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This paper develops a variance reduction technique for Monte Carlo simulations of path-dependent
options driven by high-dimensional Gaussian vectors. The method comhipestance sampling
based on a change of drift wisttratified samplinglong a small number of key dimensions. The change
of driftis selected through a large deviations analysis and is shown to be optimal in an asymptotic sense.
The drift selected has an interpretation as the path of the underlying state variables which maximizes
the product of probability and payoff—the most important path. The directions used for stratified
sampling are optimal for a quadratic approximation to the integrand or payoff function. Indeed, under
differentiability assumptions our importance sampling method eliminates variability due to the linear
part of the payoff function, and stratification eliminates much of the variability due to the quadratic
part of the payoff. The two parts of the method are linked because the asymptotically optimal drift
vector frequently provides a particularly effective direction for stratification. We illustrate the use of
the method with path-dependent options, a stochastic volatility model, and interest rate derivatives.
The method reveals novel features of the structure of their payoffs.
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1. INTRODUCTION

This paper develops a variance reduction technique for Monte Carlo simulations driven
by high-dimensional Gaussian vectors, with particular emphasis on the pricing of path-
dependent options. The method combimaegortance samplingased on a change of drift

with stratified samplingalong a small number of key dimensions. The change of drift is
selected through a large deviations analysis and is shown to be optimal in an asymptotic
sense. The directions used for stratified sampling are optimal for a quadratic approximation
to the integrand or payoff function. Indeed, under differentiability assumptions our impor-
tance sampling method eliminates variability due to the linear part of the payoff function,
and stratification eliminates much of the variability due to the quadratic part of the payoff.
The two parts of the method are linked because the asymptotically optimal drift vector
frequently provides a particularly effective direction for stratification.
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Monte Carlo simulation is frequently the only method available for the pricing of complex
path-dependent options, particularly if the number of relevant underlying assets is large or
if additional sources of randomness like stochastic volatility, stochastic interest rates, or
a stochastic convenience vyield are included in the model. The computational demands
of simulation have motivated substantial interest in the financial industry in methods for
increased efficiency, as evidenced in part by the growth in commercial software offering
enhancements to Monte Carlo and a large number of publications on the subject in the
practitioner literature. (See Boyle, Broadie, and Glasserman 1997 for an overview of
simulation methods for option pricing.) If a particular derivative security is to be valued
justonce or only rarely, the investment required to value it efficiently may not be justified. If,
however, a pricing routine is to be run often—because a firm regularly quotes prices on the
instrument, because it rebalances its hedges frequently, or because prices in many different
scenarios are required for daily value-at-risk calculations—it may well be worthwhile to
carry out some analysis that leads to more efficient pricing. The method proposed here
requires this type of initial investment, but it has the potential to provide enormous variance
reduction as a result.

We restrict attention to simulations driven by a sequence of independent standard normal
random variables. Independent normals can of course be converted into correlated normals
through a linear transformation; and if we allow sufficiently complicated transformations,

a sample from a normal distribution can at least theoretically be converted into a sample
from any other distribution. However, we have in mind simulations of discretized diffusion
processes using, for example,Bmler schemer higher-order discretization (see Kloeden

and Platen 1992), or an exact solution to a stochastic differential equation if available.
We do not address the issue of discretization bias. Rather, we assume that an acceptable
discretization has already been determined and thus we focus attention on obtaining precise
estimates at that level of discretization. This is a reasonable perspective in practice because
unless an extremely coarse discretization is chosen the statistical error associated with
simulation is likely to overwhelm the bias associated with discretization.

An example helps to illustrate the setting. Consider the pricing of an arithmetic Asian
option on a single underlying asset under standard Black—Scholes assumptions. The price of
the underlying asset under the equivalent martingale measure is described by the stochastic
differential equation

(1.1 dg:rdt—i-adw,

with r the risk-free, continuously compounded interest rateéhe asset’s volatility\W;

a standard Wiener process, aggfixed. The solution to this equation can be simulated
(without discretization error) on a discrete grid of points-Gp < t; < --- <t, =T by
setting

(1.2) § =S explr — 302t — i) +oVi —t_12), i=1...,n,
whereZ,, ..., Z, are independent standard normals. The discounted payoff on an arith-

metic Asian option with striké&K is given by

(1.3) G(Z1,....,Zy) =€"T(S—K)T,
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withS= 13" | S . More generallyScould be specified as the average over a subset of the
S, oraweighted average of these values. The objective is to evalji@€Z,, ..., Z,)]. A
crude Monte Carlo simulation would simply average replications @) over independent
draws of the vectoZ’ = (Z4, ..., Z,); the first step in our approach is to add a drift vector
to Z.

The integrands implicitly defined by equation (1.3) is typical of option payoffs in that
it is nonnegative. We may therefore write

G(z) =e"@1p =" ?1p(2), zeR",

whereD = {z € R": G(2) > 0}, 1p is the indicator of the sdD, andF (2) 2 logG(2) on

D. (Alternatively, we could sef (z) = —oo off D and omit the indicator.) To identify an
appropriate drift vector, we examine what happens if we replace the driving Wiener process
W in equation (1.1) with a smaller-noise procggsW and simultaneously scale the payoff

by raising it to the power of k. Through a generalization of the classical Laplace method
for integrals known as Varadhan'’s Integral Lemma (Dembo and Zeitouni 1993) or a Laplace
Principle (Dupuis and Ellis 1997), we will see in Section 2 that we frequently have

E[e':(«/gz)/E 1D] ~ el//(z*)/e’ € i/ 0’

in a sense to be made precise, wheranaximizes the functiony(z) = F(z) — %z/z

over D. Maximizing v is equivalent to maximizing the product of the payoff and the
probability density. We use, as the new drift vector and analyze the variance of the
resulting importance sampling estimator. To obtain further variance reduction, we then
stratify (in effect, numerically integrate) along one or possibly more directioR8 inThe
vectorz, frequently provides a good choice of direction.

There is a large body of work on the use of large deviations asymptotics to identify an
effective change of measure for estimatmage event probabilitiedy simulation; see, for
example, Glasserman and Wang (1997), Heidelberger (1995), and Shahabuddin (1995) for
numerous references and discussions of the literature, and see Chen et al. (1993) for the
Gaussian case in particular. In the option pricing setting, Reider (1993) uses importance
sampling to price deep out-of-the-money calls, and Boyle et al. (1997) give an application
to pricing knock-in options far from the barrier. In the rare event setting, the integrand is
usually the indicator of a rare set and importance sampling is used to make the set less rare.
In our setting, the set on which a positive payoff occurs need not be rare at all, and yet large
deviations asymptotics are useful in identifying a change of measure. Instead of simply
increasing the probability of an event, the change of measure provided by this analysis
balances the magnitude and probability of payoffs and puts the mean on the trajectory that
effectively maximizes the product of the two.

Importance sampling for diffusion processes is treated in Kloeden and Platen (1992) and
Newton (1994) in a general setting; further developments in the application of the method
to option pricing appear in Andersen (1995), Foarriasry, and Touzi (1997), Newton
(1997), and Schoenmakers and Heemink (1997). For problems that can be formulated as
pathindependenpptions in continuous time (possibly through augmentation of the number
of state variables), a zero-variance estimator can be obtained thretmthastichange of
drift. Determining the optimal drift, however, requires knowing the option price in advance.
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Most of these references are therefore based on using approximations to the option price
to find approximations to the optimal drift. Andersen (1995) applies the optimal drift
from a simple model to a less tractable one; Newton (1994, 1997) and Schoenmakers and
Heemink (1997) use approximations calculated numerically, and Foatml. (1997) use
asymptotics around the Black—Scholes model. Some of these approaches rely on PDE
methods, which may make them difficult to use with high-dimensional problems. Because
we restrict ourselves to deterministic changes of drift, the viability of our method should be
less sensitive to problem dimension. Additionally, we explicitly analyze the variance of our
estimators and use this analysis (rather than approximatiensg to guide the method.

The rest of this paper is organized as follows. Section 2 reviews background on im-
portance sampling and then identifies and analyzes an asymptotically optimal change of
measure. Section 3 addresses the computation of the drift vector for this change of measure.
Section 4 contains a general discussion of stratification, the optimal direction for quadratic
F, and the connection with the optimal drift. Section 5 gives numerical results and prac-
tical considerations for implementation. Section 6 concludes the paper, and an Appendix
contains some proofs.

