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Abstract. This paper develops methods for relating the prices of discrete- and
continuous-time versions of path-dependent options sensitive to extremal values
of the underlying asset, including lookback, barrier, and hindsight options. The
relationships take the form of correction terms that can be interpreted as shifting
a barrier, a strike, or an extremal price. These correction terms enable us to use
closed-form solutions for continuous option prices to approximate their discrete
counterparts. We also develop discrete-time discrete-state lattice methods for de-
termining accurate prices of discrete and continuous path-dependent options. In
several cases, the lattice methods use correction terms based on the connection
between discrete- and continuous-time prices which dramatically improve con-
vergence to the accurate price.
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1 Introduction

This paper develops methods for relating the prices of discrete- and continuous-
time versions of path-dependent options sensitive to extremal values of the under-
lying asset, including lookback, barrier, and hindsight options and, by extension,
others that can be constructed from these, such as ladder options. The payoffs in
the continuous-time versions depend on the price of the underlying asset through-
out the life of the option, whereas the payoffs in the discrete-time versions are
determined by underlying prices at a finite set of times. The payoffs of lookback
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and barrier options, for example, depend on the maximum or minimum under-
lying price; the terms of the contract dictate whether the maximum or minimum
is evaluated in continuous or discrete time. Questions concerning the relation
between discrete- and continuous-time prices arise in at least three ways:

◦ Nearly all closed-form expressions available for pricing path-dependent op-
tions are based on continuous-time paths, but many traded options are based
on discrete price fixings. In this setting, the question becomes how best to
use a continuous formula to approximate the price of a discrete option.

◦ Numerical methods are necessary for precise evaluation of discrete option
prices. These are themselves based on a discretization of time, but typically a
much finer one than that specified in the terms of an option. Thus, numerically
pricing a discrete option involves two discrete time increments – the intervals
between price fixings that determine the option payoff and the time step in
the numerical method. The problem in this setting is one of analyzing the
relation between two discrete-time processes related to a common continuous-
time process.

◦ Even if the option of interest is based on continuous monitoring of the under-
lying asset price, a discrete numerical method is often required for valuation
– for example, if the option is American. Improving the quality of the numer-
ical method involves analyzing how a discrete-time, discrete-valued process
approximates a continuous-time, continuous-valued process.

These issues arise quite transparently in the pricing of literal options, but
not only in that context. For example, Longstaff [46] approximates the value of
marketability of a security over a fixed horizon with a type of continuous-time
lookback option and gives a closed-form expression for the value; the discrete
version would also be relevant in his setting. Merton [49], Black and Cox [7], and
more recently Leland [42], Longstaff and Schwartz [47], and Rich [52] among
others, have used barrier models for valuing debt and contingent claims with en-
dogenous default. For tractability, this line of work typically assumes continuous
monitoring of a reorganization boundary;1 but to the extent that default can be
modeled as a barrier crossing, it is arguably one that can be triggered only at
specific dates – e.g., coupon payment dates.

The impact on option values of discrete price fixings has been noted fre-
quently in the literature. Chance [18], Flesaker [26], Heynen and Kat [34], and
Kat and Verdonk [39] discuss the implications of ignoring the discrete-continuous
distinction in the context of specific market instruments and give numerical il-
lustrations showing substantial mispricings when, e.g., daily fixings are approx-
imated by continuous monitoring. Computational issues arising in the pricing
of discrete path-dependent options are discussed in Andersen and Brotherton-
Ratcliffe [3], Babbs [6], Cheuk and Vorst [21, 20], Kat [38], and Levy [43].

By further developing a line of work initiated in Broadie, Glasserman, and
Kou [13], in this paper we develop a general approach to moving between dis-
crete and continuous prices in the three classes of problems described earlier.
Specifically, we present the following:
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◦ Correction terms that dramatically improve the approximation of discrete-
time prices using continuous-time formulas. For barrier options, the correction
shifts the barrier to price a discrete option using the continuous formula. For
lookbacks, the correction shifts the expected maximum or minimum price.

◦ Lattice methods that use correction terms to improve convergence to the exact
discrete-time price. For example, in the case of a discrete barrier option we
use a trinomial method that puts a row of nodes at the level of theshifted
barrier.

◦ Lattice methods using different but related correction terms to improve con-
vergence to continuous-time prices.

A first-order correction term was introduced for barrier options in Broadie,
Glasserman, and Kou [13]. That correction is based on a constantβ1 =
−ζ(1/2)/

√
2π, with ζ the Riemann zeta function. Rather remarkably, the same

constant enters in the first-order correction for lookback options, but by an en-
tirely different route: in both cases,β1 arises as the mean of a limiting distribution,
but the distributions in the two cases are different. For the price of a lookback at
inception we derive a second-order approximation based on the second moment
of one of these limiting distributions. The role ofβ1 in discrete barrier options
is rooted in work of Chernoff [17]2 and Siegmund and Yuh [58] on diffusion
approximations to random walks; its role in discrete lookback options is rooted
in the analysis of Calvin [15] and Asmussen, Glynn, and Pitman [5] on the
maximum of Brownian motion.

The rest of this paper is organized as follows. Section 2 presents corrections
for continuous-time formulas to price discrete-time options approximately. Sec-
tion 3 develops numerical methods for pricing discrete-time and continuous-time
options accurately. Proofs are deferred to an appendix.

2 Continuity corrections

We assume throughout that the continuous-time price is determined by the as-
sumptions of Black and Scholes [8]. There is a single risky asset whose price
{St , t ≥ 0} evolves according to

dSt = νSt dt + σSt dZt , (1)

with Z a standard Wiener process, andν andσ > 0 constants. The term structure
is flat, with r denoting the constant continuously compounded risk-free interest
rate. The price of a claim contingent on{St , 0 ≤ t ≤ T} is the expected present
value of its payoff, the expectation taken withν = r .3 Since we are interested
in probabilities and expectations only under the risk-neutral measure, henceforth
we takeν = r .

To specify the payoffs of some path-dependent options, we need additional
notation. Withν = r , write the solution to (1) as

St = S0e(r − 1
2 σ2)t+σZt ≡ S0eBt , (2)
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with Bt a Wiener process having driftr − 1
2σ2 and variance parameterσ2. For

the discrete options, letm be the number of price-fixing dates and∆t = T/m
the interval between fixings. Set

τ = τH = first t at whichSt reaches levelH ;

τ̃ = τ̃H = first k at whichSk∆t crosses levelH ;

M = max
0≤t≤T

Bt

M̃m = max
0≤k≤m

BkT/m.

To allow the barrier levelH to be either above or below the initial asset price
S0 without introducing any ambiguity, ˜τ is more precisely defined to be inf{k ≥
0 : Sk∆t > H } if H > S0 and inf{k ≥ 0 : Sk∆t < H } if H < S0. We exclude
the caseH = S0.

Letting 1{ · } denote the indicator of the event{ · } and writing x+ for
max{x, 0}, the payoff of a continuous knock-out call with strikeK and bar-
rier H is given by

(ST − K )+1{τH >T};

that of a knock-in call is given by

(ST − K )+1{τH ≤T};

and corresponding put payoffs are obtained by replacingST − K with K − ST .
The discrete-barrier counterparts to the payoffs above are

(Sm∆t − K )+1{τ̃H >m}

and
(Sm∆t − K )+1{τ̃H ≤m},

respectively. The payoffs on continuous and discrete lookback puts are

S0eM − ST and S0eM̃m − ST ; (3)

for lookback calls, replace the max in the definitions ofM and M̃m with a min
and multiply by−1 in (3). Finally, the payoffs on hindsight calls (sometimes
referred to as fixed-strike lookbacks) are

(S0eM − K )+ and (S0eM̃m − K )+

with continuous and discrete fixings, respectively. Hindsight puts are formed in
the obvious way. Some related variants of the options above are two-dimensional
barrier options, in which one asset determines the barrier crossing and the other
the terminal payoff; partial barrier options, in which the barrier is in effect only
in some subinterval of [0, T]; and percentage lookbacks,4 in which the minimum
or maximum price of the underlying is multiplied by a constant in the usual
lookback payoff. The continuous versions of all of these options can be priced in
closed form. See, in particular, Merton [48], Rubinstein and Reiner [54], Chance
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[18], Boyle and Lau [10], Rich [51], Carr [16], and Heynen and Kat [31, 32] for
various kinds of barrier options, and for various kinds of lookbacks see Conze
and Viswanathan [23], Garman [27], Goldman, Sosin, and Gatto [29], Goldman,
Sosin, and Shepp [30], and Heynan and Kat [33].

