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This article develops a variance-reduction tech-
nique for pricing derivatives by simulation in high-
dimensional multifactor models. A premise of this
work is that the greatest gains in simulation effi-
ciency come from taking advantage of the structure
of both the cash flows of a security and the model
in which it is priced. For this to be feasible in prac-
tice requires automating the identification and use
of relevant structure. 

We exploit model and payoff structure through a
combination of importance sampling and stratified
sampling. The importance sampling applies a
change of drift to the underlying factors; we select
the drift by first solving an optimization problem.
We then identify a particularly effective direction
for stratified sampling (which may be thought of as
an approximate numerical integration) by solving
an eigenvector problem. 

Examples illustrate that the combination of the
methods can produce enormous variance reduction
even in high-dimensional multifactor models. The
method introduces some computational overhead in
solving the optimization and eigenvector problems;
to address this, we propose and evaluate approxi-
mate solution procedures, which enhance the appli-
cability of the method. 

M
onte Carlo simulation has
become an essential tool for
pricing and hedging complex
derivative securities and for

measuring the risks in derivatives portfo-
lios. The more realistic — and thus more
complex — the pricing model used, the
more likely that Monte Carlo will be the
only viable numerical method for working
with the model. The applicability of simu-
lation is relatively insensitive to model
details and — in sharp contrast with deter-
ministic numerical methods — to model
dimension. The relevant notion of dimen-
sion can vary from one setting to another,
but in general increasing the number of
underlying assets, the number of factors, or
the number of time steps all increase
dimension. Multifactor models of the evo-
lution of the yield curve are a particularly
important class of high-dimensional prob-
lems often requiring simulation.

The main limitation of Monte Carlo
simulation is that it is rather slow; put a dif-
ferent way, the results obtained from Monte
Carlo in a short amount of computing time
can be very imprecise. Because numerical
results obtained through Monte Carlo are
statistical estimates, their precision is best
measured through their standard error,
which is ordinarily the ratio of a standard
deviation per observation to the square root
of the number of observations. 

It follows that there are two ways of
increasing precision: reducing the numera-
tor, or increasing the denominator. Given a
fixed time allocated for computing a price,
increasing the number of observations
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entails using a faster machine or finding programming
speed-ups; such opportunities are fairly quickly
exhausted. This leaves the numerator of the standard
error as the main opportunity for improvements. Vari-
ance-reduction techniques attempt to improve the
precision of Monte Carlo estimates by reducing the
standard deviation (and thus variance) per observation.

The literature on Monte Carlo simulation offers
a broad range of methods for attempting to reduce vari-
ance. The effectiveness of these methods varies widely
across applications. In practice, the most commonly
used methods are the simplest ones, particularly anti-
thetic variates and control variates. These can be very
effective in some cases, and provide almost no benefit
in others. Some of the most powerful methods —
importance sampling is a good example — get much
less use, in part because they are more difficult to work
with, but also because if used improperly they can give
disastrous results. This situation can leave users of
Monte Carlo in a quandary, not knowing what meth-
ods to use in what settings. 

A premise of our work is that the greatest gains
from the use of variance-reduction techniques rely on
exploiting the special structure of a problem or model.
The identification of special structure should be auto-
mated to the extent possible so that each application
does not require a separate investigation. This perspec-
tive is particularly relevant to importance sampling,
which seeks to improve precision by focusing simula-
tion effort on the most important regions of the space
from which samples are drawn. Which regions are most
important depends critically on the underlying model
and also on the form of the payoff of the particular
security to be priced. The use of importance sampling
thus requires adaptation to each payoff and each model;
for this to be feasible in practice requires that the adap-
tation be automated. 

In Glasserman, Heidelberger, and Shahabuddin
[1999] (henceforth GHS), we propose and analyze a
variance-reduction technique that combines impor-
tance sampling (based on a change of drift in the under-
lying stochastic processes) with stratified sampling. As
general methods for variance reduction, these are both
reasonably standard; the innovation in GHS [1999] lies
in the approach used to select the change of drift and
the directions along which to stratify. 

In the most general version of the method, the
new drift is computed by solving an optimization
problem, and the stratification direction solves an

eigenvector problem. The calculation of these quanti-
ties is a “preprocessing” step of the method (executed
before any paths are simulated) that systematically iden-
tifies structure to be exploited by the variance-reduc-
tion methods. 

In GHS we give a theoretical analysis of this
method based, in part, on scaling the randomness in
the underlying model by a parameter e and investigat-
ing asymptotics as e Æ 0. Asymptotic optimality prop-
erties of the method are established in GHS. We test-
ed the method on three types of examples: Asian
options, a stochastic volatility model, and the Cox-
Ingersoll-Ross short rate model. Our numerical results
indicate substantial potential for variance reduction
using the method.

The purpose of this article is to develop and
investigate the use of the method in a much more ambi-
tious class of models — multifactor models of the entire
term structure of interest rates of the Heath-Jarrow-
Morton [1992] type. Using, for example, quarterly rates
with a twenty-year horizon makes the state vector for
such a model eighty-dimensional. Simulating this vector
for m steps in a d-factor model corresponds to sampling
in an md-dimensional space, easily making the dimen-
sion very large. 

