% -2.27% -11.69% -37.68%
1.2 8.10% 2.91% 0.70% 0.19% 0.00% -0.20% -1.81% -9.17% -30.08%
1.3 7.26% 2.51% 0.62% 0.18% 0.00% -0.17% -1.47% -7.29% -24.19%
1.4 6.40% 2.17% 0.56% 0.17% 0.00% -0.15% -1.21% -5.86% -19.59%
1.5 5.61% 1.89% 0.50% 0.16% 0.00% -0.13% -1.00% -4.76% -15.97%
1.6 4.90% 1.65% 0.45% 0.15% 0.00% -0.12% -0.84% -3.91% -13.11%
1.7 4.27% 1.45% 0.41% 0.14% 0.01% -0.10% -0.71% -3.23% -10.83%
1.8 3.74% 1.28% 0.37% 0.13% 0.01% -0.09% -0.60% -2.70% -9.01%
1.9 3.28% 1.13% 0.34% 0.12% 0.01% -0.08% -0.52% -2.27% -7.53%
2.0 2.88% 1.01% 0.31% 0.12% 0.01% -0.08% -0.44% -1.92% -6.34%

Table 6: Heston Model: Relative errors of the L-LR method

60 70 80 90 100 110 120 130 140

0.1 0.00% 0.00% 0.00% 0.04% 0.02% -2.61% -25.92% -337.50% -1.2E+4%
0.2 0.00% 0.00% 0.02% 0.19% 0.05% -2.66% -17.37% -121.26% -1.2E+3%
0.3 0.00% 0.01% 0.09% 0.34% 0.09% -2.52% -13.55% -67.76% -422.93%
0.4 0.00% 0.02% 0.18% 0.45% 0.13% -2.29% -11.03% -44.65% -207.63%
0.5 0.01% 0.05% 0.27% 0.54% 0.16% -2.05% -9.15% -32.08% -121.32%
0.6 0.01% 0.09% 0.35% 0.59% 0.19% -1.81% -7.67% -24.30% -78.78%
0.7 0.02% 0.13% 0.42% 0.62% 0.21% -1.58% -6.48% -19.06% -54.94%
0.8 0.03% 0.17% 0.46% 0.63% 0.22% -1.38% -5.52% -15.33% -40.34%
0.9 0.04% 0.20% 0.49% 0.63% 0.24% -1.21% -4.72% -12.56% -30.78%
1.0 0.05% 0.23% 0.51% 0.62% 0.24% -1.05% -4.07% -10.44% -24.19%
1.1 0.07% 0.25% 0.51% 0.60% 0.25% -0.91% -3.52% -8.78% -19.46%
1.2 0.08% 0.27% 0.51% 0.59% 0.25% -0.79% -3.06% -7.46% -15.95%
1.3 0.09% 0.28% 0.50% 0.56% 0.25% -0.69% -2.67% -6.40% -13.27%
1.4 0.10% 0.28% 0.49% 0.54% 0.25% -0.60% -2.34% -5.52% -11.18%
1.5 0.10% 0.29% 0.48% 0.52% 0.25% -0.52% -2.06% -4.80% -9.53%
1.6 0.11% 0.29% 0.47% 0.50% 0.25% -0.45% -1.81% -4.20% -8.19%
1.7 0.12% 0.29% 0.45% 0.48% 0.24% -0.39% -1.61% -3.69% -7.10%
1.8 0.12% 0.28% 0.44% 0.46% 0.24% -0.33% -1.43% -3.26% -6.20%
1.9 0.12% 0.28% 0.42% 0.44% 0.23% -0.29% -1.27% -2.89% -5.44%
2.0 0.13% 0.28% 0.41% 0.42% 0.23% -0.25% -1.13% -2.58% -4.81%
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Table 7: Heston Model: Relative errors of the App-LR method