2. IMPORTANCE SAMPLING
2.1. Preliminaries

Consider the general problem ofestimatfm@ E[G(Z)1p]forsomeG : R" — [0, 0c0),
with Z ann-dimensional random vector having multivariate dengityShortly, we limit
ourselves to the multivariate normal case, but for the moment we keep the setting general.
Let h be another density with the property tliglz) > 0 = h(z) > Oforallze D. Then

E[G(2)10] = El6(@)1o] = [ a4z

9(2) a(2)
(2.1) / G(z)h( )h(z)dz_ En |:G(Z) (h(z)> 19]

where the subscript on the expectation indicates the density with respect to which the integral
is computed. The factog(Z)/h(Z) is called thelikelihood ratio or Radon—Nikodym
derivative. It follows that, withZ drawn fromh, the estimate5(Z)[g(Z)/h(Z)]1p is
unbiased for; this is animportance samplingstimate. Its variance is

2
/( ()%—c) h(z)dz

If G > 0, a zero-variance estimate is thus obtained by choosing
(2.2) h(z) «x G(2)9(2)1p;

but the proportionality constant required to make the right side a densitg,ipfecluding

this choice of density unless the desired quantityknown from the outset. Nevertheless,
this observation provides a useful insight: An effective importance sampling density should
weight points according to the product of their probability and their payoff.
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Now suppose the original probability densdyis the multivariate normal density over
R" with mean vector 0 and covariance matkixthen x nidentity. For anyu € R", leth,
be the normal density with mean veciorand the same covariance matrix. Wrig for
expectation with respect tg,. Simple algebra shows that the importance sampling identity
(2.1) becomes

E[G(Z)1p] = EM [G(Z)efu’zﬂl/zm’ulD] .

Thus, drawingZ from h, and multiplyingG(Z)1p by the likelihood ratio exp-u'Z +
%M/u) yields an unbiased estimator. Of course, the distributior ahderh,, is the same
as that ofZ + u under the original density = ho; making this substitution yields

2.3) E, [G(Z)e’“'z“l/z)“'“ 1D(z)] —E [G(z e H WA (7 4 u)]
and the unbiased estimator

G(Z + e & W21 (Z + )
under the original measure. The second moment of this estimator is
(2.4) E, [G(Z)ze*2“/2+“/“1D] —E [G(Z)2efﬂ’z+<l/2>ﬂ’/‘10] .
Among all 4, the optimal one solves the problem
(2.5) min £ [G(Z)Ze"’z“l/z)””1D].

Even if the optimal can be found, it will not in general provide a zero-variance estimator.
Its effectiveness will depend on the extent to whichapproximates the optimal density
identified in equation (2.2).

In practice, finding the optimal exactly is infeasible and some approximationis required.
As in Section 1, let us writ& (2) for logG(2), z € D, so that equation (2.5) becomes

(2.6) min E [e2F<Z>—#’Z+<1/2>ﬂ’M1D] .
n

The classical Laplace method for integrals (e.g., Bleistein and Handelsman 1975, Chap. 8)
suggests that, for any fixed,

E [eZF(Z)—u’Z+(l/2)M’/t1D] = (271)”/2/ e?F@—wz+ (12 ng=(1/222 44
D

~ constantx exp(max{ZF(z) —Wz+iun - %z’z}) .
zeD
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Substituting this approximation into equation (2.6) suggests that we may approximate the
optimal i by solving

H ! 1,7, 1y
(2.7) nynrzrl%x{ZF(z) Wz+su'n— 37z},

Alternatively, we may interpret (2.2) as stating that an effective importance sampling density
assigns high probability to regions & on whicheFf@g(z) is large. In the multivariate
normal case, this suggests choosing the drift vector to be the pdiat solves

(2.8) rzne%x{F(z) - 177}

The next subsection develops a setting in which these approximations become equivalent
and, in fact, optimal in an asymptotic sense.

2.2. Large Deviations and Laplace Principles

We begin with brief generalities on large deviations, then specialize to our context. For
additional background see Dembo and Zeitouni (1993), Deuschel and Stroock (1989), and
Dupuis and Ellis (1997).

A sequence of probability measuneson a topological spaceX, 1) (15 the completion
of the Borel sets 0iX) satisfies darge deviations principle with good rate functionifl
the functionl : X — [0, oc] is lower semicontinuous with compact level sets and if the
following conditions hold:

(i) forall open set8 C X

liminf e logv.(B) < — inf | (x),
e—0 xeB

(iiy forall closed set C X

lim supe logv.(C) > — inf | (X).
xeC

e—0

Part of the content of this definition is that if both limits hold for someB3gethen we may
write

V(D) = g~ infxen 1 0O+0(D)] /€

We will use the following version of a result called Varadhan’s Integral Lemma in Dembo
and Zeitouni (1993). This type of result is called.@place principlein Dupuis and Ellis
(1997). To accommodate our intended application, we explicitly consider functions that
may take the value-cc. For a setD e B, D° denotes the interior dd and D the closure
of D.
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LEMMA 2.1. Suppose that, satisfies a large deviations principle with good rate func-
tion |. Suppose that f X — [—00, 00) is continuous and that for some>g 1

(2.9) lim supe log | e¥f®/¢dy, < co.

e—0

Then

(i) forall open sets B

liminfelog [ e ®/¢dv, < sup f(x) — | (x)},
-0 B xeB

(i) for all closed sets C

limsupe log | ef™/<dv, > sup( f (x) — | (x)}.
e—0 C xeC

Thus, ifv.(D°) = v.(D) for all € and if | is continuous oD, then

xeD

(2.10) Iimoe Iog/ ef®/edy, = sup f (x) — | (%)}.
€—> D
REMARK 2.1. Writing equation (2.10) as

/ e (/eqty, = dstholf00=100)+o(D)/e
D

makes its interpretation as an approximation more transparent.

Proof. The proof of (i) is the same as that given for Lemma 4.3.4 of Dembo and Zeitouni
(1993); the possibility thaf takes the value-oco and the restriction to the integral over the
open seB do not affect the validity of the argument given there. For (i), first observe that
if f = —oo the result holds trivially, so suppose this is not the case. NFor R define
Cuw =Cn{x: f(x) > —M}; Cy is closed becausé is continuous. For any > O let
Xo € C satisfy

f(x0) — I (Xo) > sug{ f(x) — 1 (X)} — &

xeC

and observe that (xg) > —oco. ChooseM > — f (Xg). Then

limsupelog | e'™/¢dy. > limsupelog [ ef®/¢dy,
€e—0 C e—0 Cwm

sup{ f (x) — 1 (x)}

xeCwm

v

v
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> f(x0) — 1 (xo0)
> supf(x) — 1 (xX)} — 6.

xeC

The second inequality follows from equation (2.9) and Theorem 4.3.1 of Dembo and
Zeitouni (1993). (In that result, the integral is taken over the entire space. The restric-
tion to a closed subset appears in Dembo and Zeitouni as Exercise 4.3.11 and in Deuschel
and Stroock (1989) as 2.1.24.) Sinte 0 is arbitrary, the result follows. O

We apply Lemma 2.1 to the measuneg) = P(,/eZ € -) whereZ is a vector ofn
independent standard normal random variables. These measures satisfy a large deviations
principle with good rate functioh(z) = %z/z. This function is evidently continuous, and
under eachy, open sets have the same measure as their closures and closed sets have the
same measure as their interiors. The last case in Lemma 2.1 therefore applies. We record
this important special case in the following lemma.

LEMMA 2.2. Suppose that f. R" — [—o0, 00) is continuous and satisfies(4) <
€1+ 7'z for some £ < 1/2 and all ze D, where D is either open or closed. Then

lim ¢ log E[efVe?/€1p] = sud f (2) — 1Z2).

zeD

Proof. We may assume, > 0 and choose any & q < 1/(2¢;). Then
E[eqf(ﬁz)/elD] < gla/e E[eqCZZ’ZlD]_
Sinceqe; < 1/2, we haveE[e7%2%'71p] < E[€71%%'?] < oo and thus

lim ¢ log E[e?fVeD/e1p] < qo < 0.

This verifies equation (2.9). The result now follows from Lemma 2.1. O

2.3. Asymptotic Optimality

We return now to the problem posed in equation (2.6) of finding the optimal drift vector
w for estimatingE[exp(F (2))1p]. To make precise the approximations following (2.6),
we generalize the setting and consider the problem of estimating

a(e) = E[eFWeD/eqp], e > 0.

Notice that the quantity of interest= E[exp(F(Z))1p]is a(¢) ate = 1. The Laplace
Principle approximations give us information abaiit) ase — 0. In order to use this
information, we embed the problem of estimatm@ the more general problem of esti-
matinga (¢) and analyze the behavior of estimatorsxdé) whene is small. We will see
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shortly that lettinge — 0 can be interpreted as making a linear approximatida to the
original problem of estimating.

Although ultimately we work only with unbiased estimators, to show that our estimators
remain attractive within a broader class we introduce the following definition.

DerINITION 2.1. A family of estimatorga (¢)} is asymptotically relatively unbiasatl

(2.11) Elé@l—a©) 4 4o Lo
o(€)

In comparing such estimators (and unbiased estimators in particular) we compare their
second moments as in the following definition.

DEFINITION 2.2. Afamily of asymptotically relatively unbiased estimat@ig(¢) } isasymp-
totically optimalif

(2.12) lim supe log E[62(¢€)] = { [?f) } lim supe log E[62(e)],

e—0 e—0

the infimum taken over allx (¢)} satisfying equation (2.11).