Closed-form expressions for discrete versions of the options above typically
involve values ofm-dimensional multivariate cumulative normal distributions and
are therefore of little value for more than aboutm = 5 fixing dates. The following
results show, however, that with appropriate corrections the continuous formulas
can be used to price discrete options quite accurately for moderate to large values
of m. We begin by quoting a result from Broadie, Glasserman, and Kou [13]. As
in Sect. 1, setβ1 = −ζ(1/2)/

√
2π ≈ 0.5826, withζ the Riemann zeta function

(see, e.g., [1] for background onζ).

Theorem 1 ([13]) Let V(H ) be the price of a continuous down-and-in call, down-
and-out call, up-and-in put, or up-and-out put. Let Vm(H ) be the price of an

otherwise identical discrete barrier option. Then Vm(H ) = V (He±β1σ
√

T/m) +
o(1/

√
m), with + for an up option and− for a down option.

One interprets this result as saying that to price a discretely monitored barrier
option using the continuous formula, one should first shift the barrier away from

S0 by a factoreβ1σ
√

T/m. This corrects for the fact that when the discrete-time
process{Sk∆t , k = 0, 1, 2, . . .} breaches the barrier, it overshoots it. The constant
β1σ
√

T/m should be viewed as an approximation to the overshoot in the loga-
rithm of the price of the underlying. Indeed, in the driftless caser − 1

2σ2 = 0,
with H > S0, we have (as a consequence of Lemma 10.11 and Theorem 10.55
of Siegmund [57])

√
mE[Bτ̃H ∆t − log(H /S0)] → β1σ

√
T (4)

so β1σ
√

T/m approximatesE[Bτ̃H ∆t ] − log(H /S0). Taylor expansion further
suggests the approximations

E[Sτ̃H ∆t ] = S0E[exp(Bτ̃H ∆t )] ≈ S0E[1 + Bτ̃H ∆t ]

≈ S0(1 + log(H /S0) + β1σ
√

T/m)

≈ Heβ1σ
√

T/m.

This interpretation is also reflected in the precise result

P(τ̃H ≤ m) = P(τH exp(β1σ
√

∆t) ≤ T) + o(1/
√

m). (5)

See [13] for a more detailed treatment in this context and see Siegmund [57] and
Siegmund and Yuh [58] for mathematical underpinnings.5

In light of (3) and the fact thatE[ST ] = erT S0, pricing a discrete lookback
put at the inception of the contract entails the evaluation ofE[eM̃m]. Here is a
heuristic argument from the barrier correction to an approximation for lookbacks.
For anyx > S0, we have
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{τ̃x ≤ m} = {S0eM̃m > x} and {τx ≤ T} = {S0eM ≥ x}.

We may therefore rewrite (5) as

P(S0eM̃m > x) ≈ P(S0eM > xeβ1σ
√

T/m).

By integrating, we get

E[S0eM̃m] =
∫ ∞

0
P(S0eM̃m > x) dx

≈
∫ ∞

0
P(S0eM > xeβ1σ

√
T/m) dx

= e−β1σ
√

T/m
∫ ∞

0
P(S0eM > y) dy

= e−β1σ
√

T/mE[S0eM ], (6)

which suggests a correction mechanism for relating discrete and continuous look-
backs. However, it appears to be impossible to turn this heuristic sketch into a
valid argument, because (5) holds only forx > S0 and this approach requires
integrating down tox = S0. The correction can be justified by appealing to rather
different results of Asmussen, Glynn, and Pitman [5]; by following and extending
their approach, we in fact arrive at a second-order correction.

It follows from Theorem 2 and Lemma 6 of Asmussen, Glynn, and Pitman
[5] that

β1 = lim
m→∞

√
mE[M − M̃m]

σ
√

T
(7)

and that

β2
4
= lim

m→∞
m[(M − M̃m)2]

σ2T

exists. Though no simpler expression is available forβ2, we have found numer-
ically that β2 ≈ 0.425. We now have

Theorem 2 Let V denote the price of a continuous lookback put or call at the
inception of the contract, and let Vm be the price of an otherwise identical discrete
lookback. Define

γ± =
1
2

[
σ√
2π

e− µ2T

2σ2 ±
(

µ
√

TΦ(µ
√

T/σ) − µ
√

T
2

)]
,

whereµ = r − 1
2σ2 and Φ denotes the cumulative standard normal distribution.

Then

Vm = (V + S0)

(
1 − β1σ

√
T√

m
+

γ
+

√
T + 1

2β2σ
2T

m

)

−S0 + Cov[eM , M̃m − M ] + o(1/m) (8)
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for puts and

Vm = (V − S0)

(
1 +

β1σ
√

T√
m

+
γ−

√
T + 1

2β2σ
2T

m

)

+S0 − Cov[e−M ′
, M̃ ′

m − M ′] + o(1/m) (9)

for calls, where M′ = max0≤t≤T (−Bt ) and M′
m = max0≤k≤m(−BkT/m).

If we expand only up to terms of order 1/
√

m, we get

Vm = (V + S0)

(
1 − β1σ

√
T√

m

)
− S0 + o(1/

√
m)

for a lookback put. In view of (3) and the fact thate−rT E[ST ] = S0, this is
equivalent to the statement

S0E[eM̃m] = S0E[eM ]

(
1 − β1σ

√
T√

m

)
+ o(1/

√
m);

and this in turn is equivalent to

S0E[eM̃m] = S0E[eM ]e−β1σ
√

T/m + o(1/
√

m),

by Taylor’s theorem. Thus, Theorem 2 is consistent with – and indeed refines –
the approximation arrived at heuristically in (6).6

Asmussen, Glynn, and Pitman [5] show that
√

m(M̃m−M ) andM are asymp-
totically independent. It follows through a uniform integrability argument that

√
mCov[eM , M̃m − M ] → 0,

so there is no covariance term when we expand to terms of order 1/
√

m. How-
ever, we may not have convergence to zero when the covariance is scaled by
m; indeed, it appears thatmCov[eM , M̃m − M ] converges to a constant. It is
not clear how this constant should depend on the drift and variance parameter
of Bt , so it seems difficult to include this term in a practical approximation. In
numerical examples we find that this term is very small and therefore omit it.
We refer to the expressions in (8) and (9) – even without the covariance terms
– as “second-order approximations,” though the error is strictlyo(1/m) only if
the covariance terms are included.

Theorem 2 applies only at the inception of the contract. At an arbitrary time
0 < t < T in the life of a continuous lookback put, its value is

V (S+) = e−r (T−t)E[max{S+, max
t≤u≤T

Su}] − St , (10)

where S+ = max0≤u≤t Su. The price of a continuous lookback call similarly
depends onS− = min0≤u≤t Su and mint≤u≤T Su. The price of a discrete lookback
put at thekth fixing is
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Vm(S+) = e−r (m−k)∆t E[max{S+, max
k≤j ≤m

Sj ∆t}] − Sk∆t , (11)

with S+ = max0≤j ≤k Sj ∆t . The value of discrete lookback put at thekth fixing ad-
mits an analogous expression involvingS− = min0≤j ≤k Sj ∆t and mink≤j ≤m Sj ∆t .
We refer toS− andS+ as thepredetermined minandmax respectively. The fact
that these are calculated differently for discrete and continuous options is incon-
sequential: when an option is valued the correspondingS± is known and acts as
a parameter of the payoff function, just like the strike in a standard option. We
now have

Theorem 3 The price of a discrete lookback at the kth fixing date and the price
of a continuous lookback at time t= k∆t satisfy

Vm(S±) = ±
[
e∓β1σ

√
T/mV (S±e±β1σ

√
T/m) + (e∓β1σ

√
T/m − 1)St

]
+ o(1/

√
m),

(12)
where, in± and∓, the top case applies for puts and the bottom for calls.