The preprocessing phase of our method selects a
drift for the model — tailored to the factor structure
and the payoff of the instrument to be priced — that
drives the evolution of the forward curve to the most
important region. “Importance” is measured by the
product of the discounted payoff from a path and the
probability density of the path. To further reduce vari-
ance, we stratify linear combinations of the input ran-
dom variables, the choice of linear combination also
tailored to the factor structure and the payoff. The
complexity of the HJM setting necessitates some sim-
plification in the implementation of the preprocessing
calculations, so in addition to investigating the use of
the basic method from GHS, we propose and evaluate
some approximations. 

We test the methods in pricing caps and swap-
tions (important for fast calibration), yield spread
options, and flex caps. Our numerical results support the
viability of the method in the HJM setting.

I. OVERVIEW OF THE METHOD

The general simulation method in GHS [1999],
based on combining importance sampling and strati-

 

 



fied sampling, applies to the estimation of an expres-
sion of the form E[G(Z)] where Z has the standard n-
dimensional normal distribution, and G takes non-
negative values. G is the discounted payoff of a
derivative security, and Z the vector of stochastic
inputs to the simulation.

The Setting

Although it is not required for the method, it is
useful to frame the general setting as one of simulating
a vector diffusion process of the form 

dXt = m(Xt, t)dt + s(Xt, t)dWt (1)

where Xt and m(Xt, t) are k-vectors; s(Xt, t) is a k ¥ d
matrix; and Wt is a d-dimensional standard Brownian
motion. Processes of this form are commonly simulat-
ed through a discrete-time approximation (an Euler
scheme) of the form 

(2)

where m̂ and ŝ are discrete approximations to the con-
tinuous coefficients; Dt is the simulation time step; and 

are independent standard multivariate normal ran-
dom vectors.1

Interpret Zi(j) as the increment in the j-th
underlying factor at the i-th step. Simulating such a
process for m steps requires a total of md indepen-
dent normal random variables, and by stacking the
vectors Z1, ..., Zm we may view the simulated path
of ^X as a (deterministic) function of a single md-
dimensional normal random vector Z.

Letting n = md, the density of this n-dimen-
sional normal vector is given by2
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Expectations of functions of ^X may be viewed as
integrals with respect to this density.

More specifically, suppose (1) and (2) give the
dynamics of all relevant state variables, including the
value of whatever asset is chosen as numeraire, under the
martingale measure associated with the chosen
numeraire. (Later, we specialize to the case where Xt
records the forward curve at time t, the numeraire is the
money market account, and the martingale measure is
the usual risk-neutral measure.)

By including enough information in the state
vector Xt, we can ordinarily make the discounted
payoff of a derivative security a deterministic func-
tion of the path of Xt (or its approximation ^X in a
simulation). The price of the derivative security is
the expectation of this discounted payoff. But the
path of ^X is itself some deterministic function of the
n-dimensional random vector Z, so by letting G
denote the composition of these two functions we
may denote by G(Z) the discounted payoff of the
derivative security associated with input Z. The price
of the derivative is

(3)

Pricing by Monte Carlo may be viewed as a way of esti-
mating such an integral. 

Importance Sampling

A standard Monte Carlo estimator of (3) draws
independent samples Z(1), ..., Z(k) from N(0, In); evalu-
ates the discounted payoff G(Z(i)) resulting from each;
and averages to arrive at the estimator 

Importance sampling is based on the observation that
from (3) we may write 

(4)

for any probability density y that is positive throughout
Rn. This representation suggests an alternative estimator
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in which Z(1), ..., Z(k) are independently sampled from
y and then combined in the estimator:

Sampling from y rather than fn results in
oversampling some regions and undersampling
others. Weighting each G(Z(i)) by the likelihood
ratio fn(Z

(i))/y(Z(i)) ensures that the expected value
of the resulting estimator is unchanged — in par-
ticular, ây(k) Æ a by virtue of (4) and the law of
large numbers.

Different choices of y will result in estimators
with different variances. In general, there is no guaran-
tee that sampling from y rather than fn will actually
reduce variance, but the potential for variance reduc-
tion through importance sampling is enormous.
Indeed, if G is non-negative, and if we choose y pro-
portional to the product of G and fn, (i.e., y(z) =
G(z)fn(z)/c, for the constant c that makes y integrate
to 1), then importance sampling yields a zero-variance
estimator; each replication G(Z(i))fn(Z

(i))/y(Z(i)) equals
the constant c.

The catch, of course, is that the normalization
constant c is the unknown quantity a, so this method
is not viable in practice. Nevertheless, the observa-
tion is useful as a guide to selecting importance sam-
pling densities. An effective choice of y should
weight each point z roughly in proportion to the
product of its discounted payoff G(z) and its original
probability fn(z). 