60 70 80 90 100 110 120 130 140

0.1 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% -0.042% -4.966%
0.2 0.000% 0.000% 0.000% 0.000% -0.001% -0.001% 0.000% -0.015% -1.091%
0.3 0.000% 0.000% 0.000% -0.001% -0.004% -0.005% -0.003% -0.005% -0.280%
0.4 0.000% 0.000% 0.000% -0.003% -0.008% -0.011% -0.008% -0.004% -0.087%
0.5 0.000% 0.000% -0.001% -0.005% -0.013% -0.018% -0.015% -0.008% -0.033%
0.6 0.000% 0.000% -0.001% -0.007% -0.017% -0.025% -0.023% -0.015% -0.018%
0.7 0.000% 0.000% -0.002% -0.009% -0.022% -0.031% -0.032% -0.025% -0.019%
0.8 0.000% 0.000% -0.003% -0.011% -0.025% -0.037% -0.040% -0.035% -0.027%
0.9 0.000% -0.001% -0.004% -0.013% -0.028% -0.042% -0.048% -0.046% -0.038%
1.0 0.000% -0.001% -0.004% -0.014% -0.030% -0.045% -0.054% -0.055% -0.049%
1.1 0.000% -0.001% -0.005% -0.016% -0.031% -0.048% -0.059% -0.063% -0.060%
1.2 0.000% -0.001% -0.006% -0.016% -0.032% -0.049% -0.063% -0.069% -0.069%
1.3 0.000% -0.002% -0.006% -0.017% -0.033% -0.050% -0.065% -0.074% -0.077%
1.4 0.000% -0.002% -0.007% -0.017% -0.033% -0.050% -0.066% -0.077% -0.083%
1.5 0.000% -0.002% -0.007% -0.018% -0.033% -0.050% -0.066% -0.079% -0.088%
1.6 0.000% -0.002% -0.007% -0.018% -0.032% -0.049% -0.066% -0.080% -0.090%
1.7 0.000% -0.002% -0.008% -0.017% -0.031% -0.048% -0.065% -0.080% -0.092%
1.8 -0.001% -0.003% -0.008% -0.017% -0.031% -0.047% -0.063% -0.079% -0.092%
1.9 -0.001% -0.003% -0.008% -0.017% -0.030% -0.045% -0.062% -0.077% -0.091%
2.0 -0.001% -0.003% -0.008% -0.017% -0.029% -0.044% -0.059% -0.075% -0.090%

Table 8: Heston Model: Cubic spline interpolation to approximate K′(z). z ∈ [−15, 15] and step
size 1

60 70 80 90 100 110 120 130 140

0.1 0.000% 0.000% 0.000% 0.002% -0.007% -0.276% -8.979% -68.560% -528.702%
0.2 0.000% 0.000% -0.002% 0.000% -0.023% -0.001% -0.520% -7.643% -33.650%
0.3 0.000% -0.001% -0.003% -0.001% -0.043% -0.005% -0.003% -0.174% -2.398%
0.4 0.000% -0.002% 0.000% -0.003% -0.063% -0.011% -0.008% -0.001% 0.013%
0.5 -0.001% -0.001% -0.001% -0.005% -0.081% -0.017% -0.015% -0.006% 0.003%
0.6 0.000% 0.000% -0.001% -0.007% -0.097% -0.025% -0.023% -0.014% -0.003%
0.7 0.000% 0.000% -0.002% -0.009% -0.110% -0.027% -0.032% -0.025% -0.012%
0.8 0.000% 0.000% -0.003% -0.011% -0.120% -0.036% -0.039% -0.035% -0.024%
0.9 0.000% -0.001% -0.004% -0.013% -0.127% -0.037% -0.047% -0.044% -0.036%
1.0 0.000% -0.001% -0.004% -0.014% -0.132% -0.025% -0.051% -0.055% -0.048%
1.1 0.000% -0.001% -0.005% -0.015% -0.136% -0.019% -0.059% -0.061% -0.058%
1.2 0.000% -0.001% -0.006% -0.016% -0.137% -0.028% -0.060% -0.069% -0.069%
1.3 0.000% -0.002% -0.006% -0.017% -0.138% -0.047% -0.057% -0.072% -0.076%
1.4 0.000% -0.002% -0.007% -0.017% -0.137% -0.042% -0.059% -0.073% -0.081%
1.5 0.000% -0.002% -0.007% -0.018% -0.135% 0.030% -0.064% -0.077% -0.087%
1.6 0.000% -0.002% -0.007% -0.018% -0.133% 0.249% -0.066% -0.080% -0.089%
1.7 0.000% -0.002% -0.008% -0.017% -0.131% 0.973% -0.058% -0.077% -0.088%
1.8 -0.001% -0.003% -0.008% -0.017% -0.128% 5.383% -0.046% -0.071% -0.087%
1.9 -0.001% -0.003% -0.008% -0.017% -0.125% 2034.383% -0.034% -0.068% -0.089%
2.0 -0.001% -0.003% -0.008% -0.016% -0.122% 5.170% -0.026% -0.067% -0.090%
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Table 9: SVJ Model: (1) Analytic values (2) Relative errors of the LR method. Parameters:
S0 = 100, v0 = 4%, κ = 2, θ = 4%, σ = 0.2, ρ = −20%, r = 3%, µJ = −3%, σJ = 2%, λ = 100%,
maturities (column), strikes (row)