In other wordsg, (¢) is asymptotically optimal ifits second moment achieves the smallest
exponential rate ir. The degenerate estimat@d(e) = a(¢) is trivially unbiased and in
fact asymptotically optimal. Hence, the infimum in equation (2.12) is

lim supe loga?(¢) = 2 lim supe loga(¢).

e—0 e—>0

An asymptotically optimal estimator is thus one whose second moment achieves twice the
exponential rate ok (¢) itself. This condition is sometimes termadymptotic efficiency
For any candidate drift vectar,, by theu.-IS estimator we mean

exp{e "F(vVeZ) — u.Z + JuLpe} 1o,

with Z ~ N(ue, Ih). (The symbolN(m, ¥) denotes the normal distribution with mean
vectorm and covariance matrix; as before|, is then x n identity matrix.) Our main
result on importance sampling gives conditions under which solving for the optirral
equations (2.7) or (2.8) and settipg = 1 //€ results in an asymptotically optimal-1S
estimator.

THEOREM2.1. Suppose that E R" — [—o00, 00) is continuous and satisfies(E) <
C1 + cZ'z for some £ < 1/4 and all z in a closed set D. There is themas D at which

(2.13) F(u) — 31'n = max(F(2) - 327}
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ande loga(e) — F(u)— %M’M- Anecessary and sufficient condition for thel S estimator
with 1. = 1/+/€ to be asymptotically optimal is that

(2.14) F(w —31'n = F@ — 372+ 3z — '@z .

for all z € D. Moreover, in this case the optimalin equation (2.13) is unique.

Proof. Under the hypotheses of the theordft(z) — %z’z is continuous and bounded
S0 it attains a maximum on the closed Betthus, . in (2.13) exists. The convergence of
eloga(e) to F(u) — %M/M follows from Lemma 2.2.

Next, we identify necessary and sufficient conditions for asymptotic optimality of any
asymptotically unbiased estimati(e). Letb(e) = E[a@(e)] — a(€). Using first Jensen’s
inequality and then the definition bf¢) yields

log E[a*(e)]

v

2logEJ[a(e)]

2log(x(e) + b(e))

= 2log(a(e)) + 21log(l + b(e) /a(e))
= 2log(a(e)) + O(b(e)/a(e)),

with b(e)/a(e) — 0 by equation (2.11). Thus, from Lemma 2.2 we find that

Iimigfelog E[&%(e)] > Iimigf 2¢ log(a(€))
= 2Iimi(r)1fe log E[exp{F (v/€Z)/€}1p]
= 2sufF(2) — 327}

zeD

= 2{F(n) — 311}

Moreover, the degenerate estimaige) = «a(¢) achieves this rate, so an estimaige) is
asymptotically optimal if and only if

lim supe log E[¢°(€)] = 2[F (1) — 31/u].
e—>0

The second moment of the//e-1S estimator is
m(e) = E [exple ™ (2F (V€Z) — p'VeZ + pu'u)} 1o].
Lemma 2.2 applied to the functiorF2z) — u'z + %M'M yields

(2.15) lim supe logm(e) = sup{2F (2) — w'z+ 2p'n — 122}

e—0 zeD
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Thus, thex/./€-IS estimator is asymptotically optimal if and only if

(2.16) sup{2F(2) — w'z+ ' — 37z} < 2[F(w) — /1l

zeD

that is, if and only if for allz € D
2[F(2) — 322 + 37z~ w'z+ ju'n < 2[F (W) — 1/ul.

which is equivalent to equation (2.14). The uniguenegs fifllows from the fact that the
last (quadratic) term on the right-hand side of (2.14) is strictly positive atAlj. O

REMARKS 2.2. (i) The condition in equation (2.14) is analogous to fididden set
condition of Chen et al. (1993) in the rare event setting—that is, vihenO.

(ii) The first-order conditionw’ = VF(u) provides a further indication of the attrac-
tiveness of this importance sampling scheme without explicit appeal to asymptotics in
Under the zero-drift measure, the importance sampling estimator becomes

eF (WD) —p' 2=/’ n 1p.

A first-order Taylor approximation to the exponent suggests that this is

eF W+VF(WZ+0(Z'2)— ' Z=(1/2p 1p = eF W—-1/2u'ngd(Z'2) 1p.

So, our choice of drift vector may be viewed as eliminating the variance contribution due
to the linear part of~. Indeed, wherF is exactly linear andd = R", our importance
sampling estimator has zero variance. In Section 4, we return to this perspective and show
how to reduce the variance contribution arising from the quadratic p&it of

(iii) At the end of Section 2.1 we suggested two heuristics for choosing an effective change
of drift: one based on minimizing the worst-case contribution to the variance, leading to
equation (2.7), and one based on maximizing the product of payoff and probability, leading
to equation (2.8). Assuming in each case that the maximum is attained in the intelbior of
and thatF is differentiable there, the first-order conditions become

2VF(z) — /' —7Z =0, Z—u =0
for equation (2.7) (equivalently, for the maximum oyeof equation (2.15)) and
(2.17) VFE(u) =

for equation (2.8) (equivalently, (2.13)). Clearly, any solution to one provides a solution to
the other, so the heuristics are consistent. Viewed another way, the optimization problem
(2.13) finds the dominant term in the expansiorif@r), the quantity to be estimated. Thus,
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if the optimum is unique, solving the first-order conditions (2.17) yields an approximation
to a(¢). Furthermore, because the first-order conditions to (asymptotically) minimize the
second moment are equivalent to (2.17), the single set of equatieg) = u’ finds both

an approximation ta(e¢) and an asymptotically optimal importance sampling procedure.

3. COMPUTING THE OPTIMAL DRIFT

In this section, we consider various ways of finding the asymptotically optimal change of
drift when one exists. We begin with a simple but convenient consequence of Theorem 2.1.

CoRoOLLARY 3.1. Letpu solve equation (2.13). Therw/ /€ is asymptotically optimal if
and only ifu also solves

maxF(2) — 372+ 3z — w)' (- W),

in which case the maximal values in the two optimization problems are equal.

Proof. The result follows from the condition identified in equation (2.16) and substitu-
tion of u into the left side of (19). O

Under additional conditions da andD, this leads to a characterization in which equation
(2.14) is automatically satisfied and solving equation (2.13) suffices.

PrROPOSITION3.1. Suppose D= {z : g(z) < 0} for some convex function g, with
g(2) < Ofor atleast one z. Suppose thatdy — %z/z is concave on D. | solves equation
(2.13), thenu/ /€ is asymptotically optimal.

Proof. Under our assumption oR, the functionf (z) = %z/z — F(2) is convex. Ifu
solves equation (2.13), then solves the convex program rrggr[},{%z’z — F(2}. Bythe
Kuhn—Tucker Theorem (Rockafeller 1970, Cor. 28.3.1) there exigts>a0 satisfying
Ag(u) =0and

0€ af () +A299(w).,

wheredf andag are the subdifferentials of andg, respectively (cf. Rockafeller 1970, p.
215). The function

h(2) = 37z- 2z-w'(z—w - F@©@

is also convex. Observe that

ah(w) +29g(w) = af (u) +29g(w),

so this set contains 0. Thu&y, A) satisfies the Kuhn—Tucker conditions for the convex
program mincp h(2). It follows thatu maximizes—h over D. In light of Corollary 3.1,
wu/+/€ is asymptotically optimal. O
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The computation of the optimal drift vector for the case of an Asian option (as in equation
(1.3)) is detailed in Section 5.1. For more complicated underlying assets and option payoffs
we find candidate drift vectors through numerical optimization. Verifying global optimality
is often difficult, but ultimately what matters is the variance reduction achieved, and this
can be assessed directly. We give examples in Section 5.

An alternative approach is to view the first-order conditi®fs(u) = u as a fixed point
equation and to solve it iteratively. Our next result gives conditions supporting this method.
For any matrixA, let | A|| denote the square-root of the sum of the squared entriés of

PROPOSITION3.2. Suppose that F is twice continuously differentiable on D and that D
is convex. Let Kz) denote the Hessian of F at z.

(i) If VF maps D into D andsup,.p [[H(@)] < 1, then there is just ong € D
satisfyingu = VF(u), and the iterategin,1 = VF(un) converge to it for any
uo € D.

(iiy If D° contains a fixed point and||H (1)|| < 1, then the iterategin, 1 = VF (un)
converge tqu for all ug in a neighborhood ofs.

Proof. Both parts of the proposition follow from standard results on contraction map-
pings (see, e.g., Buck 1978, pp. 529-530). O

In several examples we find that fixed-point iteration converges to a near-optimal point
in just four or five steps. However, we also find that the requirementtikamap D into
D cannot be taken for granted, particularly wheg @.

A simple refinement of the fixed-point iteration can dramatically accelerate its conver-
gence. First note that we may rewrite the conditioh (1) = @ asvVG(u)/G(u) = w'.
Afteri iterations, approximat& (u) by G(ui) + VG (ui) (i — wi) andvG () by VG (i),
and letuj,, be the solution to

VG(ui)
G(ui) + VG (i) (i1 — i)

(3.1) Hi+1 =

The solution can be given explicitly. Let= B(uiv1) = 1/(G(ui) + VG (i) (ir1— i),
so that

(3.2) Hit+1 = BVG(wi).

Substituting foruj 1 given by equation (3.2) into the definition 8f we get the following
guadratic equation fgs:

IVG (i) I12B% + (G(wi) — VG(uipmi)B —1=0.