The importance sampling method developed
in GHS [1999] restricts y to be a multivariate nor-
mal density N(m, In) for some m  Œ Rn; i.e., y(z) =
fn(z – m). For any choice of m, the likelihood ratio
under this change of measure is particularly simple,
reducing to 

(5)

In GHS, m is chosen to be z* where z* solves the opti-
mization problem 
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or, equivalently:

where F(z) = log G(z) (taking log 0 = – ). 
Perhaps the simplest interpretation of this

approach is that it approximates the optimal (zero-vari-
ance) density G(z)fn(z)/a by a normal density whose
mode coincides with that of the optimal density
[which occurs at the solution to (6)], and whose
covariance matrix coincides with that of the original
normal density.3

There is further motivation for this importance
sampling strategy. For any choice of m, the resulting esti-
mator is the average of independent copies of

(7)

That is, of 

(8)

Under conditions in GHS, the m found by solving (7)
will satisfy the first-order conditions —F(m) = m´, with
—F denoting the gradient of F. If F is approximately
linear near m, then F(m + Z) in (8) is approximately
F(m) + —F(m)Z. Making this substitution and then
using the first-order conditions to replace —F(m)Z
with m´Z, (8) reduces to

which is constant and thus has zero variance. 
This indicates that if the log discounted payoff

were linear, this choice of importance sampling den-
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sity would eliminate all variance; more generally, if
F is close to linear, this choice of density can be
expected to eliminate much of the variance in the
original estimator. This gives an alternative interpre-
tation of the method above for choosing m. (See
GHS [1999] for a more extensive analysis and dis-
cussion. See Boyle, Broadie, and Glasserman [1997],
Newton [1997], and Schoenmakers and Heemink
[1997] for other approaches to importance sampling
in option pricing.)

Stratified Sampling

Although importance sampling by itself can, in
some cases, yield substantial variance reduction (partic-
ularly in pricing options for which the probability of a
positive payoff is small), the power of the method in
GHS comes from the combination of importance sam-
pling with stratified sampling along carefully selected
directions. We describe this combination after provid-
ing some background on stratification. (For additional
background, see, e.g., Fishman [1996] or Hammersley
and Handscomb [1964].) 

In stratified sampling, one draws samples from a
distribution while ensuring that the fraction of samples
falling in each of a collection of prespecified sets —
the strata — matches the theoretical probability of that
set. For example, in sampling from the one-dimen-
sional standard normal distribution, one might choose
as strata the positive and negative real half lines. Each
of these has probability 1/2 under the standard nor-
mal. If we draw one hundred independent samples
from the normal distribution, it is unlikely that exact-
ly fifty will be positive and fifty negative. Stratified
sampling refers to any mechanism that, in this exam-
ple, ensures that indeed half of the samples are positive
and half are negative.

In general, such stratified sampling ensures a
more regular sampling pattern and therefore reduces
variance. The amount of variance reduction obtained
depends on how the strata are defined; if the variabili-
ty of the output within each stratum is small, then large
variance reductions are obtained. A contribution of this
work is to describe stratification schemes that often
result in large variance reductions. 

In our use of stratified sampling, we partition
the real line into M strata, and sample from these in
the correct proportions. We choose M intervals, each
having probability 1/M, and then draw one value

from each interval with the conditional distribution on
that interval. We do this by first partitioning the unit
interval (0, 1) into M subintervals of length 1/M, and
sampling uniformly from each subinterval. We then
apply the inverse cumulative normal distribution to
each of these M values in (0, 1). The resulting M val-
ues in (– , ) constitute a stratified sample from the
normal distribution.

To put this more precisely, let U(1), ..., U(M) be
independent and uniformly distributed on (0, 1). If we
were to set X(i) = F–1(U(i)), i = 1, ..., M, with

the cumulative normal, then X(1), ..., X(M) would be
distributed as independent draws from the normal dis-
tribution.4 To generate a stratified sample, we first set 

so that V(i) lies between (i – 1)/M and i/M, and is uni-
formly distributed over this interval. Thus, V(i) has the
distribution of a uniform random variable on (0, 1) con-
ditioned to fall in the stratum [(i – 1)/M, i/M]. 

Now set X(i) = F–1(V(i)), i = 1, ..., M. Each X(i)

lies between the (i – 1)/M-th and i/M-th fractiles of
the normal distribution (because V(i) lies between the
corresponding fractiles of the uniform distribution),
and has the distribution of a normal random variable
conditioned to lie in this range (because V(i) has the
corresponding conditional distribution for a uniform
random variable).

In sampling from the multivariate normal distri-
bution N(0, In), we apply this technique by stratifying
along one direction in n dimensions.5 This is nearly the
same as performing a numerical (rather than Monte
Carlo) integration along the stratified dimension and
using Monte Carlo for the other dimensions. We are in
fact free to choose any direction in Rn as the direction
along which to stratify. A direction is described by a vec-
tor u Œ Rn normalized to have unit length (i.e., u´u =
1). If Z ~ N(0, In), then u´Z ~ N(0, 1) because of the
normalization. 

Using the one-dimensional algorithm, we may
stratify u´Z into M strata, and then — conditional on
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each of the M outcomes of u´Z — sample the full vec-
tor Z. This is facilitated by the fact that the condition-
al distribution is itself normal: 

(Z|u´Z = a) ~ N(ua, In – uu´)

The precise steps are as follows: 

• Generate a stratified sample X(1), ..., X(M) from
N(0, 1) as described above; interpret X(i) as the i-th
value of u´Z.

• Draw Y(i) from N(0, In), i = 1, ..., M, independent
of each other and of the X(i).

• Set Z(i) = uX(i) + CuY
(i), i = 1, ..., M, where Cu is

any n ¥ n matrix satisfying CuC
´
u = In – uu´; the

choice Cu = In – uu´ is particularly convenient
because it makes evaluation of CuY

(i) an O(n) oper-
ation rather than O(n2). 

