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Abstract

This paper develops numerical approximations for pricing collateralized debt obligations (CDOs)
and other portfolio credit derivatives in the multifactor Normal Copula model. A key aspect of pric-
ing portfolio credit derivatives is capturing dependence between the defaults of the elements of the
portfolio. But, compared with an independent-obligor model, pricing in a model with correlated
defaults is more challenging. Our approach strikes a balance by reducing the problem of pricing
in a model with correlated defaults to calculations involving only independent defaults. We develop
approximations based on power series expansions in a parameter that scales the underlying correla-
tions. These expansions express a CDO tranche price in a multifactor model as a series of prices in
independent-obligor models, which are easy to compute. The approach builds on a classical approx-
imation for multivariate Gaussian probabilities; we introduce an alternative representation that
greatly reduces the number of terms required to evaluate the coefficients in the expansion. We also
apply this method to the underlying problem of computing joint probabilities of multivariate normal
random variables for which the correlation matrix has a factor structure.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The market for multi-name (portfolio) credit derivatives has been one of the fastest
growing derivatives markets over the past decade. While credit default swaps have
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facilitated trading in individual sources of credit risk, collateralized debt obligations
(CDOs) and other multi-name credit derivatives have provided new mechanisms for the
transfer of credit risk in an entire portfolio.

An important aspect of the valuation and risk management of multi-name credit deriv-
atives is the modelling of dependence among sources of credit risk. On one hand, risk
models that ignore this dependence and presuppose that obligors default independently
are very tractable, but they omit a crucial feature of a portfolio view of credit risk. On
the other hand, capturing the dependence among obligors comes at a price of increased
complexity, both in the modelling and in the computation of the model’s output, be it
the price of a CDO, the value-at-risk of a portfolio, or the price of some other basket
credit derivative.

Factor models of dependence – in which defaults become independent conditional on a
set of underlying factors – lie at an intermediate level of complexity between independent-
obligor models and models that allow arbitrary dependence. In particular, in a single-factor
model, CDO prices can be computed efficiently using semi-analytical methods and numer-
ical integration (see, for example, Andersen et al., 2003; Laurent and Gregory, 2003). For
more general dependence structures for which no low-factor model provides an accurate fit,
however, computing CDO prices (or other credit derivative prices) generally requires
Monte Carlo simulation. This paper addresses models in which the number of underlying
factors is substantially smaller than the number of names in the portfolio, but not so small
as to allow use of the types of semi-analytic methods used in the single-factor models.

We work within the multifactor Normal Copula framework. We express a CDO tranche
price in a dependent-obligor model as a series of easy-to-compute prices in independent-
obligor models. To be more specific, we scale the obligors’ correlation matrix and expand
the desired tranche price as a power series of the scaling parameter. We then show that each
term in this expansion can be expressed as a weighted finite sum of independent-obligor
prices. Thus, approximating prices in a multifactor model reduces to a series of calls to
an independent-obligor pricing routine. This method takes full advantage of the fact that
independent-obligor prices are quick and easy to compute. We also show how the proposed
approximation can be applied to compute quantities related to sensitivity analysis.

Our approach builds on Kibble’s (1945) generalized tetrachoric series for multivariate
normal random variables, in which a joint probability of correlated normal random vari-
ables is expanded as an infinite series of correlation coefficients. While various methods
exist for special cases of the multivariate normal (e.g., bivariate (Aǧca and Chance,
2003; Vasicek, 1998), trivariate (Kendall, 1941), equal correlation (Somerville, 1954)), Kib-
ble’s approximation is, in principle, general. However, Kibble’s series in its original form
contains a large number of terms and is computationally impractical. The approach we
develop for approximating CDO prices also leads to an alternative and more efficient
way for evaluating Kibble’s series when the underlying correlation matrix has a factor
structure. Indeed, although we focus on computing CDO prices, the same approach can
be used to approximate the expectations of other functions of the loss distribution in
the Normal Copula model.

The rest of this paper is organized as follows. Section 2 provides some background on
CDOs. Section 3 reviews the Normal Copula model for credit risk. Section 4 describes the
approximation regime for CDO prices for portfolios with weakly-correlated obligors. Sec-
tion 5 describes how to extend the result from Section 3 to the case of strong correlation.
In Section 6, we discuss the problem of sensitivity analysis. All technical details are
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deferred to the appendices. The main result is stated formally in Appendix A and its proof
is given in Appendix B.

2. Background on CDOs

2.1. Basic structure

Collateralized debt obligations (CDOs) have become an increasingly popular class of
securities to emerge in the credit derivatives market. The CDO technology offers a way
to redistribute the credit risk of a pool of debt instruments and create a family of securities
with widely different risk profiles, ranging from very safe to highly speculative. For a com-
prehensive background on CDOs, see for example Hull and White (2004) or Schönbucher
(2003). We hereafter describe the fundamental idea. In its most basic form, a CDO struc-
ture may be explained through Fig. 1.

A CDO structure is constructed based on a reference pool of assets, which can consist
of a diversified group of debt instruments – let us consider them bonds for the purpose of
our illustration. The number of obligors generally varies between 50 and 150. These bonds
are subjected to credit risk; in other words, they may default – a situation that, depending
on the recovery rate after default, can result in minor or major losses within the collateral
pool.

CDO tranches offer the opportunity to buy and sell protection from certain a fraction
of these losses. In Fig. 1, a CDO structure is created by ‘‘tranching out’’ credit losses on
the reference pool into three types of securities: (1) an equity tranche, whose upper attach-
ment point is 7% of the maximum loss in the reference portfolio; (2) a mezzanine tranche,
whose attachment points are 7–25%; and (3) a senior tranche, whose lower attachment
point is 25%.

The equity tranche absorbs the first 7% of the losses in the underlying pool. The hold-
ers of the equity tranche are paid a fixed rate specific to this tranche – 35% according to
Fig. 1 – based on the outstanding nominal on the tranche. That is to say, the equity tran-
che holders initially are paid a return of 35% of the whole amount they invested (7% of the
total bond principal). But suppose that, at time T1, losses of 2% have been incurred (the
grey stripe in Fig. 1), then at the subsequent coupon date the equity tranche holders will
Fig. 1. Basic CDO structure.



Fig. 2. Losses absorbed by each tranche.
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be paid 35% of the remaining tranche notional (the unflooded portion in the equity
tranche).

Similarly, the mezzanine tranche periodically receives coupon payments of 15% on the
stochastically decaying tranche notional (initially set to 25% � 7% = 18% of the total
bond portfolio) until the losses reach 25% of the portfolio principal, at which point the
contract is written down. The senior tranche is responsible for all losses in excess of the
25% absorbed by the equity and mezzanine tranches and, being the safest tranche, receives
the lowest coupon rate among the three tranches. Fig. 2 displays the loss absorbed by each
tranche as a function of the aggregated loss in the reference collateral pool.