We use the positive root (singeapproximates AG(w)) in equation (3.2) to get the solution
vectoruiy 1. In our examples we find that whé&n(0) > 0 a single iteration starting from

1o = 0 gives an excellent approximation to the optimalFurther theoretical support for

this approximation and a numerical investigation are reported in Glasserman, Heidelberger,
and Shahabuddin (1998).
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4. OPTIMAL STRATIFICATION

We saw in Section 2.3 (see the remarks following Theorem 2.1) that asymptotically optimal
importance sampling has the effect of eliminating variance due to the linear partadf
least if the optimajs satisfies the first-order conditigi = VF (u). By replacingZ with

Z + (u/+/€) we can write theu//€-1S estimator under the original measure and apply a
Taylor approximation to get

ef FWeD)— 1 VeZ+(1/2)u' u] (under e F(ut+veZ)—p/' eZ—(1/2)u' u] (underPy)

Pu/«/E)
~ ee’l[F(u)—e(l/Z)Z’H(M)Z+o(e)—(1/2)u/u-]

(4.1 ~ e TF—1/2W W g/2ZH(nZ+o(1)

whereH (u) is the Hessian oF at .« and we have omitted the indicatbg for simplicity.

This suggests that to obtain further variance reduction we need to address the quadratic
component ofF. We do this bystratifying certain linear combinations of thg ; this is
essentially the same as numerically integrating along a small number of key directions.
In a simulation driven by arbitrary random vectors, stratifying on a linear combination
would typically be impractical because of the difficulty of sampling from the distribution of
the vector conditional on the linear combination; but in the Gaussian case the conditional
distribution is itself Gaussian and this makes the approach practical.

4.1. Preliminaries on Stratification

We begin with a general description of stratifyingZ with u a vector inR" andZ ~
N (O, I,). Since only the direction determined hyis relevant, we may take’'u = 1. In
this casey’Z has a standard normal distribution Bn Consider drawing a sample ofZ
from this distribution and then sampling the vecfoconditional on the value af Z. This
produces samples with the same distribution as drawing directly fgf |,) and has
no advantage over direct sampling. If, however, we draw the sampleZdh a more
structured way than pure random sampling, the resulting samples of the Yewtidrbe
more regularly distributed, at least along the direction determinad by

For a stratified sample of si2¢, we partitionR into N subsets;, ..., By. Ultimately,
we will take these to be equiprobable intervals, but for the moment we keep the setting
general. LetX; have the distribution off Z conditional onu’'Z € B;j,i = 1,..., N.

Assuming we can sample from this distribution, we then sample from the distribution of
conditional on the value af' Z. Using standard properties of the normal distribution (e.qg.,
Johnson and Wichern 1982, p. 136) we find that

4.2) (Z|UZ =a) ~ N(ua, |, — uu).

In particular, the conditional covariance matrix does not depend, amhich simplifies
implementation.
Suppose now tha; is the interval between th@ — 1)/Nth andi /Nth quantile of the
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standard normal distribution. To sample franZ conditional onu’Z € B;, first set

i—1 U
(4.3) Vi=—t N
with U(‘, uniform on [Q 1); this makesV; uniform on [(i — 1)/N,i/N). Now setX; =
®~1(V;), with ® the inverse of the cumulative normal distribution. (Algorithms for quickly
and accurately evaluating this inverse are detailed in Marsaglia, Zaman, and Marsaglia
(1994) and in Moro (1995).) This gives; the distribution of a standard normal variate
conditioned to lie in theéth stratumB;. Finally, set

(4.4) Zi=uX +C.Y',

whereY' ~ N(0, I,) (independent oK;) andC, is anyn x n matrix satisfyingC,C/, =
I, — uu'. In particular, we may choosg, = |, — uu’ because

CuC, = (In—uu)(ly —uu) = I, —uu;

the matrixl,, —uu’ is symmetric and idempotent. This choice3yfis especially convenient
because equation (4.4) becomes

Zi=uX +Y —u@yYh.

This is aO(n) calculation, wherea® (n?) operations would typically be required to calcu-
late C,Y' for other choices o€,. We have found that takinG, = |, — uu’ substantially
reduces the overhead required for stratified sampling, particularly when the dimarision
large. We refertdZ?, ..., ZN} (obtained using independent, . .., YN and independent
Ud, ..., Uy") as a stratified sample, stratified along direction

This construction easily generalizesiifs replaced with am x k matrixU, 1 <k < n,
satisfyingu’U = Iy. Inthiscasel’Z ~ N(O, Iy),and(Z|U’'Z =a) ~ N(Ua, | —UU").
To stratify ink dimensions, suppodg = mK and partition [0 1) into N bins by dividing
each of thek coordinates intan intervals of equal width. Choose a point uniformly from
each bin and applgp ! to each coordinate to obtain a sampléJdZ. Since we wanin to
be reasonably large, this procedure is infeasible uiésgairly small. (An alternative for
largek is Latin hypercube sampling (McKay et al. 1979). This method genekgtemts
in [0, 1)k stratified separately along each coordinate.)

By setting thej th component of in equation (4.4) equal 0~ *(U]), withU;, ..., U} _;
independent and uniform on,[@), we make the entire sampling procedure a function on
[0, D". Indeed, if in equation (4.3) we were to repladgxwith (2 — 1)/2N, we would
be using the midpoint rule for numerical integration along one (or more genddatl
then coordinates of [1)" and Monte Carlo for the other coordinates. This observation is
useful in assessing the variance reduction for a fixed choiceoofJ and then identifying
a particularly effective choice.

Consider, then, an arbitrary integrarid: R" — R and the problem of estimating
c = E[f(Z)], assumingE[ f?(Z)] < oco. For example,f could be the result of applying



132 GLASSERMAN, HEIDELBERGER AND SHAHABUDDIN

importance sampling teF?, as it will be in our application. IZ%, ..., ZN are drawn
independently fronN (0, 1,), then the standard Monte Carlo estimator has variance

V. 1Nfzi _a
arﬁé()_ﬁ

with o2 = E[(f(Z) — ¢)?]. Let

1., -
od :Var[ﬁ Z f(Z')]
i—1

be the corresponding variance using a stratified sample obtained by stratifyingiafong
Observe that stratification induces dependence amorg theefineg : R — R by setting

g(x) = Var[ f (Z)|U'Z = x] = Var[ f (X)], X ~ N(ux, | —uu),

and letp denote the standard univariate normal density. In the next result, Mamhetrease
through a constant multiple of powers of two; accordingly, each stratification is a refinement
of those that precede it.

LEMMA 4.1. Suppose Ef2(Z)] < co. Forany u,on < o1/+/N with strict inequality

unless the integral of f over each of the equiprobable strata is the same for all strata.
Moreover,

1
(4.5) o = N (/ g(x)¢(x) dX> +0(1/N)
as N increases through a constant multiple of powers of two.

Proof. Letnn(X) denote the index of the stratum containkighat is,x € B, ). By
standard results on stratified sampling (e.g., Hammersley and Handscomb 1964, p. 55) we
have

(4.6) Nod = E[Var[ f (Z)[nn(U'2)]]
and
4.7 of = E[Var[ f (2)Inn(U'2)]] + Var[E[ f (Z)Inn (U’ 2)]].

This shows that3 < o2/N and that strict inequality holds unleg f (Z)|nn(u'2)] is a
constant.

Leté = E[f(2)|u'Z] and define the sequenég = E[&|nn(WZ)]. As N increases
through a constant multiple of powers of two, thealgebras generated by (u’Z) form
an increasing family and thi&, a martingale. MoreoveE[|£|] < oo soéy — & (Karlin
and Taylor 1975, p. 295). Jensen’s inequality givessEfE3] < E[f%(Z)] < oo, so
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Theorem 5.2 of Karlin and Taylor (1975, p. 282) ensures E[@ﬁ] — E[£?]. Using
equation (4.6) we now find that

Nog = E[Var[f(Z)nn U 2)]]
= E[f(2)7] — E[(E[f(Z)Inn (W' 2)])7]
= E[f(2)%] - E[&]]

E[f(2)%] — E[£7]

E[f(2)] — E[(E[f(2)|u'Z])?]

EVar f (Z)|u'Z]] = / gO0B () dx,

¥

as claimed. O

We use this result in the next section to select particularly effective directions for strati-
fication.

4.2. Optimal Directions

In light of Lemma 4.1, an optimal directiom (at least for largeN) can be selected by
minimizing

/Var[f(Z)|u’Z = X]¢(X) dx.

In practice, this is unlikely to be feasible so we consider approximations. Recall from
equation (4.1) that we are particularly interested in reducing variance due to the quadratic
component of. This motivates an examination of the optimal stratification direction when
F is exactly quadratic. Of course, ¥ were truly quadratic and all of R", simulation
would be unnecessary. Nevertheless, we will see that the quadratic case provides useful
guidance in selecting stratification directions for genéral

Consider, then, an x n symmetric nonsingular matriA with eigenvalues.q, ..., A,
all lessthan 12. Let f(z) = exp(%z’Az). We want to solve

(4.8) min_E[Var[eV2ZAZ|uy' Z]].

u:w'u=1
For eachi = 1,...,n, letv; be an eigenvector associated with normalized so that
vivi = 1.

THEOREM4.1. If

Kin 2 A 2
4.9 ! = max [ ——) ,
(4.9) <1_)\j*) i=1,..., n(l—ki>

then u= v;- achieves the minimum in equation (4.8).