The resulting Z(1), ..., Z(M) constitute a stratified sample
from N(0, In), stratified along direction u in the sense
that the projected values u´Z(1), ..., u´Z(M) form a strat-
ified sample from N(0, 1). 

It remains to specify the choice of direction u.
In GHS [1999], we propose and analyze two strategies
for doing this. The simpler method sets u = m (= z*),
the optimal vector found for importance sampling.
The other method finds the best direction for a
quadratic approximation to F = log G, the logarithm
of the discounted payoff. (Recall that our importance
sampling method can be interpreted as eliminating the
linear part of F.) In GHS [1999] we prove that if F(z)
= z´Az for some (symmetric) matrix A with eigenvec-
tors v1, ..., vn and associated eigenvalues l1, ..., ln,
ordered so that

(9)

then v1 is an optimal direction for stratification. This
suggests that for general (twice-differentiable) F, a
good direction may be found by applying this crite-
rion to the Hessian (the matrix of second derivatives)
of F. The Hessian should be evaluated at the point
z*(= m) found in the optimization because the impor-
tance sampling has recentered the distribution at this
point. Interestingly, we find that the optimal eigen-
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vector is itself often similar to the optimal path z*.
Regardless of how the direction u is chosen, this

method produces a stratified sample Z(1), ..., Z(M) from
N(0, In), stratified along direction u. To combine this
with importance sampling, we then add the drift vec-
tor m to each Z(i), resulting in a stratified sample from
N(m, In). We evaluate the discounted payoffs G(Z(i));
weight each one by the corresponding likelihood ratio
from (5); and average to get

It should be noted that the M values averaged in
this expression are not independent (because of the
stratification), so their standard deviation is not a rele-
vant measure of the sampling variability in ^G. To sup-
plement the point estimator with a confidence interval,
we replicate the procedure above k times to produce
the k estimates ^G1, ..., ^Gk (each based on a stratified
sample of size M). The final estimator is the average

-
G

of the ^Gi; its standard error is approximately the sample
standard deviation S of ^G1, ..., ^Gk divided by . We
thus arrive at, e.g., an approximate 95% confidence
interval of the form

since 1 – F(1.96) = 0.025. This procedure involves sim-
ulating a total of kM paths. Given a fixed budget for the
total number of paths, increasing M generally increases
the precision of the point estimator, while larger k
improves the estimate of the standard error and the
validity of the normal approximation implicit in the
confidence interval. 

A concise summary of the algorithm is given in
the appendix.

II. THE HEATH-JARROW-MORTON SETTING

Our objective is to investigate the application of
the general method in GHS to high-dimensional, mul-
tifactor models. Because of its broad applicability and
widespread use, the Heath-Jarrow-Morton [1992]
framework provides a particularly appropriate setting for
this investigation. 
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Simulation Model

We first review the continuous-time HJM for-
mulation, and then proceed to the discretized version
used in a simulation. Let f(t, t) be the instantaneous
continuously compounded forward rate for time t as of
time t, with 0 t t T* for some ultimate maturity
T*. Let B(t, t) be the time-t price of a riskless bond
paying $1 at time t. Then 

and

The instantaneous short rate at time t is r(t) f(t, t). 
In its usual formulation, the HJM framework

specifies the evolution of the forward curve [f(t, t), t t
T*] over the time interval 0 t T*. For a d-factor

model, take Wt to be a d-dimensional standard Browni-
an motion. The arbitrage-free dynamics of the forward
curve under the risk-neutral measure have the form 

df(t, t) = (s(t, t)´
t
ts(t, u)du)dt + s(t, t)´dWt (10)

where s(t, t) is a d-vector for each t and t. Under tech-
nical conditions detailed in Heath, Jarrow, and Morton
[1992], the drift specified in (10) ensures that discount-
ed bond prices 

(11)

(i.e., bond prices divided by the value of the money
market account) are martingales (in t), which is the key
condition for the absence of arbitrage. 

Implementation of a general HJM model
requires discretization in both calendar time (the first
argument of f) and maturity (the second argument). For
simplicity, we assume that both arguments are dis-
cretized in multiples of a fixed, common time incre-
ment Dt. We write F(i, j) for the continuously com-
pounded forward rate for the interval [jDt, (j + 1)Dt]
contracted at time iDt: 

exp ( ) ( , )- Ú( )r u du B tt
0 t

B t f s u dut
T( , ) exp ( , )t = - Ú( )

f t B t( , ) log ( , )t
t

t= -

A simulation algorithm for the forward curve,
based on discretizing (10), takes the form 

(12)

where the discrete drift aij is chosen to keep the
model arbitrage-free; sij is a discrete analogue of the
volatility s(t, t); and Z1, Z2, ..., are independent N(0,
Id) vectors. Specifically, we take

This choice ensures that the discrete discounted bond
prices DiB(i, j) [the discrete analogues of (11)] are mar-
tingales in i, and thus keeps the model arbitrage-free
after discretization.6 Here, F( , ) is the (Dt) short rate
at time Dt; the bond price is given by

(13)

and the discount factor is 

(14)

Observe that simulating a single step in (12) uses
d samples from the standard normal distribution, and
simulating m steps thus requires n = md standard nor-
mals. Pricing a derivative security that requires m sim-
ulation steps may thus be viewed as computing an
integral with respect to the n-dimensional standard
normal distribution.