In the case of a put, some algebra shows that (12) is equivalent to

E[max{ max
k≤j ≤m

Sj ∆t , S+}] = e−β1σ
√

(T−m)/mE[max{ max
t≤u≤T

St , eβ1σ
√

T/mS+}]

+o(1/
√

m).

Theorem 3 may therefore be interpreted as follows: to value a discrete lookback
put using the continuous price, first inflate the predetermined max by a factor of

eβ1σ
√

T/m, then deflate the expected maximum over [0, T] by the same factor.
For a lookback call, first deflate the predetermined min, then inflate the expected
minimum.

The last case we consider in detail is the pricing of a hindsight option. The
price of a continuous hindsight call at timet with predetermined maxS+ and
strike K is

V (S+, K ) = e−r (T−t)E[(max{S+, max
t≤u≤T

Su} − K )+];

similarly,
V (S−, K ) = e−r (T−t)E[(K − min{S−, min

t≤u≤T
Su})+]

is the price of a continuous hindsight put. The discrete counterparts at thekth

fixing date are

Vm(S+, K ) = e−r (m−k)∆t E[(max{S+, max
k≤j ≤m

Sj ∆t} − K )+]

and
Vm(S−, K ) = e−r (m−k)∆t E[(K − min{S−, min

k≤j ≤m
Sj ∆t})+].

Conze and Viswanathan [23] provide explicit formulas for the continuous prices.
The next result shows how to adjust these formulas to price the discrete versions:



Discrete path-dependent options 63

Theorem 4 For hindsight options,

Vm(S±, K ) = V (S±e±β1σ
√

T/m, Ke±β1σ
√

T/m)e∓β1σ
√

T/m + o(1/
√

m),

where, in± and∓, the top case applies for calls and the bottom for puts.

In fact, there is a simple relationship between hindsight calls (puts) and
lookback puts (calls) at an arbitrary timet ∈ [0, T]. Using the identity (x −y)+ =
max(x, y) − y, we have

V c(S+, K ) = e−r (T−t)E[(max{S+, max
t≤u≤T

Su} − K )+]

= e−r (T−t)E[max{S+, max
t≤u≤T

Su, K} − K ]

= e−r (T−t)E[max{S+, max
t≤u≤T

Su, K} − ST + ST − K ]

= e−r (T−t)E[max{S+, max
t≤u≤T

Su, K} − ST ] + St − e−r (T−t)K

= V p(max(S+, K )) + St − e−r (T−t)K , (13)

whereV c(S+, K ) is the price of a continuous hindsight call with predetermined
maxS+ and strike priceK , andV p(max(S+, K )) is the price of a continuous look-
back put with predetermined max given by max(S+, K ). Similarly, the discrete
versions of these options satisfy

V c
m(S+, K ) = V p

m(max(S+, K )) + Sk∆t − e−r (m−k)∆t K , (14)

at k = 1, . . . , m. The result in equation (13) is useful because it simplifies some
formulas and derivations in the existing literature. Equation (14) is similarly
useful since it shows that any numerical method for pricing lookbacks can be
used to price hindsight options.

In the next section, we give some numerical examples illustrating the ac-
curacy of the corrected pricing formulas in Theorems 2–4. This is not entirely
straightforward because computing very accurate prices (accurate enough to re-
liably measure the error in our approximations) for the options we consider is
difficult using standard implementations of binomial or trinomial trees. So, we
first we develop specially tailored numerical procedures for pricing these options
accurately; several of these exploit corrections analogous to those in our approx-
imate formulas. Extensive numerical results supporting Theorem 1, based on one
of these methods, are reported in Broadie, Glasserman, and Kou [13].

3 Lattice methods for discrete options

In this section, we develop numerical procedures which can compute the prices
of the options considered in Sect. 2 to a high degree of accuracy in a reasonable
amount of computing time. The terms “high degree of accuracy” and “reasonable
amount of computing time” will be quantified shortly. Accurate numerical meth-
ods are necessary to test the effectiveness of approximation methods and also
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to price American-style versions of the options. We begin with discrete barrier
options, then consider discrete lookback options, and finally examine discrete
numerical methods for pricing continuous lookback options.

In several cases, the numerical procedures use shifting techniques analogous
to those in Theorems 1–4. To see what sort of adjustment one should expect,
recall thatβ1 arose in (4) as the limiting expected overshoot over a boundary for
a random walk with normal increments. Lattice methods approximate Brownian
motion by a random walk with increments of the form±a (in the binomial case)
or ±a and 0 (in the trinomial case). The “average” overshoot over a boundary
for such a random walk isa/2, so in correcting lattice methods we should expect
to see a factor of 1/2 rather thanβ1. Also, whereas previously the relevant time
increment wasT/m, with m the number of monitoring dates, now the relevant
time increment isT/n, with n the number of steps in a tree.

3.1 Lattice methods for discrete barrier options

In order to accurately price discrete barrier options we propose a trinomial lattice
procedure with several important modifications to speed convergence. Before de-
scribing our method, we show that straightforward implementations of several
alternative procedures are inadequate for computing highly accurate prices.7 Sup-
pose we wish to compute the true price of a discrete down-and-out barrier option
with parametersS0 = K = 100,σ = 0.6, r = 0.1, T = 0.2, H = 95, andm = 50,
and we would like to estimate the true price to within about $0.001, i.e., one-
tenth of a cent accuracy. This is a particularly difficult test case because of the
high volatility and the close proximity ofH to S0. Monte Carlo simulation is
an obvious numerical procedure to test. Running one million simulation trials
gave a 95% confidence interval of [6.339, 6.404], which has a width of about six
cents. To achieve a confidence interval width of 0.1 cents by simulation would
require approximately 4.2 billion simulation trials, requiring approximately 10
days of computing time on an Intel Pentium 133MHz processor. The situation
can be improved slightly using the European option value as a control variate.
A one million trial simulation gave a 95% confidence interval of [6.342, 6.384],
with a width of about four cents. To achieve a width of one-tenth of one cent
would still require approximately 1.8 billion simulation trials.8

Next we review the standard trinomial approach proposed in Boyle [9] and
extended in Kamrad and Ritchken [37], and then discuss our modifications to
price discrete barrier options more accurately. The trinomial approach approx-
imates the continuous-time continuous-state lognormal process forS by a tree
which has three outcomes at each node. Beginning from stateS at timet , the tri-
nomial process moves to stateuS, S, or dS at timet +h with probabilitiespu, p,
andpd, respectively. Here,h = T/n represents an arbitrary time step parameter.
The asset price multipliersu andd are given by

u = eλσ
√

h and d = e−λσ
√

h = 1/u,
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whereλ is a “stretch” parameter which will be discussed shortly. The probabilities
are set to

pu =
1

2λ2
+

µ
√

h
2λσ

, p = 1 − 1
λ2

, and pd = 1 − pu − p,

whereµ ≡ r − σ2/2. With these choices of parameters, the mean and variance
of the discrete trinomial process match the first two moments of the lognormal
asset price process given in (1).