REMARK 4.1. The maximum in equation (4.9) is attained by the largest eigenvalue when
all eigenvalues are positive, the smallest (most negative) eigenvalue when all are negative,
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and is always either the smallest or the largest. Alsg( — 1)]?> = 12 + O(1%), so the
eigenvalue of largest magnitude achieves the maximum when all the eigenvalues are close
to zero.

Proof. See the Appendix.

Number the eigenvalues and eigenvectors of the métse that

2 2 2
A1 - A2 - An :
1—x1/) “\1—Xx,) — “\1-A,

in particular,v; is optimal in the sense of Theorem 4.1. A simple corollary to Theorem 4.1
is that the optimal direction orthogonal g is v,, the optimal direction orthogonal to both
vy andvs is vz, and so on. To see this, use the spectral representatidnimivrite

n
’ n r7\2
e/2Z'AZ _ l’ l ei/2WZ)
i=1

and notice that; Z, v5,Z, ..., v, Z are independent standard normals. Once we condition
on the value of;Z, we are left with a problem of exactly the same form as the original
problem, but involving only the last — 1 factors. Applying Theorem 4.1 to the reduced
problem we find that, is the optimal direction once we condition ofiZ, and so on.

As a benchmark of the impact of combined importance sampling and stratification, the
next result gives explicit expressions for the variance in the Eqgg = b’z + %Z’AZ for
someb € R" and some symmetrin x n matrix A with eigenvalues less tharyd. Of
course, in this setting simulation is unnecessary because

exp(30'(1 — A)~tb)
r—Avz

(410) E[e ’Z+(l/2)Z’AZ] —

where| - | gives the determinant of a matrix. The comparison is nevertheless informative.

PropPosiTION4.1. (i) The standard Monte Carlo estimator has variance

/ -1 , -1
e2b(|72A) b|| _2A|71/2_eb(|7A) b|| _ A|71'

(i) The variance minimizing drift vector js = (I — A)~b and the variance of the
resulting importance sampling estimator is

AR (11 —2A17Y2 1 — AITY).

(i)  Stratifying the importance sampling estimator along..., v, 1 < k < n,
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produces a limiting variance constant (in the sense of equation (4.5)) of

k

/ - 1-—)

o' (1-A)~tb -1/2 -1 i
e [l — 2A] — I = A] ||7 .
( i_l«/l_z)\.i>

A proof is given in the Appendix. Itis worth noting that the optimal drift veqian (ii)
coincides with the asymptotic optimum obtained by maximizing) — %z’z; this lends
further support to the approach suggested by Theorem 4.1. Also, the expression in (iii)
shows explicitly how each direction of stratification slices the limiting variance constant,
eliminating it completely whek = n.

4.3. Computing Directions

Theorem 4.1 provides a strategy for identifying effective stratification directions, but
the task of actually computing these directions still remains. We now consider various
approaches.

The most straightforward approach evaluates the Hessi&naifthe pointu used for
importance sampling and then computes the eigenvalues and eigenvectors of this matrix. In
simple examples, such as the Asian option in equation (1.3), second derivatives can be found
explicitly and evaluated quickly. In more complicated examples it becomes necessary to
evaluate them numerically, typically using finite difference approximations. This requires
O(n?) evaluations of, an effort comparable to simulatir@(n?) paths. (The only savings
in the function evaluations compared with simulation runs is that generating random draws
of Z becomes unnecessary.) Whether or not this effort is justified dependsod the
total number of planned replications. If, say,= 100 then even very modest variance
reduction would justify the effort if the precision required would otherwise entail 100,000
replications.

There are settings, however, in which time constraints severely limit the total computa-
tional effort that can be expended on pricing, regardless of the variance reduction achieved.
In such settings, approximations become necessary. We consider two.

The first method looks for approximations to the eigenvectors of the Hessiannm an
dimensional subspace < n. We start by choosing am x m matrix M whose columns
seem likely to span a good approximation to the optimal eigenvegtdtor example, if we
believev; should be approximately piecewise linear (as a function of the indeg, . . ., n)
we could chooséM to build ann-vector from anm-vector by linear interpolation. L&t

denote an element &M andzan element oR". The functionFy (2) = F(M2) has Hessian

Hwm 2 M'H M, H the Hessian ofF atMz. BecauseHy, ismx m, it may be much simplerto
evaluate (through finite differences Bf;) thanH. The next step is to find the eigenvalues

Y1, ..., ym and eigenvectorss, ..., om of the m x m matrix (M’'M)"*M’H M, ranked
according to the criterion in equation (4.9). Our candidate stratification directions are then
Muvs, ..., Moy. This procedure is exact F happens to depend anonly throughM’z.

Moreover, any eigenvector ¢ that lies in the range dff is recovered by this procedure
along with its eigenvalue. For if = Mx for somex, then(M’M)~*M’'HMx = ;x, and
x will be among they;, up to a scalar multiple.

The second approximation we consider in selecting stratification directions is even sim-
pler: stratify alongi’'Z, wherefi = u/+/p ;e andu is the optimal drift used for importance
sampling. This choice is appropriate whenis well-approximated by a scalar function
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of a linear combination of th&;. Forif F(z) = f(b'z) withb e R"andf : R —» R,
thenVF(z) = b/ f(b'z) (the dot indicating differentiation), implying that any solution

to VF(u) = u is proportional tob; and then the Hessian & at z is bb f (b'z). The

only nontrivial eigenvectors of this matrix are the scalar multipleb,afo the optimajs

for the importance sample is also optimal for stratification, once normalized. Indeed, if
F(2) = f(b'z) exactly, then stratification alortgeliminates all variance as the number of
strata increases to infinity. We will see through examples that ysican be surprisingly
effective, even when the relatidh(z) = f (b'z) does not hold exactly.

5. EXAMPLES AND NUMERICAL RESULTS

We now illustrate the general results developed in previous sections through specific exam-
ples and numerical results.

5.1. Asian Option

Our first example—the arithmetic Asian option defined by equations (1.2) and (1.3)—is
arguably the simplest option pricing problem for which simulation is necessary. (Numerical
procedures are available for the problem with continuous averaging of the underlying but
not with discrete averaging; see Geman and Yor 1993.) For simplicity, we assume that
the dateg; over which the average price of the underlying is computed are evenly spaced
and letAt denote this spacing. We begin with a discussion of the optimization problem
developed in Section 2 as a step in the importance sampling procedure. The structure of
this example allows for particularly efficient solution of the optimization problem.

We need to maximizé (z) — 3z'z with F(z) = logG(z) and G as defined in equa-
tion (1.3). The discount factca"r? has no effect on the optimal solution so we can just as
well takeG(z) = [S— K]*. It clearly suffices to consider pointsat whichG(z) # 0 and
thus at whichG andF are differentiable. The first-order conditions for optimality become

, cn/AtZin:j S 1 .
] — nG(Z) ’ J_ g el

where we have writte for §¢. This implies that

(5.1) zn = UJE[GG((;) + K], Zit1=1 — Grg)a , ,...,n—1

Given a value of5(z) = y, equation (5.1) determinestogether with

(5.2) § = §_ge " WRoHAOVA 1

Indeed, givenG(z) = v, the values ofz, ..., z, can be found very quickly starting by

recursively applying equations (5.1) and (5.2). Subjectto the first-order conditions, we may
therefore view the&§ as functions of the scalarrather than the vecta: The optimization
problem thus reduces to finding thi¢hat indeed produces a payoffpét S, (y), ..., Si(Y);
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that is, finding the root of the equation
1 n
a(y) . j§:1 S) y

We do not have a proof that this equation has a unique root, but numerically this appears to
be the case. Bisection finds the root very quickly, and given this sgakguations (5.1)
and (5.2) recover efficiently. We denote this vector lyy. Similar recursions apply if
ando are time-varying (but deterministic) or if the averaging dates are unequally spaced.
Next, we turn to stratification. Second derivatives of Bg[ K]* at any point at which
S > K are easily expressed in closed form, so the matrix of second derivéitiyes at
the pointu is easily computed. We can then find the eigenvalues and eigenvectors of this
matrix, though we will see shortly that this is often unnecessary.
To get an indication of the potential effectiveness of stratification in this problem we
examine the eigenvalues. Take = K = 50,0 = 0.30,r = 0.05, T = 1 (year), and
n = 64. At the optimalu, the eigenvalue of largest magnitude-i9.451 and all other
eigenvalues have magnitudes smaller tha@d20suggesting that this problem is a good
candidate for stratification. As a further indication, we can examine

k
1— A
(5.3) <|| —2HW|™2 =l = Hw)|™* —> , k=0,1,...,64
E 1= 2)
whereis, Ay, ..., Agq are the eigenvalues of () ranked in decreasing order ¢f; /(1 —

Ai))?. In view of Proposition 4.1, this shows how stratifying along progressively more
directions would drive the variance to zeroHfwere exactly quadratic. (The values for

k =1,...,8as a percentage of the value foe= 0 are listed in Table 5.3 in the column
labeled € = 0”; the other columns refer to the model of Section 5.2.) These suggest a
dramatic reduction in variance from stratifying along the first eigenvector and negligible
additional reduction from stratifying along a small number of additional directions. We
find the same pattern across a wide range of parameter values for this model.