In our numerical examples we use d = 3 fac-
tors. Our choice of factors is fairly ad hoc; the
objective is to use an example in which three factors
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suffice, but fewer than three would not. It is conve-
nient to separate the specification of the discrete
volatility sij in (12) into terms representing the over-
all level of volatility and terms capturing the corre-
lation structure across points of the forward curve.
We use a specification of the form

[sij(1), sij(2), sij(3)] = 
F(i, j)s(j – i)[g1(j – i), g2(j – i), g3(j – i)] 

The factor loadings g1, g2, g3 are normalized so that 

g1(j)
2 + g2(j)

2 + g3(j)
2 1, j = 1, 2, ..., (15)

With this normalization, s(j – i) becomes the overall
level of (proportional) volatility of the j-th forward
F(•, j) at the i-th step.7 The correlation between
changes in the j-th and k-th forwards over the i-th step
is determined by 

g1(j – i)g1(k – i) + g2(j – i)g2(k – i) + g2(j – i)g2(k – i)

the inner product between the factor loadings at time-
to-maturity j – i and time-to-maturity k – i. 

In the numerical examples, we take Dt = 0.25
years, a typical discretization used in practice. We consid-
er maturities of up to twenty years, so our initial forward
curve is eighty-dimensional. We initialize it by taking

F(0, j) = log(150 + 12j)/100, j = 0, 2, ..., 79

producing an upward-sloping curve increasing gradual-
ly from 5% to 7%. 

For the overall level of volatility as a function of
time to maturity, we specify 

s(j) = 0.12 + (j/81)[1 – (j/81)]4, j = 0, 1, ..., 79

This produces a humped term structure of volatility
starting at 13.17%, increasing to a maximum of 20.19%
at a maturity of four years, and decreasing gradually to
12% at the end of twenty years. 

Finally, for the factors g1, g2, g3 we proceed
as follows. We form the 80 ¥ 80 symmetric matrix
with entries

exp(–0.0004(i – j)2), i, j = 1, ..., 80

and find orthonormal eigenvectors x1, ..., x80 and asso-

ciated eigenvalues b1 b2 … b80. With these param-
eters we have 

suggestive of a model in which three factors suffice but
one factor definitely does not. 

We complete the specification of the factors 
by setting 

to enforce the normalization (15). 
Exhibit 1 graphs s(j)gi(j) (the volatility con-

tributed by factor j) as a function of time to matu-
rity j for i = 1, 2, 3. The first factor has constant
sign across maturities and thus moves all forward rates
in the same direction; the second factor moves the
near and the far ends of the forward curves in oppo-
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site directions; the third factor bends the forward
curve by moving the ends in the opposite direction
of the middle.

Applying the Variance-Reduction Method

An example may help to fix ideas and to moti-
vate the approximations. Consider the pricing of a caplet
— a single-period interest rate cap. Suppose the caplet
applies to the interval from NDt to (N + 1)Dt. Ordinar-
ily, caplets are written on simple (rather than continu-
ously compounded) rates with settlement at the end of
the period. Thus, with a strike of K the caplet pays 

CN+1 = max(0, (eDt F(N,N) – 1) – KDt)100 (16)

at time (N + 1)Dt on a notional amount of 100. Its
price at time 0 is given by the expected present value 

E[DN+1CN+1] (17)

where the discount factor DN+1 is defined in (14).
Through (12) we may view the discounted payoff as a
function of Nd standard normal random variables, with
d the number of factors — three in our examples.
Write G(Z) for this discounted payoff. 

It is useful to encode the 3N-dimensional input
vector Z as 

Z1(1), Z2(1), ..., ZN(1), Z1(2), Z2(2), ..., ZN(2), Z1(3), Z2(3), ..., ZN(3)

Comparison with (12) indicates that the first N com-
ponents determine the path of the first factor, the
second N components the path of the second factor,
and the last N components the path of the third fac-
tor. (This convention is important in interpreting
some of our graphs.)

The first step in implementing the algorithm
solves the optimization problem (6) over all input
vectors z. We may interpret this as solving for the
paths of the underlying factors that maximize the
product of the discounted payoff G(z) and the densi-
ty element exp(–z´z/2). In the case of a cap consist-
ing of multiple caplets, the relevant G is the sum of
the discounted payoffs of the individual caplets, and
thus a sum of terms of the type inside the expecta-
tion in (17).

The result of the optimization is displayed in
Exhibit 2 for a cap making quarterly payments with a

strike of 7% that has an initial payment at time 0.25
years and a final payment at time 5.0 years. The graph
may be read as follows. On the optimal path, the
increments of the first factor start at a large positive
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value (driving this factor upward quickly) and then
decrease; the increments of the second factor are
roughly flat (and negative, thus driving the path of
this factor downward) and then increase to zero; and
the increments of the third factor increase until just
before the midpoint of the cap and then decrease. In
our importance sampling method, these optimal paths
become the drifts added to the factors — in effect,
importance sampling centers the evolution of the
underlying Brownian motion around the optimal
path rather than around 0.