The CDO structure in Fig. 1 is referred to as a cash CDO. There are natural extensions
to this idea – liability structures with more (or fewer) than three tranches, combinations of
fixed- and floating-coupon assets, and liability asset classes other than bonds. An increas-
ingly popular variation of the CDO technology is the synthetic CDOs, which are very sim-
ilar to cash CDOs, except that the bonds are replaced by credit default swaps; the arranger
of a synthetic CDO passes the default risk on to the CDO tranches, thereby allowing
investors to participate at different risk levels.

2.2. Portfolio loss approach in pricing CDOs

This paper focuses on pricing the CDO tranches using the so-called portfolio loss

approach, in which all cashflows during the life of the CDO are expressed in terms of
the cumulative losses in the reference portfolio at prespecified coupon dates. Thus, the
price of a CDO tranche can be written as an expectation with respect to the distribution
of the underlying portfolio loss process. The detailed explanation of this approach can be
found, for example, in Andersen et al. (2003) and Laurent and Gregory (2003). We now
briefly explain the approach.

From the payoff scheme described in the previous section, one can see that the value of
a CDO tranche equals the default-free cashflows (calculated as a fixed coupon rate on the
entire tranche notional) less the losses resulting from defaults in the reference pool. The
fixed (default-free) leg is non-stochastic, and is valued like a stream of fixed cashflows.
The main issue, therefore, is valuing the default payment leg.



Fig. 3. Default losses absorbed by the mezzanine tranche at an arbitrary time T.
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Let us decompose the default payment leg by considering the contribution from each
coupon period. Suppose that up to the time of the ith coupon payment Ti, the reference
pool has accumulated default losses of LT i . Then, by time Ti, the tranche notional will have
depleted by ðLT i � AÞþ � ðLT i � BÞþ, where A and B are the lower and upper attachment
points, respectively (see Fig. 3). Hence, the expected loss to be experienced by holders
of this tranche during the ith coupon period is EðLT i � AÞþ � EðLT i � BÞþ times the coupon
rate. Discounting this amount to time zero and summing over all coupon periods during
the life of the CDO gives the value of the default payment leg.

Thus, the problem of pricing a CDO tranche is reduced to that of evaluating expecta-
tions of the form E(L � y)+, where L is the cumulative loss in the underlying portfolio at a
specific coupon date, and y is an attachment point. In this paper, the snapshot of the loss
portfolio L at a given coupon date is modelled within the normal copula framework,
described in the following section. We then spend the rest of the paper discussing the com-
putation of E(L � y)+.

3. Normal copula model for credit risk

In this section, we describe the widely used Normal Copula model initiated by Li
(2000), which has become an industry standard for pricing. We consider a CDO con-
structed from a reference portfolio of M obligors. As explained in the previous section,
in order to value a CDO contract we only need the marginal distribution of the aggregated
loss of the reference portfolio at coupon dates. Let L be the accumulated portfolio loss at a
fixed coupon date. To specify the distribution of L, we introduce the following notation:

Y i ¼ default indicator for ith obligor

¼
1 if ith obligor defaults;

0 otherwise;

(
pi ¼ P ðY i ¼ 1Þ ¼ marginal probability that ith obligor defaults;

ci ¼ loss from the default of ith obligor:

The marginal default probabilities pi are assumed known (e.g., from credit spreads for the
prices of credit default swaps). The losses given default ci are assumed known and con-
stant. Then, the portfolio loss at the given coupon date is

L ¼ c1Y 1 þ c2Y 2 þ � � � þ cM Y M : ð3:1Þ

To model dependence among obligors we need to introduce dependence among the default
indicators Y1, . . .,YM. In the normal copula model, dependence is introduced by letting
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Y i ¼ 1fX i > mig; i ¼ 1; 2; . . . ;M ; ð3:2Þ

where (X1,X2, . . .,XM) are correlated Nð0; 1Þ random variables. The ‘‘default boundary’’
mi is chosen to match the default probability, that is

pi ¼ UðmiÞ: ð3:3Þ

where UðxÞ ¼ 1� UðxÞ, with U the cumulative normal distribution.
While the correlation among the Xi may be specified by their correlation matrix, it is a

common practice to introduce the correlation structure through a set of ‘‘factors’’
Z1,Z2, . . .,Zd (d�M),

X 1

X 2

X 3

..

.

X M

26666666664

37777777775
¼

a11

a21

a31

..

.

aM1

26666666664

37777777775
Z1 þ

a12

a22

a32

..

.

aM2

26666666664

37777777775
Z2 þ � � � þ

a1d

a2d

a3d

..

.

aMd

26666666664

37777777775
Zd þ

b1�1

b2�2

b3�3

..

.

bM�M

26666666664

37777777775
: ð3:4Þ

Here, �i and Z1, . . .,Zd are independent Nð0; 1Þ random variables, aij and bi are constants
such that a2

i1 þ � � � þ a2
id þ b2

i ¼ 1 so that Xi is Nð0; 1Þ. Each �i represents risk affecting only
the ith obligor, while Zj’s are risk factors that affect more than one obligor. The factors Zj

are sometimes given economic interpretations (as industry or regional risk factors, for
example). The matrix A = [aij]M·d is the loading matrix, and it completely determines
the correlation matrix C = [qik],

qik ¼
Xd

j¼1

aijakj: ð3:5Þ

In this case, C is said to be of d-factor structure.
We are interested in expectations of the form E(L � y)+. This expectation may be

viewed as the default payment leg of a single-period CDO tranche with lower attachment
point y. As explained in the previous section, the price of a general CDO tranche (multiple
coupon dates with both upper and lower attachment points) can be expressed as a linear
combination of expectations of the form E(L � y)+.

Our objective is to propose a deterministic method for approximating E(L � y)+. In
Section 4, we first present an approximation scheme for the case where the correlation qij’s
are weak. In Section 5, we modify the method to overcome the case of strong correlations.

4. Approximation for weak correlation

4.1. Approximating E(L � y)+

In this section, we decompose the tranche price E(L � y)+ in a dependent-obligor model
into an infinite sum of independent-obligor tranche prices. This expansion suggests a way
to compute the tranche price.

We now describe our method. We begin by parameterizing C, the correlation matrix of
X1, . . .,XM in (3.4). For t 2 [0,1], let
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Ct ¼

1 tq12 tq13 . . . tq1M

tq21 1 tq23 tq2M

tq31 tq32 1 tq3M

..

. . .
.

tqM1 tqM2 tqM3 1

266666664

377777775
: ð4:6Þ

Let Et denote the expectation under which X �Nð0;CtÞ. Note that t = 1 corresponds to
the original model, while t = 0 corresponds to an independent-obligor model. So, as t var-
ies from 0 to 1, Et(L � y)+ is the progression of the tranche price from that of the inde-
pendent-obligor case to the desired price of the given model. It can be shown (see
Theorem 2 in Appendix A) that Et(L � y)+ is analytical in t. That is,

EtðL� yÞþ ¼ d0 þ d1t þ d2

t2

2!
þ � � � ; ð4:7Þ

where d0,d1, . . . are real scalars. The key finding, as stated in Theorem 1 in Appendix A, is
that each di can be computed through a weighted finite sum of independent-obligor tran-
che prices. Thus, (4.7) reduces tranche pricing in a correlated model to simpler calculations
in the independent-obligor case. We now give an outline of the result, leaving the technical
details to the appendix.