(1) 60 70 80 90 100 110 120 130 140

0.1 40.180 30.210 20.241 10.406 2.703 0.207 0.004 3.3E-05 1.5E-07
0.2 40.359 30.419 20.506 11.041 3.901 0.766 0.084 0.006 3.3E-04
0.3 40.538 30.632 20.816 11.693 4.851 1.379 0.274 0.042 0.005
0.4 40.716 30.853 21.159 12.322 5.672 1.985 0.539 0.121 0.024
0.5 40.896 31.083 21.521 12.923 6.412 2.573 0.851 0.243 0.063
0.6 41.077 31.321 21.893 13.497 7.094 3.142 1.192 0.402 0.125
0.7 41.260 31.567 22.268 14.047 7.733 3.692 1.551 0.591 0.210
0.8 41.444 31.819 22.644 14.576 8.337 4.225 1.922 0.804 0.317
0.9 41.631 32.075 23.019 15.086 8.913 4.744 2.301 1.037 0.445
1.0 41.820 32.335 23.392 15.581 9.465 5.248 2.684 1.287 0.590
1.1 42.010 32.596 23.761 16.060 9.997 5.740 3.069 1.550 0.752
1.2 42.202 32.859 24.126 16.527 10.511 6.220 3.455 1.824 0.928
1.3 42.395 33.123 24.488 16.982 11.009 6.690 3.841 2.107 1.117
1.4 42.589 33.388 24.845 17.425 11.493 7.150 4.226 2.397 1.318
1.5 42.785 33.653 25.198 17.859 11.965 7.601 4.610 2.693 1.529
1.6 42.981 33.917 25.547 18.283 12.425 8.044 4.992 2.993 1.748
1.7 43.177 34.181 25.893 18.699 12.875 8.479 5.372 3.298 1.976
1.8 43.374 34.445 26.234 19.107 13.315 8.906 5.749 3.605 2.211
1.9 43.572 34.708 26.571 19.508 13.746 9.326 6.124 3.915 2.452
2.0 43.769 34.969 26.904 19.901 14.168 9.740 6.496 4.227 2.698