The combined effect of the optimal factor
paths (and thus of the new drift) becomes somewhat
clearer in Exhibit 3 showing the evolution of the
short rate F(i, i) determined by the optimal paths —
i.e., when the driving increments Zi in (12) are eval-
uated along the optimal paths rather than sampled
randomly. We see that the impact of importance sam-
pling in pricing a cap is to drive the short rate
upward much more quickly than would be the case
without importance sampling. (Without importance
sampling, the evolution of the short rate would be
centered roughly around the initial forward curve, also
shown in the graph.)

The next step in the procedure finds a good
direction for stratified sampling either by using the
optimal m found for importance sampling, or else by

choosing one of the eigenvectors of the Hessian of log
G(m). The best eigenvector according to the criterion
in (9), which we denote by v1, is shown in Exhibit 4.
In this particular case, m and v1 are very similar in
shape; indeed if m is renormalized to have unit norm
like v1, then ||m – v1|| is only 0.022. Thus the effec-
tiveness of stratifying on v1 should be about the same
as that of stratifying on m. Having selected a new drift
vector m for importance sampling and a good direction
u for stratification (either m or v1), we can proceed
with the simulation.

This example serves to underscore several
aspects of the proposed method. First, in the com-
plexity of the HJM setting, one cannot reasonably
hope to simply guess at a good change of drift for
importance sampling — it is by no means obvious in
advance that the optimal change of drift would look
anything like Exhibit 2, even if we could guess that
the optimal short rate path should look something like
Exhibit 3. Nor is it obvious that a good direction for
stratification would look like Exhibit 4. Yet we will
see in our numerical results that these choices lead to
very substantial variance reduction.

This indicates the value of an automated and sys-
tematic approach to identifying special structure. At the
same time, it must be acknowledged that solving the
optimization and eigenvector problems in the prepro-
cessing phase of our method can impose an additional
computational burden, particularly in a high-dimension-
al multifactor model.

III. APPROXIMATIONS

Approximate Optimization

We can reduce the major overheads involved in
applying the procedure –– the overhead to solve the
optimization problem, and the overhead to compute
the eigenvectors) for stratification –– using an
approach outlined in GHS [1999]. In Exhibit 2, if for
a moment we forget that the indexes are discrete, it
appears that the component values of the optimal drift
vector for each factor vary continuously with the
index. This suggests approximating the optimal drift
vector by a continuous function parameterized by a
small number of variables, and then optimizing over
those variables to find an approximately optimal drift
vector. Since numerical optimization routines often
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use finite difference approximations for gradients, this
approach will reduce the number of paths (i.e., func-
tion calls of G) during the optimization.

An attractive version of this general approach is
to approximate the optimal drift vector by a piecewise
linear function. In the piecewise linear approximation,
the index points where the slope of the line changes are
termed knot points. One can approximately represent
any drift vector by the component values at the knot
points and linearly interpolated values in between. One
can then optimize over all the possible component val-
ues at the knot points. 

In most cases we have tried, this yields a good
approximation to the optimal drift vector. We choose
equally spaced knot points here, although this is not
generally required. If in some problem there are d = 3
factors, each with N = 80 time intervals, then choos-
ing four knot points for each factor reduces the dimen-
sion of the optimization problem from 240 to 12. 

In general, we define an appropriate mapping
h(·) from a lower-dimensional space Rk (with k <
n) to Rn such that most of the variation of
G(z)fn(z) with respect to z in Rn is captured by the
variation of G[h(-z)]fn[h(-z)] with respect to -z in Rk.
One then maximizes G[h(-z)]fn(h(-z)] with respect to
-z in Rk. If -m is the optimal point in the new space,

then one transforms back to the original space, using
the transformation m = h(-m). The linear interpolation
method comes under the class of mappings h(·) that
are linear transformations from Rk to Rn, i.e., z =
M-z where M is an n ¥ k matrix.8

Exhibit 5 gives the optimal drift and the approx-
imate optimal drift using linear interpolation for the
caplet example, with T = 10. If each factor uses m knot
points, we call the method “linear(m).” For example,
linear(3) would use three variables per factor: the first,
middle, and last increments. If all the variables are used,
we call the method “full.” The legend in Exhibit 5 gives
the norm of the difference between the optimal drift
vector and the approximately optimal drift vector.

An alternative type of a linear transformation
not based on linear interpolation of paths uses the sub-
space defined by the principal components of the
Brownian motion associated with each factor, corre-
sponding to a few of the largest eigenvalues. Yet anoth-
er class of h(·) corresponds to representing components
of the drift vector z (corresponding to each factor) by
low-order polynomials (with variable coefficients) in
the indexes. One then optimizes over the coefficients
of the polynomial.

Approximate Eigenvector Calculation

Computing the Hessian H of F(z) = log[G(z)] at
any z and the best eigenvector (which we denote by v1)
is usually an O(n2) operation. There is an approach to
approximate v1 in a k-dimensional subspace, k < n (and
then transform back to the n-dimensional subspace). We
start by choosing an n ¥ m matrix M whose columns
seem likely to span a good approximation to v1. For
example, if we believe v1 should be approximately piece-
wise linear, we could choose M to build an n-vector
from an m-vector by linear interpolation, as we did for
the optimal drift. 

Let -z denote an element of Rk and z an element
of Rn. The function FM(-z) = F(M-z) has Hessian HM =
M´HM, where H is the Hessian of F at M-z. Because HM
is k ¥ k, it may be much less costly to evaluate (through
finite differences of FM) than H. 