According to Theorem 1, dn can be computed through a weighted finite sum of the formX
J

wJ
eEJ ðL� yÞþ: ð4:8Þ

The number of terms in the summation and the corresponding set of weights wJ’s depend
on n and the number of factors d in the correlation structure. In each term, eEJðL� yÞþ is
the expectation under which all obligors of L are independent, with modified default prob-
ability ~pðJÞ1 ; . . . ; ~pðJÞM . These probabilities are perturbations of the original p1, . . .,pM. (See
(A.26) for the perturbation formula.) The magnitude of perturbation is determined by a
real variable s. As s approaches zero, the weighted sum (4.8) converges to dn,X

J

wJ
eEJ ðL� yÞþ !s#0 dn: ð4:9Þ

This results in a method for computing the coefficient dn. In a perfect computer (no round-
off error), we simply set s to be infinitesmally small, then compute the weighted sum (4.8)
to get dn. In practice, we have found that the convergence (4.9) is quite fast, so a moder-
ately small s yields a fairly accurate value for dn.

Note that since every coefficient in (4.7) can be expressed as a weighted sum of indepen-
dent-obligor expectations eEJ ðL� yÞþ, the effect of (4.7) is that it expands the tranche price
of a dependent-obligor model into a series of prices of independent-obligor models.

Now let us discuss the issue of computing time. To compute the nth-order approximate
for Et(L � y)+, we must compute d0,d1, . . .,dn. Most of the computational cost is spent in
computing expectations of the form eEJ ðL� yÞþ in (4.9). In Appendix A, we show that the
number of terms of the form eEJ ðL� yÞþ involved in computing d0, . . .,dn is

nþ 2d

n

� �
;



Table 1
Computing time for the expansion (4.7)

d = 3 d = 5 d = 7 d = 10

1st order 7 11 15 21
2nd order 28 66 120 231
3rd order 84 286 680 1771
4th order 210 1001 3060 10,626

One unit of computing time equals the amount of time it takes to compute an independent-model price.
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where d is the number of factors in the correlation matrix. Table 1 shows the computing
time for computing nth order approximant for some values of d.

The duration of one unit of computing time depends on the method and computing
environment employed to compute independent-obligor tranche prices. In our numerical
experiments, we use the recursive algorithm presented in Andersen et al. (2003) which
builds the loss distribution recursively by adding one obligor per iteration. This recursion
is particularly attractive for us because it gives the exact value of eEJ ðL� yÞþ for any given
independent-obligor loss portfolio L; this ensures that the summation (4.9) converges to
the right limit when we send the perturbation parameter s to zero. Straightforward imple-
mentation of this recursion on MATLAB takes about 0.6 s for a loss portfolio with 200
obligors.

Since our approximation is based on the power series expansion (4.7) of a parameter
that scales the correlation matrix, the magnitude of qij’s primarily determines the order
n at which the expansion becomes accurate. The stronger the correlation among obligors,
the more terms we need in the expansion. Therefore the approximation becomes imprac-
tical if the Xi are highly correlated. In the next section, we will discuss how to deal with
heavier correlation.

The approximation is appropriate when the number of factors d is of moderate size. If d

is small (d 6 2, say), then numerical integration may be a better option. If d = 3, then 210
units of time allow us to compute up to a 4th-order approximation, which can give good
results. In the same amount of time, one can do 3-dimensional numerical integration with
only

ffiffiffiffiffiffiffiffi
2103
p

� 6 points per dimension, which would give poor results.
If d is too large, then the approximation becomes impractical because the number of

terms in the summation (4.9) is not manageable. In this case, a remedy is to fit the corre-
lation matrix C with a lower factor structure. A 10-factor structure may suffice for mim-
icking empirical correlation matrices.

To demonstrate the implementation of Theorem 1, we present a first example. A more
realistic example will be given in the next section when we allow heavier correlation.

Consider a portfolio of M = 50 names. The default probabilities are pi = 0.02 for all
obligors. The exposure of obligor i is given by ci = i, i = 1, . . .,M. The loading matrix
A = [aij]50·5 is a sparse matrix whose nonzero elements are all equal to 0.2. The nonzero
elements in the first column are a1,1, . . .,a12,1; in the 2nd column a9,2, . . .,a22,2; in the 3rd
column a19,3, . . .,a32,3; in the 4th column a29,4, . . .,a42,4; and in the 5th column
a39,5, . . .,a50,5. This factor structure results in sparse (and light) correlation matrix.

Suppose we want to approximate Et(L � y)+ at y = 200 (this is about 16% the total
exposure), using no more than 500 units of computing time. According to Table 1, this
allows us to expand up to 3rd order. Then, the summation (4.9) will be over 286 different
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Fig. 4. Comparing first, second, and third order approximation.
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values of EJ(L � y)+, each of which is computed using independent-model pricing routine
with perturbed probabilities ~pðJÞi from formula (A.26). In this example, we use perturbation
parameter s = 0.1.1 Then the di are obtained from averaging these prices with different sets
of weights. Their values are as follows.
d0 d1 d2 d3

.0012 .0016 .0022 .0026
Therefore, the 3rd-order approximation for Et(L � 200)+ is

ð1:2þ 1:6t þ 2:2t2=2!þ 2:6t3=3!Þ � 10�3:

Fig. 4 compares the first, second, and third order approximation. The true values are rep-
resented with ‘‘�’’. These are computed using Monte Carlo simulation. One can see that at
t = 1, the 3rd-order approximation is quite accurate.
4.2. Approximating other expectations

It is worth noting that, while we have focused only on approximating Et(L � y)+, the
same method can be used to approximate Et[f(L)], where f is an arbitrary function of
the loss portfolio. We can show (see Theorem 2 in Appendix A) that for any f : R! R,
Et[f(L)] admits an infinite-series expansion in t. (We do not need to impose any regularity
conditions on f because L has finite support.) That is,

Et½f ðLÞ	 ¼ l0 þ l1t þ l2

t2

2!
þ � � � ;

where l0,l1, . . . are real constants. Analogous to (4.9), each lk can be calculated through a
weighted finite sum, each of whose terms involves an expectation eEJ ½f ðLÞ	 under which all
1 The parameter s may be taken arbitrarily small, subject only to the limits of machine precision. In our
numerical examples, we have found that smaller values of s produce the same di as s = 0.1, so we use this value
consistently.
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obligors of L are independent. For the formal statement of this result, see Theorem 2 in
Appendix A.

This opens a wide range of application. For example, by choosing f(L) = 1{L > y},
Theorem 2 can be used to approximate the loss distribution and thus to calculate value-
at-risk. This method can also be used to approximate joint probabilities of correlated nor-
mal random variables (see Proposition 2 in Appendix B).
5. Extension to strong correlation case

The approximation scheme described in the previous section performs well when the
correlation among obligors is not too strong. This section shows how to deal with the case
of heavy correlation.