(2) 60 70 80 90 100 110 120 130 140

0.1 0.000% 0.000% 0.000% -0.004% -0.043% -0.136% -0.241% -0.323% -0.376%
0.2 0.000% 0.000% -0.001% -0.008% -0.043% -0.116% -0.209% -0.296% -0.362%
0.3 0.000% 0.000% -0.002% -0.012% -0.046% -0.113% -0.197% -0.275% -0.338%
0.4 0.000% 0.000% -0.003% -0.015% -0.050% -0.115% -0.194% -0.268% -0.325%
0.5 0.000% 0.000% -0.004% -0.017% -0.054% -0.119% -0.196% -0.267% -0.322%
0.6 0.000% -0.001% -0.005% -0.020% -0.058% -0.122% -0.199% -0.269% -0.324%
0.7 0.000% -0.001% -0.006% -0.022% -0.061% -0.124% -0.200% -0.271% -0.327%
0.8 0.000% -0.001% -0.007% -0.025% -0.064% -0.125% -0.200% -0.272% -0.330%
0.9 0.000% -0.002% -0.008% -0.027% -0.066% -0.126% -0.198% -0.270% -0.331%
1.0 0.000% -0.002% -0.010% -0.029% -0.067% -0.125% -0.195% -0.266% -0.329%
1.1 0.000% -0.003% -0.011% -0.031% -0.068% -0.123% -0.191% -0.260% -0.325%
1.2 -0.001% -0.003% -0.012% -0.032% -0.069% -0.121% -0.185% -0.253% -0.318%
1.3 -0.001% -0.004% -0.013% -0.033% -0.069% -0.119% -0.180% -0.245% -0.310%
1.4 -0.001% -0.004% -0.014% -0.034% -0.069% -0.116% -0.174% -0.237% -0.300%
1.5 -0.001% -0.005% -0.015% -0.035% -0.068% -0.113% -0.168% -0.228% -0.289%
1.6 -0.001% -0.005% -0.016% -0.036% -0.067% -0.110% -0.162% -0.219% -0.278%
1.7 -0.002% -0.006% -0.016% -0.036% -0.067% -0.107% -0.156% -0.211% -0.267%
1.8 -0.002% -0.006% -0.017% -0.036% -0.066% -0.104% -0.151% -0.202% -0.256%
1.9 -0.002% -0.007% -0.018% -0.037% -0.065% -0.101% -0.145% -0.194% -0.246%
2.0 -0.002% -0.007% -0.018% -0.037% -0.063% -0.098% -0.140% -0.186% -0.236%
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Table 10: SVJ Model: Relative errors of the App-LR method

60 70 80 90 100 110 120 130 140

0.1 N/A 0.000% 0.000% -0.004% -0.043% -0.136% -0.259% -1.084% -0.456%
0.2 0.252% 0.004% 0.000% -0.008% -0.043% -0.116% -0.212% -0.559% -1.282%
0.3 0.012% 0.007% -0.001% -0.012% -0.046% -0.113% -0.197% -0.346% -0.940%
0.4 0.040% 0.007% -0.002% -0.015% -0.050% -0.115% -0.194% -0.288% -0.626%
0.5 0.103% 0.005% -0.003% -0.017% -0.054% -0.119% -0.196% -0.273% -0.458%
0.6 0.133% 0.004% -0.005% -0.020% -0.058% -0.122% -0.199% -0.271% -0.381%
0.7 0.106% 0.002% -0.006% -0.022% -0.061% -0.124% -0.200% -0.272% -0.351%
0.8 0.067% 0.001% -0.007% -0.025% -0.064% -0.125% -0.200% -0.272% -0.339%
0.9 0.039% 0.000% -0.008% -0.027% -0.066% -0.126% -0.198% -0.270% -0.335%
1.0 0.022% -0.001% -0.009% -0.029% -0.067% -0.125% -0.195% -0.266% -0.331%
1.1 0.013% -0.002% -0.011% -0.031% -0.068% -0.123% -0.191% -0.260% -0.325%
1.2 0.007% -0.003% -0.012% -0.032% -0.069% -0.121% -0.185% -0.253% -0.318%
1.3 0.004% -0.004% -0.013% -0.033% -0.069% -0.119% -0.180% -0.245% -0.310%
1.4 0.002% -0.004% -0.014% -0.034% -0.069% -0.116% -0.174% -0.237% -0.300%
1.5 0.001% -0.005% -0.015% -0.035% -0.068% -0.113% -0.168% -0.228% -0.289%
1.6 0.000% -0.005% -0.016% -0.036% -0.067% -0.110% -0.162% -0.219% -0.278%
1.7 -0.001% -0.006% -0.016% -0.036% -0.067% -0.107% -0.156% -0.211% -0.267%
1.8 -0.001% -0.006% -0.017% -0.036% -0.066% -0.104% -0.151% -0.202% -0.256%
1.9 -0.002% -0.007% -0.018% -0.037% -0.065% -0.111% -0.145% -0.194% -0.246%
2.0 -0.002% -0.007% -0.018% -0.037% -0.063% -0.098% -0.140% -0.186% -0.236%