The next step is to find the best eigenvalue g1
and the best eigenvector -v1 of the k ¥ k matrix
(M´M)–1M´HM, according to the criterion in (9). Our
candidate approximation for v1 is then M-v1. This pro-
cedure is exact if F happens to depend on z only
through M´z. Moreover, any eigenvector of H that lies
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in the range of M is recovered by this procedure
along with its eigenvalue.9

Exhibit 6 displays the best eigenvector and
approximate best eigenvector for the caplet problem with
T = 10; the legend gives the errors. Again we see that the
best eigenvector and the approximate best eigenvector
are quite close. Note also how similar the shape of the
optimal drift vector is to the best eigenvector.

IV. NUMERICAL RESULTS

Our primary measure of the effectiveness of the
method is the estimated variance ratio, defined to be
the estimated variance using standard simulation divid-
ed by the estimated variance using a variance-reduction
technique. This ratio gives an indication of the statisti-
cal acceleration of a method, i.e., the (potential) factor
by which the number of samples can be reduced by
applying the variance-reduction technique. 

Suppose the per sample variance using standard
simulation is s2, while that using a variance-reduction
technique is s2

1. If standard simulation is run for k repli-
cations, the resulting variance is s2/k. Since a simula-
tion of k1 replications using the variance-reduction
technique results in a variance of s2

1/k1, to achieve the
same variance implies setting k1 = (s2

1/s2) k. Thus, to

achieve the same variance, standard simulation requires a
factor of k/k1 = (s2/s2

1) times as many replications as
the variance reduction technique. 

Whether this potential savings in run length can
actually be achieved in practice depends on many fac-
tors, including the desired accuracy of the resulting esti-
mate. The acceleration factor does not include the setup
cost (optimization overhead) of the method or the addi-
tional per sample cost of the stratification, which is quite
small — typically less than 5%. 

To achieve reasonably accurate estimates of the
variance ratio, all our results are based on a total of
50,000 replications (paths) per method. We also include
results for a straightforward and more commonly applied
variance-reduction technique, antithetic sampling (see
Hammersley and Handscomb [1964]). In the case of
antithetics, results are based on 25,000 independent anti-
thetic pairs, representing a total of 50,000 paths. For
methods using stratification, 100 strata are used (M =
100 in step 2 in the appendix and k = 500). 

We first consider options in which the payoff
function is a continuous function of the underlying
Gaussian increments Z. Examples of such payoffs
include caps, swaptions, and a European yield spread
option (specifically, an option on the difference
between the yields on zero-coupon bonds of different
maturities). We next consider options in which the
payoff is not a continuous function of the Gaussian
increments. We discuss in detail discontinuities associ-
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E X H I B I T 7
Estimated Variance Ratios for Caplets in 
Three-Factor HJM Model

IS & IS & 
T K Antithetics IS Strat. (m) Strat. (v1)

2.5 0.04 8.0 8.1 246 248
0.07 1.0 16.0 510 444
0.10 0.8 173.0 3067 2861

5.0 0.04 4.2 8.1 188 211
0.07 1.3 11.0 241 292
0.10 1.0 27.0 475 512

10.0 0.04 3.7 6.6 52 141
0.07 1.4 7.8 70 185
0.10 1.1 12.0 110 244

15.0 0.04 3.6 5.3 15 67
0.07 1.6 6.0 22 112
0.10 1.2 8.0 31 158

 

 



ated with flex caps, but discontinuities also arise from
trigger or barrier features. Finally, we address the over-
head of the method and the performance of tech-
niques to reduce that overhead. 

Options with a 
Continuous Payoff Function

Our first example is a caplet. Note that since
the forward rates are continuous functions of the Z,
the discounted caplet payoff function DN+1CN+1 is
also a continuous function of the Z. Furthermore, it is
twice-differentiable, except at the points where
exp[Dt F(N, N)] – 1 – KDt = 0 [i.e., except at the kink
in the payoff; see (16)]. 

Exhibit 7 displays the estimated variance ratios
for caplets with a range of maturities T and strikes K.
The table lists the ratios for antithetics, importance sam-
pling alone (the column labeled IS), importance sam-
pling with stratification upon m (the IS & Strat. (m) col-
umn), and importance sampling with stratification upon
the best eigenvector v1 (the IS & Strat. (v1) column).

For each maturity T, there are three different
strikes that range from in the money to out of the
money. As a point of reference, the at-the-money
strikes for T = 2.5, 5.0, 10.0, and 15.0 are 0.0564,
0.0601, 0.065, and 0.0683, respectively. 

From Exhibit 7, we observe that: 

1. The effectiveness of antithetics decreases as the
strike K increases (with maturity T fixed), i.e., as
the caplet becomes more out of the money. Simi-
larly, the effectiveness of antithetics decreases as T
increases (with K fixed). 

2. The effectiveness of importance sampling alone
increases as K increases (with T fixed). This is con-
sistent with studies in other application areas in
which a properly chosen IS method becomes more
effective at estimating a rare event probability as the
event becomes rarer (see, e.g., Heidelberger
[1995]). In this setting, as K increases, the instru-
ment becomes more out of the money, and the
estimation problem takes on more of a rare event
simulation flavor. In addition, for a fixed K, IS
becomes less effective as T increases. 