The main modification lies in the parameterization scheme. Instead of parameterizing C

so that t = 0 corresponds to an independent-obligor model as in (4.6), we now parameter-
ize C so that C0 corresponds to a reference correlation matrix R:

Ct :¼ ð1� tÞRþ tC; t 2 ½0; 1	; ð5:10Þ
where R has an r-factor structure. We will discuss the issue of selecting R later; at this
point, we regard R as an r-factor approximation of C. It is important that r should be sig-
nificantly smaller than d – the number of factors in the original correlation matrix C.
(Remember, if d is already small, then there is little point in doing approximation, as
numerical integration can be carried out efficiently.) In the following analysis, we assume
that r = 1. The extension to r > 1 follows in an obvious manner.

Let R have a single-factor structure. That is, for some real scalars c1, . . .,cM,

ði; jÞth element of R ¼
1; i ¼ j

cicj; i 6¼ j

(
: ð5:11Þ

Let Et be the expectation under which the correlation of X1, . . .,XM is the Ct in (5.10). As t

increases from 0 to 1, Et(L � y)+ progresses from the tranche price of a single-factor model
to the desired price. We propose approximations of the form

EtðL� yÞþ � D0 þ D1t þ D2

t2

2!
þ � � � þ Dn

tn

n!
: ð5:12Þ

Presently, we will specify the coefficients Di’s through a conditioning argument and an
application of the result from the previous section.

First, we observe that if X �Nð0;CtÞ, where Ct is given by (5.10) and the reference
correlation matrix R has a single-factor structure (5.11), then X can be decomposed as

X i ¼ ciZ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

i

q eX i: ð5:13Þ

Here, Z �Nð0; 1Þ and eX ¼ ðeX 1; . . . ; eX MÞ is a multivariate normal vector, independent of
Z, with zero mean and correlation structure
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1 tr12 tr13 . . . tr1M

tr21 1 tr23 tr2M

tr31 tr32 1 tr3M

..

. . .
.

trM1 trM2 trM3 1

266666664

377777775
; ð5:14Þ

where rik ¼ ðqik � cickÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2

i Þð1� c2
kÞ

p
. We will refer to Z as the market factor, since it

generates the market-wide correlation R. In this connection, the rij’s may be viewed as the
deviations from the reference correlation matrix R. Conditional on Z, L becomes a loss
model with correlation matrix (5.14). It follows from Section 4 that Et[(L � y)+jZ] admits
an expansion in t.

Et ðL� yÞþ
��Z ¼ z

� �
¼ d0ðzÞ þ d1ðzÞt þ d2ðzÞ

t2

2!
þ � � � ; ð5:15Þ

where the argument of dk(Æ) signifies conditioning on Z = z. For given z, dk(z) can be com-
puted using the method described in Section 4. Comparing (5.12) and (5.15) gives

Dk ¼ E½dkðzÞ	 ¼
Z 1

�1
dkðzÞ

1ffiffiffiffiffiffi
2p
p e�z2=2 dz: ð5:16Þ

Through numerical integration, D0, . . .,Dn can be computed to give the nth order approx-
imant for Et(L � y)+.

Note that computing E(L � y)+ through other methods (Monte Carlo or numerical
integration) involves some form of integrating in d-dimensional space, where d is the num-
ber of factors in the correlation matrix C. The virtue of (5.16), therefore, is that it reduces a
d-dimensional problem to one-layer integration.

The computational effort can be analyzed in units of time as in Section 4. In this case,
however, (5.16) incurs extra cost for evaluating the integral. If the deviations rij in (5.14)
have a d 0-factor structure, then the cost (in units of time) for computing the nth-order
approximant in the heavy correlation case is

K �
nþ 2d 0

n

� �
; ð5:17Þ

where K is the number of points used to evaluate the integral (5.16). Through examples, we
found that dk(z) as a function of z is quite well-behaved and predictable. (See Fig. 2 in the
following example for typical shapes of the curves d1(z) and d2(z).) So, K = 10n typically
gives good results.

The choice of the order of the approximation obviously depends on the rate at which
the series (5.12) converges. Unlike the expansion (4.7) in the previous section, where
t = 0 always corresponds to the independent-obligor case, we now have the freedom to
choose R as the correlation structure at t = 0. Provided that R successfully captures the
most important features of C, the progression of (t,Et(L � y)+) from t = 0 to t = 1 will
nearly be a straight line. So linear and quadratic approximations generally give good
results.

Whereas R supplies the market-wide correlation, the deviations rij represent the excess
correlation within and among groups of obligors. (It is not uncommon to find that



Table 2
Computing time of expansion (5.12)

d 0 = 3 d0 = 4 d0 = 6 d0 = 8

1st order 70 90 130 170
2nd order 560 900 1820 3060
3rd order 2520 4950 13,650 29,070

One unit of computing time equals the amount of time it takes to compute an independent-model price.
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(5.14) has a block structure, such as that described in Gregory and Laurent (2004).)
Therefore, d 0 – the number of factors of the deviations – admits the interpretation of
being the number of sectors in the market. Or, d 0 can simply be the result of fitting a fac-
tor structure to the deviations through principal component analysis. In doing so, how-
ever, keep in mind that d 0 should be selected so that computation is economical. A
reasonable range of d 0 is displayed in Table 2. The computing time is as given in
(5.17) with K = 10n.

Let us now consider the time spent by other methods. In plain Monte Carlo with N

replications, the computing time simply equals N units. To achieve reasonable precision,
the required number of replications can easily be in the tens of thousands. So, according
to Table 2, the 2nd-order (or even 3rd-order) approximation can be competitive for a
wide range of d 0. (This comparison will be made concrete in the numerical example
below.)

Numerical integration consumes one unit of time per point. The number of points used
in numerical integration increases exponentially with the number of factors d in the cor-
relation structure of Xi’s. Note that (5.13) implies that d = d 0 + 1. For example, using
the same amount of time it takes to compute the 3rd-order approximation when d 0 = 3,
numerical integration has about

ffiffiffiffiffiffiffiffiffiffi
25204
p

� 7 points per dimension; evidently, the curse
of dimensionality is more pronounced in numerical integration than in approximation
(5.12).

Before we give a numerical example, let us discuss briefly the means of selecting the
reference correlation matrix R. To ensure that the expansion (5.12) converges within
the first few terms, the choice of R should approximate C. Andersen et al. (2003) give
an efficient algorithm for fitting, in a least square sense, a general correlation matrix with
a low-factor structure. Alternatively, since the original covariance matrix C is often spec-
ified through the factor structure (3.5), a convenient way to choose the base single-factor
correlation matrix R is to pick one of Z1, . . .,Zd as the market factor (the remaining Z’s
will determine the deviation rik’s). This is appropriate especially when one of Z1, . . .,Zd

carries heavier loadings than the others, and is therefore a clear choice for the market
factor.