Table 11: SVJ Model: the LR method and gamma-based approximation with ν = 4 for strikes 90,
100

LR(90) Gamma(90) LR(100) Gamma(100)

0.1 -0.004% 0.006% -0.043% -0.074%
0.2 -0.008% 0.006% -0.043% -0.065%
0.3 -0.012% 0.004% -0.046% -0.060%
0.4 -0.015% 0.003% -0.050% -0.059%
0.5 -0.017% 0.001% -0.054% -0.059%
0.6 -0.020% -0.002% -0.058% -0.060%
0.7 -0.022% -0.004% -0.061% -0.061%
0.8 -0.025% -0.006% -0.064% -0.062%
0.9 -0.027% -0.008% -0.066% -0.064%
1.0 -0.029% -0.010% -0.067% -0.065%
1.1 -0.031% -0.012% -0.068% -0.065%
1.2 -0.032% -0.014% -0.069% -0.066%
1.3 -0.033% -0.016% -0.069% -0.066%
1.4 -0.034% -0.017% -0.069% -0.066%
1.5 -0.035% -0.018% -0.068% -0.066%
1.6 -0.036% -0.019% -0.067% -0.065%
1.7 -0.036% -0.020% -0.067% -0.065%
1.8 -0.036% -0.021% -0.066% -0.064%
1.9 -0.037% -0.021% -0.065% -0.063%
2.0 -0.037% -0.022% -0.063% -0.063%
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Table 12: Scott Model: (1) Analytic values (2) Relative errors of the LR method. Parameters:
S0 = 100, y1

0 = θ1 = 3%, y2
0 = θ2 = 2%, κ1 = 5, κ2 = 0.4, σ = 1, σ1 = 0.23, σ2 = 0.1, ρ = −26%,

µJ = −4%, σJ = 1%, λ = 100%, maturities (column), strikes (row)

(1) 60 70 80 90 100 110 120 130 140

0.1 40.299 30.349 20.399 10.519 2.484 0.111 0.001 2.0E-06 2.8E-07
0.2 40.597 30.697 20.806 11.186 3.654 0.536 0.034 0.001 3.1E-05
0.3 40.893 31.043 21.230 11.872 4.611 1.072 0.148 0.014 0.001
0.4 41.188 31.390 21.669 12.542 5.459 1.640 0.339 0.052 0.007
0.5 41.481 31.738 22.117 13.190 6.237 2.216 0.592 0.125 0.022
0.6 41.773 32.088 22.570 13.818 6.965 2.790 0.890 0.234 0.053
0.7 42.064 32.439 23.023 14.426 7.655 3.359 1.221 0.378 0.103
0.8 42.354 32.790 23.476 15.018 8.316 3.919 1.578 0.553 0.174
0.9 42.644 33.143 23.928 15.594 8.951 4.472 1.952 0.757 0.266
1.0 42.932 33.495 24.377 16.156 9.565 5.017 2.341 0.984 0.380
1.1 43.219 33.847 24.822 16.705 10.161 5.554 2.740 1.233 0.514
1.2 43.506 34.198 25.264 17.243 10.741 6.084 3.146 1.500 0.668
1.3 43.792 34.549 25.702 17.769 11.307 6.606 3.558 1.782 0.839
1.4 44.077 34.899 26.137 18.286 11.861 7.121 3.974 2.078 1.027
1.5 44.360 35.248 26.567 18.794 12.403 7.630 4.393 2.385 1.231
1.6 44.643 35.595 26.993 19.293 12.934 8.133 4.815 2.701 1.447
1.7 44.925 35.941 27.415 19.785 13.457 8.629 5.238 3.027 1.677
1.8 45.206 36.285 27.833 20.268 13.970 9.120 5.661 3.359 1.918
1.9 45.486 36.627 28.247 20.745 14.475 9.606 6.085 3.698 2.169
2.0 45.765 36.968 28.657 21.215 14.972 10.087 6.509 4.042 2.429