Conveniently, the heuristic suggested at the end of Section 4.3 is remarkably effective in
this example. Figure 5.1 shows the optimal diifand optimal eigenvectadd () for the
parameters above. The inner product between the tw®@98 when both are normalized
to have unit length. We find the same pattern across a wide range of parameter values. This
observation is important because it allows us to stratify along the optimalpafthout
ever having to compute second derivatives or eigenvectors. Thus, this example provides an
ideal set of circumstances for our approach: The optimization problem is easily solved, the
Hessian appears to be well-suited to one-dimensional stratification, and we get an effective
direction for stratification with no additional computation.

Numerical results in Table 5.1 confirm the effectiveness of the procedure for this prob-
lem. The table shows variance reduction ratios, relative to standard Monte Carlo, using
importance sampling and importance sampling combined with stratification along,either
or the optimal eigenvectas- identified in Theorem 4.1. Each variance reduction ratio is the
variance per replication using standard Monte Carlo divided by the variance per replication
using the method indicated at the top of the column. The larger the ratio, the greater the im-
provement. Throughout this section, the number of runs is large enough to provide accurate
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FIGURES.1. Optimal drift vector (solid line) and eigenvector (dashed line) for Asian option.
The eigenvector has been scaled to have the same norm as the gptiiffa¢ parameter
values ar&gg = K = 50,0 =0.30,T =1,r = 0.05,n = 64.

estimates of both the price and its variance; for example, 99 percent confidence intervals for
the price are typically withint0.01. The results show that, by itself, importance sampling
provides moderate variance reduction, but when combined with stratification the effect is
astounding. In all our examples the additional computing time per replication required to
simulate using importance sampling and stratification is only about 5 percent of the time
required to simulate without variance reduction—negligible when compared with the vari-
ance reduction achieved. The modest additional effort required to solve the optimization
problem is not reflected in the variance reduction ratios, nor is the effort required to find
the optimal eigenvector required for the results in the last column. These are fixed costs, so
their effect depends on the number of paths generated: the greater the precision required
the less significant the time spent on the optimization or the eigenvector computation.

In all our examples with stratified sampling, we use an equal number of replications
in each stratum. For equiprobable strata (as is the case here), the optimal allocation of
replications to a stratum is proportional to the standard deviation of that stratum. By using
estimates of the standard deviations, we can assess the potential of attempting to further im-
prove the procedure by allocating replications to strata in a (near) optimal fashion. Although
additional significant potential improvements (e.g., 50 percent) can sometimes be achieved,
the typical potential improvement is much less. Furthermore, the best potential improve-
ments usually occurred when the combination of importance sampling and stratification
was already highly efficient.

We now modify the example by adding a knock-out provision at expiration: If at expira-
tion the price of the underlying asset is below a barigthe option pay$S— K)* (as with
an ordinary Asian option), but if the final price is abdBehe option pays nothing. Since
the price of the underlying at expiration & (with n the number of simulation steps to
expiration), the payoff becoméS— K)*1,5 <g;. The optimal path is still easily computed
if the constraintS, < B is appended with a Lagrange multiplier. When the constraint is
binding, the underlying terminates exactly at the barrier when evaluated at the optimal path;
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TABLE 5.1
Estimated Variance Reduction Ratios for the Asian Ojtion
Parameters Importance  Importance sampling
sampling and stratification

n o K  Price Variance Variance Variance
ratio ratio ) ratio (vj-)

16 0.10 45 6.05 11 1,097 1,246
50 1.92 7.0 4,559 5,710
55 0.20 21 15,520 17,026
16 030 45 7.15 8.3 1,011 1,664
50 4.17 9.2 1,304 1,899
55 221 12 1,746 2,296
64 010 45 6.00 11 967 1,022
50 1.85 7.3 4,637 5,665
55 0.17 23 16,051 17,841
64 030 45 7.02 8.3 1,016 1,694
50 4.02 9.2 1,319 1,971
55 2.08 12 1,767 2,402

aAll results are based on a total of 1,000,000 runs. Stratified results use 100
strata. All results us& = 50,r = 0.05, andT = 1.0. Of the last two columns, the
first shows results based on stratifying along the optimaind the second shows
results based on stratifying along the optimal eigenvector.

otherwise, the optimal path is the same as in the absence of the barrier. One would expect
the presence of the barrier to reduce the effectiveness of our procedure because the linear
and quadratic approximations that motivate our approach seem less likely to apply in the
presence of a discontinuity in the payoff. Bfis large, reachindg is a rare event and one

might expect that importance sampling is particularly effective in pricing the corresponding
knock4in option with payoff(S— K)* 15 g).

These expectations are borne out by the numerical results in Table 5.2. Importance
sampling by itself is less effective in the knock-out examples than in the absence of a
barrier, but it can dramatically reduce variance in pricing the knock-ins when the barrier is
far from the underlying. (The knock-in price with = 50, B = 80, ando = 0.30 is only
0.00016 and so is perhaps too small to be of much practical interest, but these examples
illustrate the potential of the method.) The stratified results stratify along the optimal
The impact of stratification varies; it is more effective for knock-ins than knock-outs and
in both cases its effectiveness increases as the barrier becomes more remote.

The numerical results in Table 5.2 suggest a possible indirect method for pricing knock-
outs: subtract the price of a knock-in from the price of the corresponding option without
a barrier, estimating the two parts in separate simulations using a change of drift and
stratification direction tailored for each. This is sometimes advantageous. Furthermore,
because the underlying asset in this example is modeled as geometric Brownian motion,
it is possible to simulate paths conditional §h< B or conditional onS, > B and thus
to eliminate the payoff discontinuity caused by the barrier. Because such an approach is
applicable only in the simplest models, we do not discuss it further.
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TABLE 5.2
Estimated Variance Reduction Ratios for the Asian Option with a
Knock-out or a Knock-in Barriér

Parameters Importance sampling Importance sampling
and stratification

K o B  Knock-out Knock-in Knock-out Knock-in
var. ratio  var. ratio var. ratio  var. ratio

50 0.10 60 2.4 8.4 6.1 25
70 6.4 198 240 992

80 7.0 29,327 3,864 195,055

50 0.30 60 2.0 6.2 2.4 14
70 2.0 7.0 4.1 16

80 3.1 12 8.9 34

100 6.0 46 46 167

55 0.10 60 6.5 19 9.1 43
70 17 232 351 787

80 21 30,701 12,988 154,406

55 0.30 60 3.9 10 4.4 41
70 2.8 9.1 45 18

80 3.8 14 9.2 34

100 7.5 49 51 157

aResults are based on a total of 1,000,000 runs ®itk= 50,r = 0.05, T = 1.0, and
n = 16. Stratified results use 100 strata and stratify in diregtion

5.2. Stochastic Volatility

For pricing path-dependent options in a stochastic volatility model, simulation is typically
the only method available. The particular specification we consider is the Hull-White (1987)
model,

ds = rSsdt+ vV, Sdw®
dVi = vVedt+ £VidW?,

with E[dW®dW®@] = p. We work with the following discrete-time counterpart:

Si1 = SA+rAt+ VViAtZ)
Vii1 = min{m Vie(v—(l/z)EZ)AHé«/E(PZi-M/1—ﬂ22n+i)}

with m a constant. Withm = oo this would be an exact discretization of the variance
process/; but only one of many possible approximations to the solution of the equation for
S. In the continuous-time modeh has finite mean but infinite variance. Under the linear
discretization above, the variance is finite but increases very quickly with the number of
steps. Truncating th¥; atm helps reduce this effect. (In our simulation results we take
m = 2.) To be consistent with our general framework, we have taken the stochastic input
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TABLE 5.3
Remaining Variance (as a percentage of total) after Stratification
in k Dimensions, as Measured by Equation (5.3)

k[é=0 £=05 é=1 é=2 E=3
1| 51 10.3 13.8 224 30.9
2| 47 88 119 19.1 25.5
3| 43 75 102 162 20.7
4| 40 6.4 87 136 16.6
5| 36 54 73 113 13.1
6| 33 45 61 93 10.3
7| 30 37 51 76 8.0
8| 28 30 42 62 6.2
64 0 0 0 0 0

@ |n order to make all cases 64-dimensional problems, the constant
volatility case¢é = 0 is based om\t = 1/64 whereas the others
are based ot = 1/32.

to the model to be a single vectZ,, ..., Zy,) of independent standard normals, though
in some respects it might be more natural to think of two separate vectors each oflength

The payoff we consider is again that of a call option on the arithmetic ni&n,K)*,
with the meanS computed oven dates spacedt = T/n time units apart. For this
problem, we find the optimak using general-purpose optimization code. The quasi-
Newton routine e04jbc included in the NAG library (1996) solves the problem extremely
quickly; on a Sun Enterprise 4000 workstation running the Solaris 2.51 operating system all
our optimization problems took less than one second and many took less than one-tenth of
a second. The solver included in the Excel spreadsheet handles this problem well too. For
parameter values that result in a positive payo#f at 0, the fixed-point iteration discussed
in Section 3 appears to converge quickly, and the approximation in equation (3.2) is very
close to the optimum.