More generally, one can choose the reference correlation matrix R to be of r-factor
structure, where r > 1. In this case, instead of having one market factor Z in the decom-
position (5.13), we will have r market factors. Consequently, the expectation (5.16) will
become an r-layer integral, and the effort in numerical integration will be exponential in
r. So we should resort to this measure only when the single-factor structure fails to capture
the nature of C.

Example. We consider a portfolio of M = 200 names. For obligor k = 1, . . .,M, the
default probability and the loss given default are
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pk ¼ :02 1þ sin
8pk
M

� �
;

ck ¼
8k
M

� 	2

:

The covariance matrix of the underlying normal random variables has a 7-factor structure
with the following loading matrix.

where h is a column vector of 200 entries, all equal to 0.6; g is a column vector of 50 en-
tries, all equal to 0.4; and e is a column vector of 25 entries, all equal to 0.3. We want to
approximate E(L � y)+ at y = 700 (this is about 7.7 E[L] and about 14% of the maximum
loss) using a 2nd-order approximation (n = 2).

We choose the reference single-factor structure to be the correlation matrix generated
by the first column of A. Consequently, the residual correlations will have a 6-factor
structure. Let d1(z) and d2(z) be the coefficients of the conditioned model. Fig. 5 shows
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Fig. 5. d1(z) and d2(z) for z 2 [1,3].
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d1(z) and d2(z) for a range of z. In this example, 20 values of z are enough to define the
shape of these curves.

From several examples, we have found that the curve d1(z) is generally unimodal, d2(z)
has three extrema, and d3(z) five extrema. Persumably, in general dk(z) has 2k � 1 extrema,
though we have no theoretical result to substantiate this. This information can help save
the number of points used in the integration (5.16) by putting them in strategic spots.

We then use numerical integration to compute the expectation (5.16). As a result, the
first curve integrates to D1 = 5.19, and the second curve integrates to D2 = 2.77. The
reference single-factor model is D0 = E0(L � 700)+ = 6.11. Thus the 2nd-order approxi-
mation is D0 þ D1 þ 1

2 D2 ¼ 12:69. Plain Monte Carlo with 106 replications gives
12.86 ± 0.07 with 95% confidence level.

Fig. 6 shows the true values of Et(L � y)+ at t = 0, .2, .4, .6, .8,1. These are marked by
‘‘s’’. The 1st-order approximation is shown as the solid line, the 2nd-order approximation
as the dashed line. Note that D1 and D2 represent the slope and the convexity at t = 0,
respectively.

Now, let us compare this method with Monte Carlo simulation. Table 3 shows the
computing time and outputs of each approach. We take the estimate in the last line as the
representative for the true value. One can see that the variance of the Monte Carlo
estimate is quite high. So, at 2000 replications, the resulting confidence interval carries
little to no information. On the other hand, the 2nd-order approximation simply involves
straightforward computation of 1820 independent-obligor prices, and gives a fairly
accurate result.
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Fig. 6. First and second order approximation for Et(L � 700)+, t 2 [0,1].

Table 3
Comparing computing time

Computing timea Output

Approximation (5.12)
1st order 260 11.30
2nd order 1820 12.69

Plain Monte Carlo

2000 replications 2000 11.28 ± 5.18b

107 replications 107 12.86 ± 0.07b

a One unit of computing time equals the amount of time it takes to compute an indep-obligor price.
b 95% confidence interval.
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Fig. 7. First (left) and second (right) order approximation for Et(L � y)+ at t = 1 and 0 6 y 6 2500.
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It should be noted that while simulation characterizes error in terms of confidence
intervals, our approximation does not specify errors. A simple way to check the accuracy
of the 2nd-order approximation is to compute the 3rd-order term and see that it is
negligible (this, of course, comes with extra computational cost and does not provide a
rigorous error bound).

Fig. 7 shows the approximation for a range of y. The true values are shown by ‘‘s’’.
The dots on the left plot show the 1st-order approximation, and the right plot shows the
2nd-order approximation. One can see that the 1st-order approximation performs well
for a wide range of y. This means that within this range of y, the progression of
Et(L � y)+ with t is almost linear. As a rule of thumb, higher y requires higher order of
approximation.
6. Sensitivity analysis

For purposes of hedging and risk management, it is often necessary to calculate the sen-
sitivity of the tranche price E(L � y)+ to default probabilities and correlation parameters.
The results in the previous sections are quite useful in sensitivity analysis, as described in
the following.

6.1. Sensitivity with respect to correlation

By definition, d1(D1) is the rate at which the price changes as the correlation structure
deviates from an independent (single-factor) model. That is, d1(D1) represents the ‘‘direc-
tional sensitivity’’ of E(L � y)+ with respect to the change of the correlation matrix in a
given direction. The sensitivity with respect to an individual correlation coefficient, say
q12, may be obtained by setting r12 = 1 and all other rij = 0. Thus, our approach lends
itself naturally to the calculation of these sensitivities. Gregory and Laurent (2004) provide
an alternative approach to sensitivity analysis, in which the effect of the perturbation of
correlation matrix is analyzed through characteristic functions.

6.2. Sensitivity with respect to default probability

If the obligors are independent, computing the sensitivity with respect to a default prob-
ability is easy (see also Andersen et al., 2003):
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o

opi

EðL� yÞþ ¼ o

opi

ð1� piÞEðL:i � yÞþ þ piEðL:i � y þ ciÞþ
� �

¼ EðL:i � y þ ciÞþ � EðL:i � yÞþ; ð6:18Þ

where L�i is the reduced portfolio obtained by removing the ith obligor. When obligors are
dependent, however, computing sensitivity with respect to pi is not as simple because the
dependence forbids us to seperate pi and split the expectation in the above manner. But
according to the previous sections, a dependent-obligor model can be expressed as a
weighted sum of independent-obligor models. Therefore, the problem of computing p-sen-
sitivity for the dependent-obligor case reduces to that for the independent-obligor case. We
now explain in more detail.

We first consider the case where the correlation is light. Taking the first n + 1 terms in
(4.7) and differentiating with respect to pi yields the approximation

o

opi

EtðL� yÞþ � u0 þ u1t þ � � � þ un
tn

n!
; ð6:19Þ

where un is the derivative of dn with respect to pi. Using (4.9), we have that un can be com-
puted through the limit:X

J

wJ
o

opi

eEJ ðL� yÞþ !s#0 un ð6:20Þ

Recall that each eEJðL� yÞþ is an independent-obligor price with modified default proba-
bilities ~pðJÞ1 ; . . . ; ~pðJÞM . So its pi-sensitivity can be computed simply by the chain rule: first dif-
ferentiate eEJ ðL� yÞþ with respect to ~pðJÞi – which results in the expression (6.18) – then
multiply by an extra factor o~pðJÞi =opi, whose analytical expression can be easily obtained
by differentiating (A.26). Thus, computing un is no more difficult than computing dn.