(2) 60 70 80 90 100 110 120 130 140

0.1 0.000% 0.000% 0.000% 0.000% 0.002% -0.025% -4.501% -12.167% -99.217%
0.2 0.000% 0.000% 0.000% 0.000% -0.002% -0.017% -0.045% -0.063% -0.459%
0.3 0.000% 0.000% 0.000% -0.001% -0.008% -0.029% -0.058% -0.076% -0.109%
0.4 0.000% 0.000% 0.000% -0.002% -0.011% -0.034% -0.066% -0.091% -0.108%
0.5 0.000% 0.000% 0.000% -0.003% -0.013% -0.034% -0.064% -0.095% -0.118%
0.6 0.000% 0.000% -0.001% -0.004% -0.013% -0.032% -0.059% -0.089% -0.117%
0.7 0.000% 0.000% -0.001% -0.004% -0.013% -0.029% -0.052% -0.079% -0.108%
0.8 0.000% 0.000% -0.001% -0.004% -0.012% -0.025% -0.044% -0.068% -0.094%
0.9 0.000% 0.000% -0.001% -0.004% -0.011% -0.022% -0.038% -0.058% -0.080%
1.0 0.000% 0.000% -0.001% -0.004% -0.010% -0.019% -0.032% -0.049% -0.068%
1.1 0.000% 0.000% -0.001% -0.004% -0.009% -0.017% -0.028% -0.041% -0.057%
1.2 0.000% 0.000% -0.001% -0.004% -0.008% -0.015% -0.024% -0.035% -0.048%
1.3 0.000% 0.000% -0.001% -0.003% -0.007% -0.013% -0.021% -0.030% -0.041%
1.4 0.000% 0.000% -0.001% -0.003% -0.007% -0.012% -0.018% -0.026% -0.035%
1.5 0.000% 0.000% -0.001% -0.003% -0.006% -0.010% -0.016% -0.022% -0.030%
1.6 0.000% 0.000% -0.001% -0.003% -0.005% -0.009% -0.014% -0.020% -0.026%
1.7 0.000% 0.000% -0.001% -0.003% -0.005% -0.008% -0.012% -0.017% -0.022%
1.8 0.000% 0.000% -0.001% -0.002% -0.004% -0.007% -0.011% -0.015% -0.020%
1.9 0.000% 0.000% -0.001% -0.002% -0.004% -0.006% -0.010% -0.013% -0.017%
2.0 0.000% 0.000% -0.001% -0.002% -0.004% -0.006% -0.009% -0.012% -0.015%
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Table 13: Scott Model: Relative errors of the App-LR method using (1) separate approximations
for ẑ and z̃, and (2) ẑ and the identity z̃ = ẑ − 1.

(1) 60 70 80 90 100 110 120 130 140

0.1 -246.923% N/A -0.001% 0.000% 0.002% -0.025% -9.641% 246.595% -2.956%
0.2 N/A 0.011% -0.001% 0.000% -0.002% -0.017% -0.204% -9.696% 363.989%
0.3 N/A 0.033% 0.000% -0.001% -0.008% -0.029% -0.063% -1.502% -4.076%
0.4 0.015% 0.010% 0.000% -0.002% -0.011% -0.034% -0.066% -0.219% -3.503%
0.5 0.020% 0.003% 0.000% -0.003% -0.013% -0.034% -0.064% -0.105% -0.698%
0.6 0.018% 0.001% 0.000% -0.004% -0.013% -0.032% -0.059% -0.090% -0.198%
0.7 0.007% 0.001% -0.001% -0.004% -0.013% -0.029% -0.052% -0.079% -0.119%
0.8 0.002% 0.000% -0.001% -0.004% -0.012% -0.025% -0.044% -0.068% -0.096%
0.9 0.001% 0.000% -0.001% -0.004% -0.011% -0.022% -0.038% -0.058% -0.081%
1.0 0.000% 0.000% -0.001% -0.004% -0.010% -0.019% -0.032% -0.049% -0.068%
1.1 0.000% 0.000% -0.001% -0.004% -0.009% -0.017% -0.028% -0.041% -0.057%
1.2 0.000% 0.000% -0.001% -0.004% -0.008% -0.015% -0.024% -0.035% -0.048%
1.3 0.000% 0.000% -0.001% -0.003% -0.007% -0.013% -0.021% -0.030% -0.041%
1.4 0.000% 0.000% -0.001% -0.003% -0.007% -0.012% -0.018% -0.026% -0.035%
1.5 0.000% 0.000% -0.001% -0.003% -0.006% -0.010% -0.016% -0.022% -0.030%
1.6 0.000% 0.000% -0.001% -0.003% -0.005% -0.009% -0.014% -0.020% -0.026%
1.7 0.000% 0.000% -0.001% -0.003% -0.005% -0.008% -0.012% -0.017% -0.022%
1.8 0.000% 0.000% -0.001% -0.002% -0.004% -0.007% -0.011% -0.015% -0.020%
1.9 0.000% 0.000% -0.001% -0.002% -0.004% -0.006% -0.010% -0.013% -0.017%
2.0 0.000% 0.000% -0.001% -0.002% -0.004% -0.006% -0.009% -0.012% -0.015%