For λ = 1, p = 0, and the trinomial method specializes to the binomial

approach of Cox, Ross, and Rubinstein [24]. Forλ∗ 4
=
√

3/2 ≈ 1.225, p = 1/3
and the probabilitiespu andpd converge to 1/3 ash → 0. Boyle [9] recommends
this particular choice forλ and Omberg [50] provides additional motivation for
this choice. The trinomial method requires approximately 50% more computation
time compared to the binomial method for the same number of time steps. Broadie
and Detemple [14] show that for standard American options without barriers, the
trinomial method’s increased accuracy (compared to the binomial approach) is
very nearly offset by the increased computational time. This indicates that the
additional branching does not, by itself, represent a significant improvement.
We will see that the benefit from using a trinomial method lies instead in the
additional degree of freedom it provides in building a tree.

In the barrier option context, a particular advantage of the trinomial approach
is the flexibility provided by the stretch parameterλ. For the binomial method,
Boyle and Lau [10] found that the placement of the nodes in the tree relative to
the barrier radically affects the convergence of the binomial method for pricing
continuous barrier options. If a layer of nodes is just beyond the barrier, then the
option prices are significantly closer to the true value. In the binomial method,
the proper alignment of the nodes and the barrier only happens for certain values
of n which can be computed in advance. For discrete barriers, if we also require
the number of time stepsn to be divisible by the number of discrete barrier
pointsm, the resulting “good” values ofn may be unreasonably large. Ritchken
[53] suggests a trinomial approach for pricing continuous barrier options because
the stretch parameterλ can be chosen so that the barrier and a layer of nodes
coincide for any number of time stepsn.9,10

To price a discrete barrier option using the trinomial method with approxi-
mately n time steps, first adjustn to the nearest integer which is divisible by
the number of monitoring pointsm. In order to chooseλ, Ritchken [53] sug-
gests tentatively settingλ = 1, determining where the barrier falls relative to the
node layers, and then increasingλ until a layer of nodes coincides with the bar-
rier. This is thebasic trinomial methodfor pricing discrete barrier options. Even
though the trinomial method works well for pricing continuous barrier options,
we will see that this straightforward extension to pricing discrete barrier options
does not work well.

To this basic method, we recommend several improvements. First, the dis-
crete barrier at levelH is replaced by a discrete shifted barrier at level
H ′ = He±0.5λ∗σ

√
h (with + for an up option and− for a down option). The
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factor of 1/2 is, as previously noted, the analog ofβ1 for a trinomial random
walk. This shift is also analogous to the continuity correction applied to the nor-
mal distribution as an approximation to the binomial distribution. See, e.g., Feller
[25] for a discussion of this correction.11 Second, the number of time stepsn
and the stretch parameterλ are determined as described below. Third, we begin
the option price calculation at the (m− 1)st barrier point. At this time the barrier
option corresponds to a simple European-type option, which can be priced using
the Black-Scholes formula or a simple variation. In order to choosen andλ, we
tentatively setλ = λ∗ and defineλ1 to be the smallest value larger thanλ so
that a layer of nodes coincides with the shifted barrier andλ2 to be the largest
value smaller thanλ so that a layer of nodes coincides with the shifted barrier.
Now consider various time stepsn = km, for k = 0, 1, . . . , k′, where wherek′

corresponds to the first time a layer of nodes crosses the shifted barrier (i.e., the
first decrease inλ1(k)). From this set, choose the number of time steps which
minimizes |λi (k) − λ∗| for i = 1, 2 andk = 0, . . . , k′. In short, this procedure
produces ann which is divisible bym, a stretch parameterλ which is close to
λ∗,12,13 and a layer of nodes which coincides with the shifted barrier. We refer
to the combination of these techniques as theenhanced trinomial method.14

In order to evaluate these methods, we first compare them in special cases
when the discrete barrier option price can be computed exactly. Formulas for
discrete barrier options in terms of cumulative multivariate normal distributions
are given in Heynan and Kat [35]. The algorithm in Schervish [55,?] can be
used to evaluate these distributions when the number of monitoring points is
small (e.g., five or less). Table 1 shows how the basic and enhanced trinomial
methods perform when pricing a particular down-and-out call option. The basic
trinomial method has a large 13.7 cent error withn = 248 steps and still has an
unacceptably large error of 3.7 cents withn = 8000 steps. The enhanced trinomial
method already achieves penny accuracy at 256 times steps. The monotonicity of
the prices as the number of steps increases suggests that Richardson extrapolation
(see Geske and Johnson [28]) can be used to further improve convergence. The
enhanced trinomial method appears to have linear convergence, so the relevant
two-point Richardson extrapolation formula isP = aPk + bPn, wherePn is the
price with n steps,Pk the price withk > n steps,a = k/(k − n) andb = 1− a.
Whenk = 2n, the formula is simply

P = 2P2n − Pn. (15)

The basic trinomial method appears to have slower square-root convergence.
In this case, the relevant two-point Richardson extrapolation formula isP =
aPk + bPn, with k > n, a =

√
k/(

√
k − √

n) and b = 1 − a. Whenk = 2n, the
formula is simply

P = 3.414P2n − 2.414Pn. (16)

In order to get a more meaningful comparison of the methods, we priced
a random sample of 500 options. The distribution of parameters for the test is:
S = 100,σ is uniform on [0.1,0.6],r is uniform on [0, 0.1],T is uniform on [0.1,



Discrete path-dependent options 67

Table 1. The discrete down-and-out call option parameters are:S = K = 100, H = 95, T = 0.2,
σ = 0.6, r = 0.1, andm = 4. The basic method uses square-root exptrapolation, the enhanced uses
linear extrapolation. The true price is 9.49052.

Enhanced trinomial Basic trinomial
2-pt 2-pt

n λ Price Extrap. n λ Price Extrap.
256 1.22365 9.49690 248 1.00346 9.35373
504 1.22598 9.49349 9.4899 500 1.06861 9.33210 9.27990

1240 1.22397 9.49189 9.4907 1000 1.00750 9.38524 9.51352
2308 1.22450 9.49124 9.4905 2000 1.06861 9.41166 9.47541
4524 1.22454 9.49090 9.4905 4000 1.00750 9.43805 9.50177
8632 1.22485 9.49072 9.4905 8000 1.00575 9.45352 9.49086

1.0], H is uniform on [70, 95], andK is uniform on [1.1H , 130] (conditional
on H ), and m = 3. The methods were compared based on RMS-relative error
over all options in the test set with a true price of at least $0.50. The results are
shown in Fig. 1. The error of the enhanced trinomial method is more than one
order of magnitude smaller than the basic method for comparable work. When
both methods are improved by two-point Richardson extrapolation, the enhanced
method dominates by about two orders of magnitude for comparable work. The
linear convergence rate of the enhanced method is also evident in Fig. 1.
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Fig. 1. Comparison of trinomial methods for pricing discrete down-and-out call options withm = 3
barrier points. Computation speed is measured in option prices computed per second on a 133MHz
Pentium processor. RMS relative error is given in percent. Preferred methods are in the upper-left
corner. The numbers next to the methods indicate the average number of time steps over the sample
of 500 options. Square-root extrapolation is used with the basic method; linear extrapolation is used
with the enhanced method.

Next we compare the enhanced method, with and without extrapolation, and
the approximation in Theorem 1 for pricing discrete barrier options with different
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monitoring frequencies. The results for 500 options with the same parameter
distribution are shown in Fig. 2. For daily and weekly monitoring of the barrier
the true option price is not known, so we use the price generated by the enhanced
trinomial method with 10,000 and 20,000 steps and two-point extrapolation. The
enhanced trinomial method performs better with less frequent monitoring of the
barrier; equivalently, the error is reduced as the number of trinomial time steps
between monitoring points increases. In contrast, the error of the approximation
in Theorem 1 decreases quickly as the number of monitoring points increases.
Going from weekly to daily monitoring increases the number of barrier points
by a factor of 4.8 (=250/52), while the error of the approximation in Theorem 1
decreases by a factor of 23 (from 0.158% to 0.007%). The 0.007% error of
the approximation with daily monitoring is roughly equivalent in accuracy to
11,000 steps with the enhanced trinomial method (and is roughly five orders of
magnitude faster to compute). Although not illustrated in Fig. 1, the accuracy of
the approximation improves very fast as the barrierH moves away fromS, even
for a small number of monitoring points.