Now we move on to the case where obligors are heavily correlated, with the covariance
matrix (5.10). Differentiating (5.12) yields

o

opi

EtðL� yÞþ � U 0 þ U 1t þ � � � þ U n
tn

n!
: ð6:21Þ

Through the same conditioning argument as in Section 4, we can show that

U k ¼ E½ukðzÞ	 ¼
Z

ukðzÞ
1ffiffiffiffiffiffi
2p
p e�z2=2 dz: ð6:22Þ

where bk(z) is the coefficient in the expansion of (o/opi)Et[(L � y)+jZ = z], computed in the
same way as (6.20). The integral can then be evaluated numerically.

Example. Consider the previous example and suppose we want to compute the 2nd-order
approximant of (o/opM) E(L � 1000)+. Again, use first column as the reference correlation
structure. The method (6.21, 6.22) gives U0 = 4.3, U1 = 4.1, and U2 = 2.3. The 2nd-order
approximation for (o/opM)Et(L � 1000)+ is therefore 4.3 + 4.1t + 2.3t2/2. This is shown as
the solid line in Fig. 8. The true values of the sensitivity at t = 0, .2, .4, .6, .8, 1 are marked
with ‘‘�’’. These are computed by Monte Carlo simulation using the identity

o

opi

ENð0;CÞðL� yÞþ ¼ ENðmiCi;C�CiC
>
i Þ ðL� y þ ciÞþ � ðL� yÞþ
� �

:
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Fig. 8. Sensitivity at t 2 [0,1].
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The subscript of the expectation denotes the distribution of the latent variable Xi’s, and Ci

denotes the ith column of C.
7. Concluding remarks

We have developed a method for approximating CDO prices in the multifactor Normal
Copula model. This method expresses the CDO price of a multifactor model as a series
of prices of independent-obligor models, thereby exploiting the fact that independent-
obligor prices are easy to compute. We also demonstrate how the proposed approximation
can be used to compute quantities relating to sensitivity analysis; namely, sensitivity with
respect to correlation structure and sensitivity with respect to default probabilities.
Finally, we apply this method to compute joint probabilities of multivariate normal ran-
dom variables.
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Appendix A. Statement of main result

In stating the theorem, the following notations are useful. Let Hn(x) denote the Hermite
polynomial of degree n; that is, H0(x) = 1, H1(x) = x, and Hn+1(x) = xHn(x) � nHn�1(x)
for n P 1. Let u(x) denote the standard normal density function. Define

BkðxÞ :¼ uðxÞH k�1ðxÞ; k P 1: ðA:23Þ

Let L be the loss model (3.1, 3.2). Let Et be the expectation under which Xi’s have the cor-
relation matrix (4.6). Assume that qij’s have a generalized d-factor structure:

qik ¼
Xd

j¼1

kjaijakj; ðA:24Þ

where kj and aij (1 6 i 6M, 1 6 j 6 d) are real scalars. Note that (3.5) is a special case of
(A.24) where the kj’s are one. We write kj = k(j) and aij = a(i, j) interchangeably. It is also
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convenient to let aij and kj admit nonpositive index j by defining the convention
a(i,�j) = �a(i, j), a(i, 0) = 0, k(�j) = k(j), and k(0) = �2(k1 + � � � + kd).

Define D: = {0,±1, ±2, . . .,±d}. Let Dn denote the Cartesean product

Dn :¼ fðj1; . . . ; jnÞ : j1; . . . ; jn 2 Dg: ðA:25Þ

For J = (j1,. . .,jn) 2 Dn, let kJ: = k(j1), . . .,k(jn). Let p1, . . .,pM be the default probabilities

(3.3). Let s1, s2, . . . 2 R. For each J 2 Dn, let ~pðJÞi (i = 1, . . .,M) be a perturbation of pi given
by

~pðJÞi :¼ pi þ
Xn

k¼1

BkðmiÞvJ ði; kÞ: ðA:26Þ

The scalars vJ(i,k) (k = 1, . . .,n) depend on s1, . . ., sn and are defined through the following
recursion: for all n P 2 and for all J = (j1, . . ., jn) 2 Dn, vJ(i,k) = 0 whenever k < 0 or k > n

and

vJ ði; kÞ ¼ vJ 0 ði; kÞ þ snaði; jnÞvJ 0 ði; k � 1Þ; 1 6 k 6 n; ðA:27Þ
where J 0 = (j1, . . ., jn�1) 2 Dn�1 is the truncation of J by deleting the nth (last) coordinate.
The boundary conditions for the above recursion are: for j 2 D, vj(i, 0) = 1, vj(i, 1) = s1aij,
and vj(i, k) = 0 for all k 5 0,1. It is easy to show that vJ(i, k)! 0 as s1, . . ., sn! 0. So, for
s1, . . ., sn sufficiently small, the ~pðJÞi are bonafide probabilities.

We are now ready to state the main theorem, which provides expressions for the coef-
ficients d0,d1, . . .,dN in an Nth order expansion of (4.7):

Theorem 1. Let d0,d1, . . . be coefficients in the expansion (4.7). Fix n P 1. Let s 2 R. For

each J 2 Dn, let eEJ ðL� yÞþ be the tranche price of an independent-obligor model (with the

same ci’s) whose default probabilities are ~pðJÞ1 ; . . . ; ~pðJÞM , calculated from (A.26, A.27) with

s1 = . . . = sn = s. For each J 2 Dn, define the weight

wJ :¼ kJ

ð2s2Þn : ðA:28Þ

Then,X
J2Dn

wJ
eEJ ðL� yÞþ ! dn ðA:29Þ

as s! 0.

Let us briefly explain the role of the variable s and the reason for writing the dk’s as
limits. Although a more explicit expression for dk is available (it may be obtained by com-
bining (B.41, B.40 and B.31)), it is very complicated and does not lend itself to computa-
tion. Therein lies the usefulness of Theorem 1; it provides a compact representation for dn

as a limit in s. Since the limit can be evaluated by substituting a small number for s, com-
puting dn is now feasible. This approach may be viewed as analogous to defining a gener-
ating function (in s) whose derivatives are the desired quantities and then approximating
the derivatives by finite differences to simplify calculations. This analogy will be explicit in
Proposition 1) in the Appendix.

To extend the theorem to cover n = 0, simply let D0: = {;} be a set containing one
element – namely, the empty set. For J = ; 2 D0, let ~pðJÞi :¼ pi for all i and let kJ: = 1.
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It is important to note the following:

1. It appears that to compute the first n + 1 coefficients d0,d1, . . .,dn using (A.29), one
needs to compute eEJ ðL� yÞþ for all J in D0,D1, . . .,Dn. It suffices, however, to computeeEJ ðL� yÞþ only for J 2 Dn. This is because for all k,eEJ ðL� yÞþ
n o

J2Dk�1

 eEJ ðL� yÞþ
n o

J2Dk
:

To see this, let J 0 ¼ ðj01; . . . ; j0k�1Þ 2 Dk�1 and let J ¼ ðj01; . . . ; j0k�1; 0Þ 2 Dk. It is easy to
see that ~pðJ

0Þ
i ¼ ~pðJÞi for all i and, consequently, eEJ 0 ðL� yÞþ ¼ eEJ ðL� yÞþ.