(2) 60 70 80 90 100 110 120 130 140

0.1 0.121% N/A 0.000% 0.000% 0.002% -0.025% -4.499% -12.211% -99.224%
0.2 N/A 0.000% 0.000% 0.000% -0.002% -0.017% -0.045% -0.056% -0.589%
0.3 N/A 0.000% 0.000% -0.001% -0.008% -0.029% -0.058% -0.075% -0.105%
0.4 0.001% 0.000% 0.000% -0.002% -0.011% -0.034% -0.066% -0.090% -0.103%
0.5 0.000% 0.000% 0.000% -0.003% -0.013% -0.034% -0.064% -0.095% -0.117%
0.6 0.000% 0.000% -0.001% -0.004% -0.013% -0.032% -0.059% -0.089% -0.117%
0.7 0.000% 0.000% -0.001% -0.004% -0.013% -0.029% -0.052% -0.079% -0.108%
0.8 0.000% 0.000% -0.001% -0.004% -0.012% -0.025% -0.044% -0.068% -0.094%
0.9 0.000% 0.000% -0.001% -0.004% -0.011% -0.022% -0.038% -0.058% -0.080%
1.0 0.000% 0.000% -0.001% -0.004% -0.010% -0.019% -0.032% -0.049% -0.068%
1.1 0.000% 0.000% -0.001% -0.004% -0.009% -0.017% -0.028% -0.041% -0.057%
1.2 0.000% 0.000% -0.001% -0.004% -0.008% -0.015% -0.024% -0.035% -0.048%
1.3 0.000% 0.000% -0.001% -0.003% -0.007% -0.013% -0.021% -0.030% -0.041%
1.4 0.000% 0.000% -0.001% -0.003% -0.007% -0.012% -0.018% -0.026% -0.035%
1.5 0.000% 0.000% -0.001% -0.003% -0.006% -0.010% -0.016% -0.022% -0.030%
1.6 0.000% 0.000% -0.001% -0.003% -0.005% -0.009% -0.014% -0.020% -0.026%
1.7 0.000% 0.000% -0.001% -0.003% -0.005% -0.008% -0.012% -0.017% -0.022%
1.8 0.000% 0.000% -0.001% -0.002% -0.004% -0.007% -0.011% -0.015% -0.020%
1.9 0.000% 0.000% -0.001% -0.002% -0.004% -0.006% -0.010% -0.013% -0.017%
2.0 0.000% 0.000% -0.001% -0.002% -0.004% -0.006% -0.009% -0.012% -0.015%
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Figure 1: Graphs of K(z) and K′(z) with T = 1 in the Heston model
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Figure 2: Graphs of yz −K(z), y −K′(z) where y = ln c, T = 0.1, c = 60 in the SVJ model
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Figure 3: Effect of the jump arrival rate in the SVJ Model
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Figure 4: Effect of the mean of the jump size in the SVJ Model
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Figure 5: Effect of the volatility of the jump size in the SVJ Model
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