3.2 Lattice methods for discrete lookback options

Lattice methods for pricing lookback options have been proposed in Babbs [6],
Cheuk and Vorst [21], and Hull and White [36], and compared in Kat [38]. The
previous work has not explored convergence rates nor examined the modifications
necessary to incorporate a predetermined min or max into the algorithm. (These
require some care.) In this subsection we focus on discrete lookbacks; continuous
lookbacks are treated in the next subsection.

The main computational difficulty in pricing lookback options, compared to
standard options, is path dependence. The Hull and White [36] algorithm accounts
for path dependence by keeping track of the current asset value and the current
minimum (or maximum) value achieved. This leads to a very flexible method,
but the extra dimension causes a great sacrifice in computational speed. Babbs
[6] and Cheuk and Vorst [21] propose a clever transformation that eliminates
the added dimension. They do this by constructing a binomial tree for the state
variable defined by the ratio of the current minimum (or maximum) price to the
current asset price. We follow this approach, but use trinomial trees instead of
binomial trees. The added flexibility of the trinomial method becomes important
after the initiation of the option contract, when the predetermined max or min
may differ from the current asset price.

Briefly, the trinomial method applied to lookback calls builds a tree for the
state variableR = S+/S. From stateR at timet , the process moves to stateRu, R,
or Rd, at timet +h. (Exceptions occur at monitoring times for discrete lookbacks
or at the boundaryR = 1 for continuous lookbacks.) Pricing is done using pseudo-
probabilitiesp′

u = puu, p′ = p, andp′
d = pdd. Details of the binomial version of

this procedure are given in [6], [21], and [38].
The convergence of the trinomial method for pricing discrete lookbacks is

illustrated in Table 2. For a small number of monitoring points, the true value of
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Fig. 2. Performance of the enhanced trinomial method for pricing discrete down-and-out call options
with daily, weekly, and three monitoring times of the barrier. The numbers next to the methods indi-
cate the average number of time steps. RMS relative error is given in percent. Preferred methods are
in the upper-left corner.Dashed linesindicate 2-point linear extrapolation results. The approximation
in Theorem 1 has errors of 1.500%, 0.158% and 0.007% form = 3, weekly, and daily monitor-
ing, respectively, and a computation speed of 25,000 options per second. The modified correction
partial barrier approximation of [13] has errors of 0.273%, 0.046%, and 0.010% for the respective
monitoring frequencies, and a computation speed of 2,000 options per second.

the option can be determined from the formula in [34] and numerically evaluated
using the algorithm in [55, 56]. Convergence of the trinomial method appears to
be linear in the number of time steps. Two-point Richardson extrapolation using
(15) further improves matters.

Next we examine the error of the first-order approximation

Vm ≈ (V + S0)e−β1σ
√

T/m − S0 (17)

and the second-order approximation in Theorem 2 (omitting the covariance
terms). Table 3 shows results for a particular discrete lookback put option as
the number of monitoring points increases. Note that monthly, weekly, and daily
monitoring correspond tom = 6, 26, and 125, respectively. In Table 3, the
“true” value is approximated by the trinomial method with 200 and 400 time
steps between monitoring times and two-point extrapolation. For example, for
m = 160 the true price is given by the extrapolation of the 32,000 and 64,000
step trinomial tree values. The first-order approximation exhibits approximately
linear convergence: doubling the number of monitoring points cuts the error by
about half. The second-order approximation is much more accurate than the first-
order approximation and has a faster convergence rate as well. The second-order
approximation achieves “penny accuracy” atm = 40 monitoring points in this
example.
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Table 2. Convergence of the trinomial method for pricing a discrete lookback put option. The
parameters are:S0 = 100,r = 0.1, σ = 0.3, T = 0.2, with the number of monitoring pointsm varying
as indicated. Withm = 4 monitoring points the true option price is 6.574365. The trinomial method
usesλ∗ = 1.22474. Linear extrapolation is used in the 2-pt Extr. columns.

m = 4 m = 50
n Price 2-pt Extr. n Price 2-pt Extr.
200 6.56845 200 8.91972
400 6.57140 6.57435 400 8.93387 8.94801
800 6.57288 6.57436 800 8.94104 8.94821

1600 6.57362 6.57436 1600 8.94471 8.94838
3200 6.57399 6.57437 3200 8.94657 8.94842
6400 6.57418 6.57437 6400 8.94750 8.94843

Table 3. Performance of the first- and second-order approximations for pricing a discrete lookback
put option. The parameters are:S0 = 100, r = 0.1, σ = 0.3, T = 0.5, with the number of monitoring
pointsm varying as indicated. The continuously monitored option price is 15.35256.

m True 1st-Order 2nd-Order Error1 Error2
5 10.06425 9.15000 10.18203 −0.91424 0.11779

10 11.39775 10.93133 11.44688−0.46642 0.04913
20 12.44463 12.20843 12.46604−0.23620 0.02141
40 13.23942 13.12034 13.24909−0.11908 0.00967
80 13.82950 13.76963 13.83398−0.05986 0.00449

160 14.26104 14.23100 14.26317−0.03004 0.00213

In order to more systematically test the convergence of the trinomial method
and the error of the first and second-order approximations, we priced a random
sample of 500 options. The distribution of parameters for the test is:S = 100,
σ is uniform on [0.1,0.6],r is uniform on [0, 0.1] andT is uniform on [0.1,
1.0]. Finally, each parameter is selected independently of the others. Error is
measured by RMS-relative error over all options in the test set with a true price
of at least $0.50. The results are shown in Fig. 3. Form = 3 the true price
is computed analytically. For weekly and daily monitoring, the true price is
approximated by the trinomial method with 10,000 and 20,000 steps and two-
point extrapolation. The error of the trinomial method appears to decrease linearly
with the number of time steps. The trinomial error increases with the monitoring
frequency, indicating that the number of steps between monitoring points is
an important variable. Two-point extrapolation appears to increase the order of
convergence. (In fact, withm = 3 monitoring points, the error of the trinomial
method plus extrapolation is difficult to measure, so that only a single point is
shown on the graph.) For daily monitoring, the second-order approximation has
an error comparable to a 2,000 step trinomial tree (without extrapolation) and is
four orders of magnitude faster to compute.

After the inception of a lookback contract, the value of the option depends
on the current asset price as well as the current (i.e., predetermined) maximum
or minimum price. In the trinomial lookback method where the state variable
is the ratio of the current max (or min) to the current asset price, layers of
nodes correspond to the ratiosS+/S = ej λσ

√
h for j = 0, 1, . . .. In order to

have this equation hold exactly for arbitrarily specifiedS andS+, we first solve
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Fig. 3. Performance of the trinomial method to price discrete lookback put options with daily,
weekly, and three monitoring times of the maximum. Computation speed is measured in option
prices computed per second on a 133MHz Pentium processor. RMS relative error is given in percent.
The numbers next to the methods indicate the average number of time steps.Dashed linesindicate
2-point linear extrapolation results. The first-order approximation in (17) has errors of 15.620%,
2.014%, and 0.394% form = 3, weekly, and daily monitoring, respectively, and a computation speed
of 62,500 options per second. The second-order approximation of Theorem 2 (omitting the covariance
term) has errors of 3.475%, 0.228%, and 0.035% for the respective monitoring frequencies, and a
computation speed of 45,000 options per second.