2. The summation (A.29) seemingly contains jDnj = (2d + 1)n terms. Luckily, thanks to
the symmetry of the formula (A.26), there are many repeated terms. If
J 0 ¼ ðj01; . . . ; j0nÞ is a permutation of J = (j1, . . ., jn), then it is easy to show that
~pðJ

0Þ
i ¼ ~pðJÞi and, consequently, eEJ 0 ðL� yÞþ ¼ eEJðL� yÞþ. Therefore, it suffices to com-

pute eEJ ðL� yÞþ only for J 2 K, where K is a subset of Dn in which the coordinates
are arranged monotonically:

K :¼ fðj1; j2; . . . ; jnÞ 2 Dn : j1 6 j2 6 . . . 6 jng:
So in effect, the summation (A.29) contains only jKj ¼ nþ 2d

n

� �
distinct values ofeEJ ðL� yÞþ.
From these two points, we deduce that in order to obtain the nth-order approximant
for Et(L � y)+, the number of terms of the form eEJ ðL� yÞþ one needs to compute is

nþ 2d
n

� �
.

The proof of Theorem 1 is given in Appendix B. In fact, we will prove the following
theorem, which is a generalization of Theorem 1.

Theorem 2 (Generalization of Theorem 1). Let f : R! R. Then, Etf(L) is analytical in t;

that is, Etf(L) admits the infinite expansion:

Et½f ðLÞ	 ¼ l0 þ l1t þ l2

t2

2!
þ � � � :

Furthermore, where wJ = kJ/(2s2)n and eEJ f ðLÞ is the expectation under which all obligors in

L default independently with probabilities ~pðJÞ1 ; . . . ; ~pðJÞM calculated from (A.26, A.27) with

s1 = . . . = sn = s, we haveX
J2Dn

wJ
eEJ f ðLÞ ! bn:

as s! 0.

Obviously, when f(L) = (L � y)+, we retrieve Theorem 1. The comments from Theorem
1 apply to this theorem as well.
Appendix B. Proof of Theorem 2

We use the following notation throughout the proof. For a positive integer d, let
I[d]: = {1,2, . . .,d} and let In

d ¼ fðj1; . . . ; jnÞ : j1; . . . ; jn 2 Idg.
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The backbone of our result is Kibble’s (1945) generalized tetrachoric series for multi-
variate normal joint probabilities, which we now recapitulate. Let Ct be the covariance
matrix given by (4.6). Let Pt be a probability measure under which ðX 1; . . . ;X MÞ �
Nð0;CtÞ. Kibble (1945) asserts that Pt(X1 > m1, . . .,XM > mM) admits an infinite expansion:

P tðX 1 > m1 . . . ;X M > mMÞ ¼ b0 þ b1t þ b2

t2

2!
þ � � � ; ðB:30Þ

and gives the expression for bn as

bn ¼
X

16j1<‘16M

..

.

16jn<‘n6M

qk1‘1
. . . qkn‘n

Bh1
ðm1Þ . . . BhM ðmMÞ: ðB:31Þ

For each term in the summation, hi(1 6 i 6M) is the number of times ‘‘i’’ occurs among
the subscripts k1, ‘1, . . .,kn, ‘n. The function Bk(x) (k = 1,2, . . .) are as defined in (A.23), and
B0ðxÞ :¼ UðxÞ.

Because the summation (B.31) contains a large number of terms, especially when M is
large, it is not a practical way to compute bn. Our result builds on Kibble’s result by find-
ing a compact representation for (B.31) (for a preview, fastforward to Proposition 1),
which leads to a more cost-efficient way to compute bn (see Proposition 2). We will see
that after we have found an appropriate representation for (B.31), Theorem 2 will easily
follow.

We begin by seeking a compact representation for the summation (B.31) when the q’s
have a single-factor structure. To do this, we will prove a more general statement below.

Lemma 1. Let C(1),C(2), . . .,C(n) be covariance matrices of dimension M · M, each having a

single-factor structure. That is, for all r = 1, . . ., n,

CðrÞ ¼ qðrÞk‘

h i
M�M

; qðrÞk‘ ¼ aðrÞk aðrÞ‘ ðk 6¼ ‘Þ:

Let ðbðiÞr i ¼ 1; . . . ;M and r ¼ 0; . . . ; nÞ be real constants. ConsiderX
16j1<‘16M

..

.

16jn<‘n6M

qð1Þk1‘1
. . . qðnÞkn‘n

bð1Þh1
. . . bðMÞhM

; ðB:32Þ

For each term in the summation, hi(1 6 i 6M) is the number of times ‘‘i’’ occurs among the

subscripts k1,‘1,. . .,kn,‘n. Then, we have that the above summation equals

1

2n

o2n

os2
1 . . . os2

n

����
s¼0

G1G2 . . . GM ; ðB:33Þ

where Gi (i = 1,. . .,M) is a polynomial in s1,. . .,sn defined as

Gi :¼
X
T
In

bðiÞjT j
Y
r2T

sra
ðrÞ
i : ðB:34Þ
Note. If we read this lemma with að1Þi ¼ . . . ¼ aðnÞi ¼ ai and bir = Br(mi), then (B.33) is a
compact representation for (B.31) in the single-factor case.
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Proof. Note that G1, . . .,GM consist of 2n terms each, all of whom distinct. Let G be the
result of expanding the product G1G2 . . . GM, so that G comprises 2nM distinct terms.
The operator (B.33) kills all terms of G except any term of the type s2

1s2
2 . . . s2

n� constant,
from which the operator extracts the constant. Therefore, to prove that (B.33) equals
(B.32), it suffices to show that (A) if a term in G is of the form s2

1s2
2 . . . s2

n � constant, then
the constant matches a term in the summation (B.32); and (B) each term in the summation
(B.32) multiplied by s2

1s2
2 . . . s2

n equals a term in G.
Let us first paint the picture of G. Let A be one of the 2nM terms in G. Since G is the

product of G1,. . .,GM, it follows that A = A1A2 . . . AM, where Ai is one of the 2n terms in
Gi. Evidently from (B.34), Ai is characterized by the following conditions: (I) Ai contains a
factor bðiÞq , where q equals the number of accompanying að�Þi ’s; (II) aðrÞi always appears
alongside sr in Ai, and vice versa; and (III) Ai contains no sm

r with m > 1. We now split our
proof in two parts: verifying (A) and verifying (B).

Verify (A): Suppose that A = A1 . . . AM contains exactly two s1’s. Because of (III), the
two s1’s must come from two different Ai’s – say, Ak1

and A‘1
(assume k1 < ‘1 without loss

of generality). It follows from (II) that A must contain að1Þk1
; að1Þ‘1

, and no other að1Þ� ’s. By
repeating this argument, we conclude that if A contains exactly two s1’s, exactly two s2’s,
and so on, then for some k1 < ‘1, k2 < ‘2, . . .,

A ¼ s2
1 . . . s2

n að1Þk1
að1Þ‘1

. . . aðnÞkn
aðnÞ‘n


 �
bð1Þq1

. . . bðMÞqM

The factors bðiÞqi
appear as a consequence of (I). Obviously, the quantity in the parantheses

equals qð1Þk1‘1
. . . qðnÞkn‘n

. The number of times i occurs among k1,‘1, . . .,kn,‘n equals, as seen
from above, the count of a(Æ)’s with subscript i; but this, according to (I), equals qi. There-
fore, hi = qi and the proof of this part is complete.