Throughout our examples we take= 0,r = 0.05, § = 50, T = 1, and truncate at
m = 2. The truncation has little impact on the mean but makes estimated variances much
more stable. Figures 5.2 and 5.3 show, respectively, the optinaaid the path ofs and
V evaluated at the optimal, all with the parameter& = 50, «/Vp = 0.30, p = 0.5,

n = 32, and¢ = 2. (Hull and White (1987) suggest that= 1 may be more realistic;

we use a larger value in the figures to get a sharper contrast with the constant volatility
case.) Figure 5.2 displays the optima(the solid line) in two pieces corresponding to the
first 32 and second 32; in the recursions above. The figures indicate that the product of
probability and payoff is maximized by a trajectory in which volatility first increases and
then decreases, driving the price of the underlying to climb first sharply and then gradually
to achieve a large value &

For the same parameter values, Figure 5.2 shows the optimal eigenvector (the dashed
line) for the Hessian evaluated at the optimal The eigenvector has been scaled to have
the same total length (the same sum of squareg). ashe first 32 values are similar to
those of the optimal itself and the second 32 values are nearly the mirror image of the
corresponding entries @f. (Of course, the sign of the eigenvector is indeterminate so the
two halves can be interchanged in this statement. If we change the sign of the last 32 values
of the eigenvector we must also change the sign of the first 32 values so the two halves in
the figure cannot be simultaneously aligned.)
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FIGURE 5.2. Optimal drift vector (solid line) and eigenvector (dashed line) for the Asian
option in the Hull-White stochastic volatility model. The parameter value§are K =
50,T =1,r =0.05v=0,¢ =2,/Vp = 0.30,n = 32. In each of the vectors in the
figure, both theth and the(32+ i)th coordinates are associated with thieincrement of

the process.
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FIGURE5.3. Path of underlying pric8 (left panel) and conditional varian&&(right panel)
evaluated at = u (the optimal drift vector) for the Asian option in the stochastic volatility
model. The parameter values ¢ = K = 50, T = 1,r = 0.05,v = 0,& = 2,
VVo =0.30,n=32.

Table 5.3 displays values of equation (5.3) for this example for various valués of
Whereas the values for constant volatility & 0) drop very quickly, witht = 3 the
decay is gradual; indeed, the table suggests that it would take stratification in more than
eight dimensions wheh = 3 to achieve the same variance reduction as stratification in a
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TABLE 5.4
Estimated Variance Reduction Ratios for the Hull-White Stochastic
Volatility Model?

Parameters Importance  Importance sampling
sampling and stratification
K T &  Price Variance Variance Variance
ratio ratio @) ratio (v-)

50 025 0.0 1.92 8.3 3,864 4,955
05 191 8.3 307 431
1.0 191 8.5 103 147
20 1.88 8.8 34 46
50 1.00 0.0 4.07 9.3 1,355 1,947
0.5 4.05 9.2 84 123
1.0 4.00 9.7 31 43
20 381 9.9 14 18
55 025 0.0 0.39 19 8,304 9,447
05 041 19 588 673
1.0 0.44 19 204 235
20 047 20 73 82
55 1.00 0.0 212 12 1,827 2,363
05 217 12 113 145
1.0 219 13 43 55
20 212 15 22 25

aAll results are based on a total of 1,000,000 runs. Stratified results use 100 strata.
All results usesy = 50,Vp = 0.09,r = 0.05,v =0, p = 0.5, andn = 32. For¢ > 0,
V; is capped at 2.0. Results for= 0 correspond to constant volatility.

single dimension wheg = 0. This comparison is merely suggestive, however, because
equation (5.3) is an exact measure only in the quadratic case.

Numerical results illustrating the actual variance reduction appear in Table 5.4. By itself,
importance sampling reduces variance by a factor of 8—20; in combination with stratification
(along eitheru or the optimal eigenvectar;-) it remains very effective, particularly for
small values of. The diminishing effectiveness with increasings consistent with what
would be predicted by looking at the eigenvalues of the Hessian and what might even be
predicted from the specification 6§, V;): this model is far less linear than the constant
volatility model.

5.3. CIR Model

Our final example is the interest rate model of Cox, Ingersoll, and Ross (1985):

(5.4) dri =k@—ry)dt+ o /i dW.
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As noted by Rogers (1995), when= 4ax /o2 is an integer{r;, t > 0} has the same law
as{| X¢||?, t > 0}, whereX; is thed-dimensional process defined by

K o
dX’( Z—EX1dt+§dB[,

whereB; is a standardl-dimensional Wiener process, and the componentsqadire all
equal to/ro/d. This equation has solution

t
o
x’[ — e—(1/2)/(t XO + E / e—(l/Z)K(t—S) d BS
0

On a discrete grid of pointgAt, j = 0,1, ..., theith coordinate of this process can be
simulated without discretization error by setting

() —araty@ , 9 [1 - ;
X(i+nar = € a2 XJ'AtJrE ;(l—e “A)ZG_pn+ s j=01....,n-1,
whereZ,, ..., Zq4y are independent standard normals. An alternative (applicable even if

d is not an integer) discretizes equation (5.4) directly. Our method applies as well to a
discretization of (5.4); we have chosen to use the exact procedure availableligan
integer solely to separate the examination of variance reduction from discretization bias
unrelated to our method.

The price of a discount bond with maturityis given by

fon(-[[ )]

This expectation is available in closed form in the CIR model but it is still useful as a
numerical illustration. We seAt = T/(n 4+ 1) and approximate the integral inside the
expectation by a sum

n
exp(—At Zrim> )
i=0

with ther; »; simulated as described above. Wdtrestricted to integer values, the dimension
of this problem isd.

The parameter values we consider are 0.064,x = 0.05,0 = 0.08 (henced = 2),
and various values af, andT. In all cases the optimal is nearly (if not exactly) linear,
increasing through negative values and thereby drivingo decrease. The optimalis
the same foiX® and X?. The eigenvalues of the Hessiarzatonsistently appear with
multiplicity two. The optimalu is nearly contained in the eigenspace associated with the
eigenvalue maximizingx /(1 — 1))?; more precisely, the norm of its projection onto the
eigenspace is 99.6 percent of the nornuafself.

Numerical results for this example are given in Table 5.5. Here we find that importance
sampling by itself can produce more than a hundredfold reduction in variance, and that
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TABLE 5.5
Estimated Variance Reduction Ratios for Bond Prices in the CIR
ModeF
Parameters Importance  Importance sampling

sampling and stratification

T ro Price Variance Variance Variance
ratio  ratiow) ratio(y;-)

0.25 0.044 98.90 227 397 411

0.064 98.41 330 576 597

0.084 97.92 433 755 771

1.0 0.044 95.66 57.2 104 108

0.064 9381 82.7 150 155

0.084 91.99 108 197 203

2Prices are for face value of 100. All results are based on a total of 1,000,000
runs, withd = 2, x = 0.05,0 = 0.08, andn = 16. Stratified results use 100

strata.

stratification further reduces variance by roughly a factor of two. There is virtually no
difference in performance between stratifying along the optimal eigenvector and stratifying
alongu. The effectiveness of importance sampling in this case is likely due to the extent
of linearity in the model.

To make the model less linear, we introduce some optionality. We consider an interest
rate cap struck aK paying (riay — K)* at time(i + 1)At,i = 0,1,...,n. The total
discounted payoff is

n i
Z e ™ 2o (riat — K)T.

i=1

This formulation is slightly nonstandard in that it blurs the distinction between discrete and
continuous compounding, but it is nevertheless illustrative.

Like our previous examples, this one shows a great deal of similarity between the optimal
drift for importance sampling and the optimal eigenvector for stratification. An example
appears in the left panel of Figure 5.4; whens normalized to have unit length (like
the eigenvector), the two are nearly indistinguishable. So we use the optifoalboth
importance sampling and stratification. Numerical results appear in Table 5.6. By itself,
importance sampling is less effective for the cap than for the bond (as expected) and strat-
ification generally has greater impact than before. The combination reduces variance by
factors in the range of 30—-200. The effectiveness of the two stratification directions is nearly

identical.

6. CONCLUDING REMARKS

The framework we have developed in this paper—using importance sampling to eliminate
the variance from the linear part of the log-payoff, and using stratification to reduce variance
from the quadratic part—lends itself to many more variations than we have investigated
here. For example, further approximations to the optimal drift and stratification directions
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TABLE 5.6
Estimated Variance Reduction Ratios for Cap Prices in the CIR
ModeP
Parameters Importance  Importance sampling
sampling and stratification
T K Price Variance Variance  Variance
ratio ratio @) ratio (v-)
0.25 0.064 4.29 11 52 53
0.074 0.55 22 63 62
0.084 0.05 81 199 212
1.0 0.064 8.17 11 38 40
0.074 3.13 14 38 38
0.084 1.11 20 49 48

2Prices are for face value of 100. All results are based on a total of 1,000,000
runs. Stratified results use 100 strata. All resultsdise2, « = 0.05,0 = 0.08,
ro = 0.064, anch = 16.