S+/S = ej λ∗σ
√

h for j (this corresponds to finding which layer of nodes the current
ratio falls between using the stretch parameterλ∗), then we roundj to the nearest
integer, and finally we adjustλ so that equality holds exactly. In short, we find
the λ closest toλ∗ so that the current ratio falls exactly on a layer of nodes
in the trinomial tree. For a small number of monitoring points we compared
analytical option values using the formula in [34] with the values generated from
the trinomial method. The trinomial values converged as expected, and the results
were comparable to those in Table 2 (and so are not reported).

In order to assess the effectiveness of the approximation in Theorem 3, we
priced discrete lookback put options with different monitoring frequencies and
two values for the predetermined max. The results are presented in Table 4. The
true values were estimated from the trinomial method with 200 and 400 time steps
between monitoring times and two-point extrapolation. The results show errors
which decrease approximately linearly with the number of monitoring points.
Smaller errors are obtained when the predetermined maxS+ is further from the
current asset priceS. As mentioned earlier, these results are exactly comparable
for the corresponding discrete hindsight call option.
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Table 4. Performance of the approximation of Theorem 3 for pricing a discrete lookback put option
with a predetermined maximum. The parameters are:S = 100, r = 0.1, σ = 0.3, T = 0.5, with the
number of monitoring pointsm and the predetermined maximumS+ varying as indicated. The option
in the left panel has a continuously monitored option price of 16.84677, the right panel is 21.06454.

S+ = 110 S+ = 120
m True Approx. Error m True Approx. Error

5 13.29955 12.79091 −0.50864 5 18.83723 18.44999 −0.38724
10 14.12285 13.85570 −0.26715 10 19.32291 19.11622 −0.20669
20 14.80601 14.66876 −0.13725 20 19.74330 19.63509 −0.10821
40 15.34459 15.27470 −0.06990 40 20.08297 20.02718 −0.05579
80 15.75452 15.71899 −0.03553 80 20.34598 20.31747 −0.02851

160 16.05908 16.04117 −0.01791 160 20.54389 20.52942−0.01447

3.3 Lattice methods for continuous lookback options

When the maximum or minimum asset price is monitored continuously, analytical
formulas are available for European-style lookback options. However, numerical
procedures are necessary to price American lookback options with continuous
monitoring. In this subsection we explore various modifications to the discrete
trinomial method to price continuous lookbacks. We treat lookbacks with and
without predetermined extrema.

Next we test the performance of the standard trinomial procedure of the pre-
vious subsection for pricing a continuous lookback call option. The left panel of
Table 5 shows the slow convergence of the standard trinomial method. The con-
vergence is approximately square-root in the number of time steps and two-point
extrapolation using equation (16) significantly accelerates convergence. (These
are observations are consistent with those of Asmussen, Glynn, and Pitman [5] in
a simulation setting.) Babbs [6] proposed an alternative approach based on a “re-
flected barrier” and is related to the numerical scheme independently proposed
by Liu [45] and summarized in [5]. Adapting this procedure to the trinomial
method gives improved convergence as shown in the middle panel on Table 5.15

Two-point extrapolation using equation (15) further improves matters. Alterna-
tively, we can adapt the first-order approximation in equation (17) to adjust the
output of the discrete trinomial method for approximating the continuous look-
back price. More precisely, for lookback calls we define thecorrected trinomial
price V ′

n by

V ′
n = (Vn − S0)e−0.5λσ

√
T/n + S0 , (18)

whereVn is the standard trinomial price usingn time steps andλ is the trinomial
stretch parameter. For example, usingn = 25 steps, the price in Table 5 with
the standard method is 9.36106, but the corrected value using equation (18)
is 10.83824. Complete results using equation (18) and two-point extrapolation
using equation (15) are given in the right panel of Table 5. The convergence
of Babbs’ “reflected trinomial” method and of the “corrected trinomial” method
(with and without extrapolation) are essentially indistinguishable and both are
clearly superior to the standard method.16
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Table 5. Performance of three trinomial methods for pricing a continuously monitored lookback call
option. The parameters are:S0 = 100,r = 0.05, σ = 0.3, T = 0.2, with the number of trinomial steps
indicated byn. The left panel is the standard trinomial method; the middle panel is Babbs’ reflection
method; the right panel does a post-pricing correction to the price. All methods use the trinomial
parameterλ∗ = 1.22474. The standard method uses square-root exptrapolation, the other two use
linear extrapolation. The analytical value of the option is 10.71902.

Standard Babbs Corrected
n Trinom 2-pt Extr. Trinom 2-pt Extr. Trinom 2-pt Extr.
25 9.36106 10.66695 10.83824
50 9.73612 10.64150 10.69286 10.71878 10.77882 10.71939

100 10.01267 10.68028 10.70591 10.71896 10.74896 10.71911
200 10.21391 10.69968 10.71246 10.71900 10.73400 10.71904
400 10.35903 10.70937 10.71574 10.71901 10.72651 10.71902
800 10.46306 10.71420 10.71738 10.71902 10.72277 10.71902

1600 10.53733 10.71661 10.71820 10.71902 10.72089 10.71902
3200 10.59019 10.71781 10.71861 10.71902 10.71996 10.71902

Next we digress to illustrate the importance of keeping the trinomial stretch
parameter constant when used in conjunction with extrapolation. Table 6 shows
results for pricing a continuous lookback call option using Babbs’ reflected barrier
trinomial method. The left panel holdsλ constant at 1.02, the middle panel holds
λ constant at 1.42, and in the right panelλ alternates between the two values.
When λ is constant at either 1.02 or 1.42, convergence of the trinomial price
is monotonic, and extremely rapid convergence is obtained using the two-point
extrapolation formula (15). However, whenλ alternates the trinomial values are
not monotonic, and extrapolation actually slows convergence. That is whyλ
is kept close to constant in the enhanced trinomial method for pricing discrete
barrier options and in the method described next.

Table 6. Impact of the choice of the trinomialλ for pricing a continuously monitored lookback call
option. The parameters are:S0 = 100,r = 0.05, σ = 0.3, T = 1.0, with the number of trinomial steps
indicated byn. All trinomial prices use Babbs’ reflection method. Linear extrapolation is used in the
2-pt Extr. columns. The left panel hasλ = 1.02; the middle panel hasλ = 1.42; the right panel has
λ alternating between 1.02 and 1.42. The analytical value of the option is 23.78844.

λ = 1.02 λ = 1.42 λ Alternates
n Trinom 2-pt Extr. Trinom 2-pt Extr. Trinom 2-pt Extr.
100 23.76633 23.72183 23.76633
200 23.77737 23.78841 23.75512 23.78841 23.75512 23.74390
400 23.78290 23.78843 23.77177 23.78843 23.78290 23.81068
800 23.78567 23.78843 23.78010 23.78843 23.78010 23.77731

1600 23.78705 23.78844 23.78427 23.78844 23.78705 23.79400
3200 23.78774 23.78844 23.78635 23.78844 23.78635 23.78566

We have seen that the standard trinomial method converges slowly for pricing
continuous lookback options, but significant speed-ups are possible by adding a
“reflecting barrier” or by “correcting” the price. When there is a predetermined
max or min, the situation changes again. In this case, both methods converge
slowly, but significant improvement is possible by “correcting” the predetermined
min or max before applying either method. For the reflected barrier method, the
corrected minS′

− is defined by
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S′
− = (S−)e2(0.5)λσ

√
h. (19)

The factor of two in (19) appears because of the reflecting boundary, as suggested
by Theorem 10.6 of Siegmund [57].

For the reflected barrier method,λ is chosen the same as in the discrete
lookback case, i.e.,λ is close toλ∗ and a layer of nodes falls exactly on the
current ratio of the predetermined min to the current asset price. For the “corrected
min” method, the min is shifted as in equation (19), withλ initially set at λ∗.
But in order to have the current ratio fall exactly on a layer of nodes,λ must be
adjusted slightly as previously described. Fortunately, this fixed point problem
is easily solved by iterating this procedure, and convergence occurs in a few
iterations.