Verify (B): Pick a term in the summation (B.32) and multiply by s2
1s2

2 . . . s2
n:

s1að1Þk1|ffl{zffl}
Cluster 1

s1að1Þ‘1|ffl{zffl}
Cluster 2

. . . snaðnÞkn|ffl{zffl}
Cluster 2n�1

snaðnÞkn|ffl{zffl}
Cluster 2n

bð1Þh1
. . . bðMÞhM

¼: A

the above product can be regrouped as A = A1A2 . . . AM, where Ai collects bðiÞhi
and every

cluster in which the subscript of a is i. One can easily see that Ai’s satisfy (I), (II), and (III).
Hence, A is a term in G. h

Now we move to the general d-factor case.

Proposition 1. Let m1, . . .,mM be real numbers. Let Pt be a probability measure under which

X1,. . .,XM are Nð0; 1Þ random variables with covariance matrix (4.6). Suppose that the qij’s

have a generalized d-factor structure (A.24). Let b0, b1, b2,. . . be the coefficients in the

expansion (B.30). Then

bn ¼
1

2n

X
J2In

d

kJ
o2n

os2
1 . . . os2

n

����
s¼0

~pðJÞ1 . . . ~pðJÞM ; ðB:35Þ

where ~pðJÞi ’s are as given in (A.26, A.27).
Proof. From (A.27), it can be shown by induction that for J = (j1,. . .,jn) 2 Dn,
vJ ði; kÞ ¼

P
T
In;jT j¼k

Q
r2T sraði; jrÞ. Consequently, (A.26) can be written as
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~pðJÞi :¼
X
T
In

BjT jðmiÞ
Y
r2T

sraði; jrÞ:

where B0ðxÞ :¼ UðxÞ and Bk(x)(k P 1) are as defined in (A.23). From the assumption that
q’s have a generalized d-factor structure (A.24), we can write qk‘(1 6 k 6 ‘ 6M) as

qk‘ ¼
Xd

j¼1

kjq
ðjÞ
k‘ ; where qðjÞk‘ ¼ akja‘j: ðB:36Þ

We then decompose qk1‘1
; . . . ; qkn‘n

in (B.31) using (B.36). In decomposing qk1‘1
using

(B.36), we use j1 (instead of j) as the running index in the decomposition. Similarly, use
j2 as the running index for the decomposition of qk2‘2

, and so on. Then, (B.31) becomesX
j1;...;jn2Id

kðj1Þ . . . kðjnÞ
X

16j1‘16M

..

.

16jn‘n6M

qðj1Þ
k1‘1

. . . qðjnÞ
kn‘n

Bh1
ðm1Þ . . . BhM ðmMÞ:

To finish the proof, rewrite the inner summation using Lemma 1 with aðrÞi :¼ aði; jrÞ and
bðiÞr :¼ BrðmiÞ. h

The role of the following proposition is to rewrite the R.H.S. of (B.35) in limit form.

Proposition 2. Same setup as Proposition 1. Then,

bn ¼ lim
s!0

X
J2Dn

wJ ~pðJÞ1 . . . ~pðJÞM ðB:37Þ

where wJ is given in (A.28), and ~pðJÞi ’s are perturbed probabilities calculated from (A.26,
A.27) with s1 = . . . = sn = s.
Proof. Let g :¼ ~pðJÞ1 . . . ~pðJÞM . Let us make the dependence of g on sn and jn explicit by writ-
ing g = g(sn, jn). It can be seen from (A.27) that g(�sn, jn) = g(sn,�jn) and g(0, jn) = g(sn, 0).
Using the finite difference formula,

d2

ds2

����
s¼0

gðs; jÞ ¼ lim
s!0

gðs; jÞ þ gð�s; jÞ � 2gð0; jÞ
s2

¼ lim
s!0

gðs; jÞ þ gðs;�jÞ � 2gðs; 0Þ
s2

: ðB:38Þ

(To simplify notation, we have suppressed the subscript n in sn and jn.) Multiply (B.38) by
k(j) and sum over j 2 Id:

1

2

X
j2Id

kj
d2

ds2

����
s¼0

gðs; jÞ ¼ lim
s!0

1

2s2

Xd

j¼1

kðjÞ gðs; jÞ þ gðs;�jÞ � 2gðs; 0Þ½ 	

¼ lim
s!0

1

2s2

X
j2D

kðjÞgðs; jÞ;

The last equality follows from the definition of k(j) when j is nonpositive (see page 23).
Now write g as g(s1, . . ., sn; J) so that the dependence on s1, . . ., sn and J is made explicit.
By repeating the above argument n times, we have
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1

2n

X
J2In

d

kJ
o2ng

os2
1 . . . os2

n

����
s¼0

¼ lim
s!0

1

ð2s2Þn
X
J2Dn

kJ gðs; . . . ; s; JÞ

The R.H.S. equals bn according to Proposition 1). To complete the proof, note that
wJ = kJ/(2s2)n and that g(s, . . ., s; J) is the product of the perturbed probabilities (A.26,
A.27) with s1 = . . . = sn = s. h

We are now ready to prove Theorem 2 in Section 3.

Proof of Theorem 2. Lemma 2 implies that for every S 
 IM, Pt (names i 2 S default) is
analytical in t and

dn

dtn

����
t¼0

P tðnames i 2 S defaultÞ ¼ lim
s!0

X
J2Dn

wJ
eP J ðnames i 2 S defaultÞ: ðB:39Þ

Let ES denote the event that obligors i 2 S default while the rest (obligors ‘ 2 IMnS) do
not. Using the inclusion–exclusion formula from set theory, it is easy to argue that Pt(ES)
is analytical in t and

dn

dtn

����
t¼0

P tðESÞ ¼ lim
s!0

X
J2Dn

wJ
eP J ðESÞ ðB:40Þ

for all S 
 IM. To prove the theorem, we will first argue that Etf(L) has an infinite-series
representation in t. For S 
 IM, set cðSÞ :¼

P
i2Sci. It is easy to see that

Etf ðLÞ ¼
X
S
IM

f ðcðSÞÞP tðESÞ: ðB:41Þ

The summation is over all possible sets of defaulting obligors, and f(c(S)) is the payoff
given ES. Since Pt(ES) is analytical in t, so is Et[f(L)]. Finally, if we multiply (B.40) by
f(c(S)) and sum over all S 
 IM, we obtain

dn

dtn

����
t¼0

Et½f ðLÞ	 ¼ lim
s!0

X
J2Dn

wJ
eEJ ½f ðLÞ	:

The proof is then complete. h
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