FIGURE 5.4. The left panel shows the optimal drift vector (solid line) and eigenvector
(dashed line) for cap in the CIR interest rate model. The right panel shows the path of
the interest rate evaluated at the optimal drift. The parameter valueg area = 0.064,

k = 0.08,0 = 0.05,K = 0.074,T = 1, andn = 16. In each of the vectors in the left
panel, both théth and theg16+-i)th coordinates are associated with ittteincrement of the
interest rate path in the right panel. The optimal drift increases until the cap is in-the-money
and then decreases.

could be explored. The optimization problem could be re-solved (exactly or approximately)
at various points along a path. Stratification along multiple directions could naturally be
combined with quasi-Monte Carlo techniques. Indeed, the ranking provided by Theorem 4.1
seems likely to be useful in other applications of quasi-Monte Carlo and perhaps even with
other numerical techniques for pricing path-dependent options.
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APPENDIX

This appendix contains proofs of Theorem 4.1 and Proposition 4.1.

Proof of Theorem 4.1By a standard decomposition of variance, we can rewrite equation
(4.8) as

Var[e(l/Z)Z’AZ] _ Var[E[e(l/Z)Z/AZ|u/Z]] — Var[e(l/Z)Z’AZ] . E[(E[e(l/Z)Z’AZ|u/Z])2]
+ (E[eV27AZ))2,

hence, (4.8) is equivalent to
(A1) _max E[(E[e™2%"%u'Z])?].

We proceed by recording three useful identities. For any positive definiten matrix M
and anym-vectorw

1

/ e—(1/2)x/Mx+w’x dx = M |—1/2e(1/2)w’M’1w,

where|M| denotes the determinant bf. For anyM patrtitioned as

A9 = (e )

with My, nonsingular,

(A.4) IM] = [Mgz||M11 — M1oM3; May|.

If £ ~ N(O, 1), then

(A.5) E[e¥’] = ;, t <1/2.
V1i-2t

Recognize equation (A.2) as a property of the moment generating function of the normal
distribution with covariance matrid —1; equation (A.4) is standard (see, e.g., Rao and
Toutenburg 1995, p. 289); equation (A.5) is the moment generating function of a chi-square
random variable with 1 degree of freedom.

Conditional onu’Z = a, the vectorZ has distributiorN (au, | — uu’). Consider first the
specialcasa = e; = (1,0, ..., 0), and letX have distributiorN (ae;, | —e;€)). Partition
Athe wayM is partitioned in equation (A.3) witl;; scalar. The conditional expectation
in equation (A.1) is given by

E[e(l/Z)X/AX] — E[e(l/Z)(aeﬁ(Xfael))/A((Xfael)+ae1)]
— g1/2a%An E[e/2[2a8 AX—ae)+(X—ae) AX-as)]]
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— e(l/Z)azAu 1 / e—(l/2)x’x . e(l/2)(2aA12x+x’A22x) dX
n-1
2r) 7z Jre-t
= ewaatan 1 [ ana—rox gamox gy
(27) =

To evaluate this expression we may invoke equation (A.2), providedA,; is invertible.
For any unit lengthin — 1)-vectorx,

X Agpox = (0 X)AW X < nl1ax A < 1/2,
i=

,,,,, n

so all eigenvalues of\,, are less than /2, ensuring that — Ay, is invertible. Applying
(A.2) and noting that the symmetry éfimplies Ayy = A},, we get

) e/2a*An .
E[e(1/2>x AX] _ ez Al —Ax) A
[ — Agy|1/?
SettingM = | — Aiin equation (A.4) yields
I — Al =11 — Ayl - (1= A — Aa(l — A) 1A,

and therefore

_ I — Al
Air+ Ap(l — Ap) Ay =1— ——.
[ — Azl
We conclude that, witlhi = ey,
E[e(l/Z)X’AX] =1l — A22|—1/2 exp a_2 1— u
2 Il — Al /]

For general, letU be any orthogonal matrix withe; = u and setG = U’ AU. Observe
thatif X ~ N(au, | — uu’), then

X'AX = X'(UUHAUU)X = (U'X)GU’'X), U'X~ N(ae, | — e€)).

The calculation above far = e; thus applies to generalif we replaceA with G:

| a2 | -G
E[eW/2XAX] = || — Gpp| Y2 exp[? <1 B ﬁﬂ .
— G2

Recalling now thak = u’Z, we get

ELEH M = 11 - G e [epf w22 (1- 1= ]
[I'— G2yl
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-6l N\
=l =Gyt {2—— —-1 ,
| 22| < Gyl >

using equation (A.5) and the fact tha”Z ~ N (0O, 1). We need to maximize this expression
overu. Becaus& = U’AU, G andAhave the same eigenvalues|se G| = ]_[{‘zl(l—ki).
This is independent af so we may equivalently solve

[l — G2l 2
(A.6) UTS"Xl( -G _1> '

LetBs, ..., Bn be the eigenvalues @&,,, so thatl — G| = ]_[inzz(l— Bi). Now we make
the following claim.
Claim: Every(8,, ..., Bn) arising from some choice afis contained within the convex
hull of the points i1y, . . ., Apin—1)) generated by all permutatiopoftheindices 1.. ., n.
We defer the proof of the claim until the end. Replace equation (A.6) with

(Hin=2(1—,3i) B )2

B2, Bn l_[ln:]_(l - )‘-I)

under the ostensibly weaker constraint tgd, ..., ) belong to the convex hull de-
scribed in the claim. Since this is a problem of maximizing a (symmetric) convex func-
tion over a convex set, the maximum is attained at an extreme point of the form of
(A, ..oy Aj—1, Aj41, ..., An), fOr somej = 1,...,n. In fact, every such point corre-
sponds to a feasible solution for the original problem (A.6) with= v;: let V be an
orthogonal matrix of eigenvectors & with v; as first column; then the eigenvalues of
G2z = (V'AV)y; are precisely the;, i # j. The solution to (A.6) is therefore given by

| -G 2 1 2 Ao\
max 1 =Gaal _ =max ([—— —1) = max (——) .
u=vj,j=L..n \_ || — G| j=1..n\1— )Lj j=1..n\1— )\.j

It remains to prove the claim. First we argue that. . ., B, are the nonzero eigenvalues
of (I —uu)A(l —uu). By definition, they are the eigenvalues®$, = (U’ AU),, and
therefore also the nonzero eigenvalues of

0 0 , /
But
(I —e1e)DU'AU(l —g1€)) = U'U (I —e1€)U'AU (I —e1€)U’'U = U’ (I —uu) A(l —uu)U

has the same eigenvalues(as- uu’) A(I — uu’).
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Now let P be an orthogonal matrix of eigenvectors @f— uu)A(l — uu) andB a
diagonal matrix of eigenvalues with — uu) A(I — uu) = PBP. We can choose these
so that the first column oP is u (the eigenvector associated with eigenvalue 0) and the
diagonal entries oB are Q 8., . .., Bn. Expanding, we find that

B =P AP — P'Au€ — eu'AP + e/ (U'Au) = P'AP — D,

with Dj; =0for j = 2,...,n. This shows tha¢D11, 8, .. ., Bn) is the main diagonal of
P’ AP, and therefore by Schur’s Theorem (Marshall and Olkin 1979, p. 218) itis contained

in the convex hull of the permutations @fy, . . ., An). Afortiori, (82, ..., Bn) is contained
in the convex hull of points generated by permutations of all subsets ofnsizel of
{)\,l,...,)\.n}. I:I

Proof of Proposition 4.1 The standard Monte Carlo estimator averages independent
replications of exgy'Z + %Z’AZ). Its variance per replication is the difference between
the second momeid[exp(2b’ Z+ 2’ AZ)] and the square of its meﬁiexp(b’Z%—% Z'AZ)).

Each of these expectations is evaluated using equation (4.10) (which follows from equa-
tion (A.2)). Subtracting then yields the expression in (i). For any choicg,dfising
equation (2.4) and then equation (4.10) we find that the second moment of the importance
sampling estimator based pnis

(A7) E I:ezb’ZJrZ’AZe—u’Z+(l/2)u’u]

=exp(3@2b—w)(1 —2A) 71 2b — p) + Fu'n) |1 — 2A7Y2
Minimizing this expression ovet yields the optimal valug. = (1 — A)~b. Substituting
this choice in equation (A.7) yields the expression in (ii).

Some algebra shows that the importance sampling estimator based on the pptamnal
be expressed under the original zero-mean measure (cf. equation (2.3)) as

a=exp(zb'(l — A'b+32'AZ).

We need to show th&([Var[a|viZ, ..., v Z]] is given by the expression in the proposition.
This expectation is equal to

E[&%] — E[E[&v;Z, ..., v Z]%].

The first of these terms matches the first term in (iii) (again using equation (4.10)). To
complete the proof we need to show thaf E[exp(3Z'AZ)[v; Z, ..., v, Z]?] equals the
second term inside parentheses in the expression in (iii). We have

n
E[ElexpZ' AD)|v;Z, ..., w,Z)?] = E[E[]’[e<1/2”i<“fz>2|v’12,...,u,;Z]Z}
i=1

k , O 1\
- E e1/2%i (v]2)

i=k+1
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K e Tr L
= Ei[rlehwi)-II iffiI}

the second and fourth equalities following from equation (A.5). This equals the desired
term in (iii). O
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