Numerical results for pricing a continuous lookback call option with a pre-
determined min are given in Table 7. The results show the slow convergence of
Babbs’ reflected barrier trinomial method, with some improvement using two-
point square-root extrapolation. The “corrected min” method converges much
faster, and two-point linear extrapolation works even better. For example, us-
ing 800 steps, the reflected barrier method has an error of 31 cents, while the
corrected min method has achieved penny accuracy. Through equation (13), the
results in Table 7 apply as well to the corresponding hindsight put option.

A summary of the key modifications to the trinomial method for pricing the
options considered in this section appears in Table 8.

Table 7. Performance of two trinomial methods for pricing a continuously monitored lookback call
option. The parameters are:S0 = 110, S− = 100, r = 0.05, σ = 0.3, T = 0.2, with the number of
trinomial steps indicated byn. The left panel is Babbs’ reflection method; the right panel is Babbs’
method plus a shifting of the min as in equation (19). Both methods use the trinomial parameters
close toλ∗ = 1.22474, but withS0/S− lining up on a row of nodes. The reflected barrier method
uses square-root exptrapolation, the corrected min method uses linear extrapolation. The analytical
value of the option is 14.45970.

Babbs Babbs + corrected min
n Trinom 2-pt Extr. Trinom 2-pt Extr.
25 16.10640 14.23807
50 15.70332 14.73030 14.34392 14.44977

100 15.28256 14.26683 14.40389 14.46386
200 15.07963 14.58975 14.43086 14.45782
400 14.87165 14.36960 14.44576 14.46066
800 14.76944 14.52269 14.45249 14.45923

1600 14.67506 14.44724 14.45613 14.45977
3200 14.60977 14.45216 14.45793 14.45973
6400 14.56739 14.46508 14.45881 14.45968

4 Conclusions

We have addressed the problem of pricing path-dependent options depending on
extremal values of the underlying asset when the extremal values are determined
over a discrete set of dates rather than in continuous time. We have introduced
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Table 8. Summary of key modifications for trinomial pricing of discrete and continuous barrier
and lookback options. Details and several additional enhancements discussed in the text are omitted
for brevity. The convergence of each of the methods appears to beO(1/n), so linear extrapolation
further enhances the methods. Without the indicated modifications, convergence for discrete barriers
and continuous lookbacks appears to beO(1/

√
n).

Discrete Continuous
Barrier Layer of nodes on Layer of nodes on
option shifted barrier original barrier

Lookback No adjustment Shift expected extremum
option or add reflection (Babbs)

Lookback with Layer of nodes on Layer of nodes on shifted
predetermined predetermined ratio predetermined ratio; shift
min or max expected extremum or add

add reflection

correction terms that allow the discrete versions to be quite accurately using
formulas for the continuous versions. The correction terms involve shifting a
barrier or a value of the underlying. We have also developed specially tailored
numerical methods to evaluate the approximations and to price the options to
even higher accuracy. These methods entail shifting values in a trinomial tree,
analogous to the shifts used in the approximations.

Appendix: Proofs

A.1. Proof of Theorem 2

In proving Theorem 2, we detail the case of a lookback put. The argument for
calls is symmetric. SinceV = e−rT E[eM ] − S0 and Vm = e−rT E[eM̃m] − S0, (8)
is equivalent to the claim that

E[eM̃m] = E[eM ]

(
1 − β1σ

√
T√

m
+

γ
+

√
T + 1

2β2σ
2T

m

)

+Cov[eM , M̃m − M ] + o(1/m); (20)

the proof of (20) relies on three lemmas.

Lemma 1 For any function f twice continuously differentiable on[0, 1] we have∫ 1

0

f (x)√
x

dx =
1
m

m∑
k=1

f (k/m)√
k/m

− ζ(1/2)f (0)
1√
m

− 1
2

f (1)
1
m

+ O(m−3/2).

Proof. Define g(t) = [f (t2) − f (0)]/t for 0 < t ≤ 1 andg(0) = limt↓0 g(t) = 0.
Then g is twice continuously differentiable on [0, 1], and therefore by Lemma
5(b) of Asmussen, Glynn, and Pitman [5],∫ 1

0
g(

√
x) dx =

1
m

m∑
k=1

g(
√

k/m) +
g(0) − g(1)

2m
+ O(m−3/2).
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Substituting forg we get∫ 1

0

f (x)√
x

dx −
∫ 1

0

f (0)√
x

dx =
1
m

m∑
k=1

f (k/m) − f (0)√
k/m

+
f (0) − f (1)

2m
+ O(m−3/2),

and thus∫ 1

0

f (x)√
x

dx =
1
m

m∑
k=1

f (k/m)√
k/m

+ f (0)

(∫ 1

0

1√
x

dx − 1
m

m∑
k=1

1√
k/m

)

+
f (0) − f (1)

2m
+ O(m−3/2).

It follows from Knopp [40, p.538] that(∫ 1

0

1√
x

dx − 1
m

m∑
k=1

1√
k/m

+
ζ(1/2)√

m
+

1
2m

)
= O(m−2),

so∫ 1

0

f (x)√
x

dx =
1
m

m∑
k=1

f (k/m)√
k/m

+ f (0)

(−ζ(1/2)√
m

− 1
2m

+ O(m−2)

)

+
f (0) − f (1)

2m
+ O(m−3/2)

=
1
m

m∑
k=1

f (k/m)√
k/m

− ζ(1/2)f (0)
1√
m

− 1
2

f (1)
1
m

+ O(m−3/2). �

Lemma 2 As m→ ∞,

E[eM̃m] = E[eM ]

(
1 + E[M̃m − M ] +

β2σ
2T

2m

)
+ Cov[eM , M̃m − M ] + o(1/m).

Proof. By Taylor expansion we get

eM̃m − eM = eM (M̃m − M ) +
1
2

eM̄m(M̃m − M )2,

for someM̄m betweenM̃m and M . As m increases,M̃m → M , and from Theo-
rem 1 of [5] we know that

√
m(M − M̃m) converges in distribution to a random

variableWσ
√

T independent ofM . Thus,

m(eM̃m − eM − eM (M̃m − M )) (21)

converges in distribution to1
2eM W2σ2T. If eM̄m · m(M̃m − M )2 is uniformly

integrable, we can interchange limit and expectation to conclude that

m(E[eM̃m] − E[eM ] − E[eM (M̃m − M )]) → 1
2

E[eM ]β2σ
2T; (22)

i.e., that
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E[eM̃m] − E[eM ] = E[eM (M̃m − M )] +
1

2m
E[eM ]β2σ

2T + o(1/m)

= E[eM ]E[M̃m − M ] + Cov[eM , M̃m − M ]

+
1

2m
E[eM ]β2σ

2T + o(1/m),

which is equivalent to the statement in the lemma.
It remains to justify the interchange of limit and expectation used to go from

(21) to (22). For this, we use the Cauchy-Schwarz inequality to get

E

[(
eM̄m · m(M̃m − M )2

)2
]

≤
√

E[e4M̄m] ·
√

E[(m(M̃m − M )2)4].

But
sup
m≥1

E[epM̄m] ≤ E[ep max0≤t≤T Bt ] < ∞,

for any p > 0, and
sup
m≥1

E|√m(M̃m − M )|p < ∞
for any p > 0, by Lemma 6 of [5]. These conditions imply uniform integrability
and thus justify the interchange of limit and expectation.�

Lemma 3 As m→ ∞,

E[M̃m − M ] = −β1σ
√

T√
m

+
γ

+

√
T

m
+ O(m−3/2).

Proof. By Spitzer’s identity (see, e.g., Asmussen [4], especially p.174 and p.177)
and the argument in the proof of Theorem 2 of [5], we have

E[M̃m − M ] =
1
m

m∑
k=1

g(k/n) −
∫ 1

0
g(x) dx, (23)

where

g(x) = µTΦ(µ
√

xT/σ) + σ
√

T e− µ2xT

2σ2
1√
2πx

≡ g1(x) +
g2(x)√

x
.

By Lemma 5(b) of [5], the contribution ofg1 to (23) is

g1(1) − g1(0)
2m

+ O(m−3/2) =
1

2m

(
µTΦ(µ

√
T/σ) − µT

2

)
+ O(m−3/2),

and by Lemma 1 the second term contributes

ζ(1/2)g2(0)√
m

+
g2(1)
2m

+ O(m−3/2) =
−β1σ

√
T√

m
+

σ
√

T√
2π

e− µ2T

2σ2

2m
+ O(m−3/2).

The lemma now follows from combining the contributions of the two terms.�
We can now complete the proof of Theorem 2. By substituting the expression

in Lemma 3 forE[M̃n−M ] in the expansion of Lemma 2, we get (20), as required.
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A.2. Proof of Theorems 3 and 4

We need the following preliminary result:

Lemma 4 For any x > 1,

E[(eM̃m − x)+] = e−β1σ
√

∆t E[(eM − eβ1σ
√

∆t x)+] + o(1/
√

m).

Proof. For any random variableX and eventF , the notationE[X; F ] means
E[X1F ], with 1F the indicator ofF . Now we have

E[(eM̃m − x)+]

= E[(eM − x)+] − E[eM − eM̃m; eM̃m > x] − E[eM − x; eM̃m ≤ x < eM ](24)

≡ A − B − C .

We analyze these terms in reverse order. First observe that

C ≤ E[eM − eM̃m; eM̃m ≤ x < eM ].

From the uniform integrability argument in Lemma 3 we know thatE[
√

m(eM −
eM̃m)] converges asm → ∞. Furthermore,P(eM̃m ≤ x < eM ) → 0, so√

mE[eM − eM̃m; eM̃m ≤ x < eM ] → 0 by the dominated convergence theo-
rem; i.e.,C is o(1/

√
m). Next,

B = E[eM − eM̃m; eM > x] − E[eM − eM̃m; eM̃m ≤ x < eM ]

= E[eM − eM̃m; eM > x] + o(1/
√

m), by the argument used forC

= E[eM σβ1

√
∆t ; eM > x] + o(1/

√
m), by the argument used in Lemma 2.

Thus, (24) becomes

E[(eM̃m − x)+] = E[(eM − x)+] − E[eM σβ1

√
∆t ; eM > x] + o(1/

√
m)

= E[eM (1 − σβ1

√
∆t) − x; eM > x] + o(1/

√
m)

= E[eM −σβ1
√

∆t − x; eM > x] + o(1/
√

m)

= e−σβ1
√

∆t E[(eM − eσβ1
√

∆t x)+]

−E[eM − eσβ1
√

∆t x; x ≤ eM < xeσβ1
√

∆t ] + o(1/
√

m),

and

|E[eM − eσβ1
√

∆t x; x ≤ eM < xeσβ1
√

∆t ]|
≤ x(eσβ1

√
∆t − 1)P(logx ≤ M < logx + σβ1

√
∆t)

= O(1/
√

m) · O(1/
√

m) = o(1/
√

m),

which concludes the proof.�

We can now prove Theorem 3. We detail the case of a put; a call works
similarly. Starting from the discrete price we have



Discrete path-dependent options 79

Vm(S+) = e−r (T−t)E[max(S+, eM̃m) − ST ]

= e−r (T−t)(S+ + E[(eM̃m − S+)+]) − St

= e−r (T−t)(S+ + e−β1σ
√

∆t E[(eM − eβ1σ
√

∆t S+)+]) − St + o(1/
√

m)

= e−r (T−t)e−β1σ
√

∆t (eβ1σ
√

∆t S+ + E[(eM − eβ1σ
√

∆t S+)+])

−St + o(1/
√

m)

= e−r (T−t)e−β1σ
√

∆t (E[max(eM , eβ1σ
√

∆t S+) − ST ])

+(e−β1σ
√

∆t − 1)St + o(1/
√

m)

= e−β1σ
√

∆t V (eβ1σ
√

∆t S+) + (e−β1σ
√

∆t − 1)St + o(1/
√

m).

The third equality – the key step – is just Lemma 4. The proof of Theorem 4
follows essentially the same steps. Alternatively, Theorem 4 can be derived from
Theorem 3 by using the relation in (13).
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Endnotes

1 Black and Cox [7, p.354] and Leland [42, p.1221] briefly touch on the distinction between discrete
and continuous monitoring.

2 Ait-Sahlia [2] builds on Chernoff [17] to develop a continuity correction for the exercise boundary
of American options.

3 A continuous dividend yieldδ is easily accommodated by settingν = r − δ; to lighten notation,
we do not treat this case explicitly.

4 Conze and Viswanathan [23] call these partial lookbacks; they allow the payoff on ordinary look-
backs to depend on the minimum or maximum of the underlying over a subinterval of the life of the
option.

5 We recently became aware of Chuang [22] which includes a remark (p.86) independently suggesting
the possibility of using Siegmund’s correction for discrete barrier options. However, the suggestion
is not pursued there.

6 There is a fortuitous element to the consistency of the two approaches. The constantβ1 arises as
the mean of two limiting distributions: the overshoot distribution for a normal random walk (see
(4)) and the difference between the discrete and continuous maximum along a Brownian path (see
(7)). Though they have the same mean, the two distributions are different; in particular,β2 is not
the second moment of the limiting overshoot. So, although the first-order corrections for barrier
and lookback options appear to be quite analogous, they arise in different ways. For an interesting
discussion ofβ1 and related quantities, see Chang and Peres [19].

7 Of course significant improvements may be possible over straightforward implementations. For
some results along these lines, see Andersen and Brotherton-Ratcliffe [3].

8 We also tested low discrepancy (quasi-Monte Carlo) methods using Faure and Sobol’ sequences;
see Boyle, Broadie, and Glasserman [11] for an introduction and references on low discrepancy
methods. These methods do not provide simple error estimates and, in this application, converged
erratically. Using the Faure sequence, a rough estimate of the uncertainty after 10 million points
(which took 70 minutes on an Intel Pentium 133MHz) is 0.5 cents. Results using Sobol’ points were
generally similar. Low discrepancy methods do not, therefore, solve the problem.
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9 More precisely, a value ofλ between one and two can be so chosen as long as the barrierH is
not too close to the initial asset priceS. For example, ifH lies just belowS, then the barrier will
fall betweenS and dS. Then the only feasible stretch parameter will be less than one, which leads
to negative probabilities. In this case, the number of times steps can be increased untilSd coincides
with H . Alternatively, Cheuk and Vorst [20] propose a modification of the trinomial method where
the nodes are shifted to line up with the barrier. Their method works well even if the barrier is very
close to the initial asset price.

10 See Brenner [12] and Li and Lu [44] for related trinomial approaches.

11 Cheuk and Vorst [20] independently proposed an analogous procedure where the tree is constructed
so that the barrier falls between a layer of nodes. They chose to set the tree so that the barrier falls
exactly in the middle of a layer of nodes based on numerical experimentation.

12 Oncen andλ have been determined, the process could be repeated so that the shifted barrierH ′

exactly equalsHe±0.5λσ
√

h. We did not implement this slight improvement.

13 While it is desirable to haveλ close toλ∗, it is more important thatλ be nearly constant asn
is varied for extrapolation purposes. This point is illustrated later in Table 6 in a slightly different
context.

14 This method was used to produce the accurate values in [13] for comparison with the approximation
developed there, though the method itself was not described.

15 At the reflecting boundaryR = 1, we take the pseudo-probability of an upmove to bep′
u + p′

d and
the pseudo-probability of a horizontal move to bep′.
16 Babbs’ reflection method and our correction can both be interpreted as accounting for the fact that
reflected Brownian motion does not spend time at the origin, though a reflected random walk does.
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