3. IS with stratification on either m or v1 is much
more effective than IS alone. The effectiveness
increases as K increases, but decreases as T increas-
es. Stratifying on the eigenvector v1 becomes more
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effective than stratifying on the optimal drift vector
m as T increases. 

A cap is a sum of caplets over a specified interval
of time. We let T0 and T1 denote the times of the first
and last caplet payments in the cap. Then T0 = N0Dt,
and T1 = N1Dt for some integers N0 and N1. With dis-
count factor Di and caplet payoff Ci as defined above, the
cap has discounted payoff 

(18)

This is also a continuous function of the Gaus-
sian increments.

Estimated variance ratios for caps are listed in
Exhibit 8. As with caplets, the effectiveness of IS with
stratification typically increases as K increases, but
decreases as the time interval (T1 – T0) increases. Strati-
fication on the eigenvector provides little or no benefit
over stratification on m. 

For a given strike K, the variance ratios are typi-

G Z D Ci i
i N

N
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1

E X H I B I T 8
Estimated Variance Ratios for Caps in 
Three-Factor HJM Model

IS & IS & 
T0 T1 K Antithetics IS Strat. (m) Strat. (v1)

0.25 2.5 0.04 2.1 5.3 20 19
0.07 1.1 23.0 158 161
0.10 1.1 285.0 1435 1384

0.25 5.0 0.04 8.0 5.2 23 21
0.07 1.2 13.0 54 48
0.10 0.9 41.0 176 152

0.25 10.0 0.04 5.3 4.9 15 14
0.07 1.4 8.4 22 24
0.10 1.1 16.0 39 40

0.25 15.0 0.04 5.5 4.0 8.9 8.5
0.07 1.5 5.5 8.4 8.3
0.10 1.2 8.2 12 12

5.25 10.0 0.04 4.2 6.2 51 43
0.07 1.4 8.4 44 42
0.10 1.1 15.0 43 41

10.25 15.0 0.04 4.9 5.2 25 43
0.07 1.6 6.2 36 38
0.10 1.2 9.0 46 36

 

 



cally not as high as those for caplets. For a caplet, the
simulation is optimized for a specific payment, but for
a cap, the simulation is optimized for a range of pay-
ments. What is best for the caplet near the beginning of
the interval may not be good for the caplet near the end
of the interval. 

The results also suggest that it may be more effi-
cient to decompose a cap over a long interval into a
sum of caps over shorter intervals. Rather than running
a single simulation to estimate the entire cap, one could
perform separately optimized simulations to estimate
the caps over each of the subintervals. For example, the
cap over the interval [0.25, 15.0] could be decomposed
into, say, a cap over the interval [0.25, 10.0] and the cap
over the interval [10.25, 15.0]. As the method produces
greater variance reductions over the narrower intervals,
this decomposition approach may produce lower vari-
ance estimates from the same amount of computing
time. The success of this decomposition approach of
course depends upon many implementation details
such as the path generation time. 

In the case of European swaptions, suppose the
underlying interest rate swap starts at TE(= NEDt) and
ends T(= NDt) years later. We may represent the value
of the swap as the difference between floating- and
fixed-rate bonds. With a fixed rate of C% per year, the
fixed side makes payments of C/2 every six months
starting at TE + 0.5 and in addition pays a principal of
100 at time TE + T. Let Pi be the fixed-rate payment
at time iDt: Pi = C/2 if NE < i < NE + N and (i – NE)
is divisible by 2; Pi = C/2 + 100 if i = NE + N; and
Pi = 0 otherwise. The value of the fixed-rate bond at
NEDt is then 

(19)

where B(NE, i) is defined in (13). 
Valuing the floating-rate bond at par, the value of

the swap at NEDt becomes 100 – BC(NE, N). A TE ¥ T
floating-for-fixed swaption thus has discounted payoff

G(Z) – DNE
max[0, 100 – BC(NE, N)] (20)

This again is a continuous function of the underlying Z.
Estimated variance ratios are given in Exhibit 9.

Results are qualitatively similar to those for caplets and
caps. We obtain large variance reductions when using
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IS and stratification. Variance reductions are best for
more out-of-the money instruments (lower C) and
shorter option expiration times TE.

The final example is a yield spread option. We
consider a long-term bond of maturity TL(= NLDt); a
short-term bond of maturity TS(= NSDt); and an exer-
cise time TE(= NEDt). Define YS(i) = SNS-1

j=0 F(i, i +
j)/NS and YL(i) = SNL-1

j = 0 F(i, i + j)/NL; these are the
yields on short-term and long-term zero-coupon bonds
as of iDt. At time 0, the current spread between these
yields is d = [YL(0) – YS(0)], and at time TE, the spread
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E X H I B I T 9
Estimated Variance Ratios for Swaptions in 
Three-Factor HJM Model

C IS & IS & 
TE T (%) Antithetics IS Strat. (m) Strat. (v1)

1 5 5 1.2 12.0 218 231
6 2.7 6.3 205 207

1 10 5 1.1 18.0 284 311
6 1.8 7.5 226 242

2 5 5 1.3 9.9 187 172
6 2.3 6.4 173 146

2 10 5 1.2 13.0 232 222
6 1.8 7.4 204 179

5 5 5 1.4 8.4 141 163
6 2.0 6.4 126 152

5 10 5 1.3 11.0 183 205
6 1.7 7.5 154 182

E X H I B I T 1 0
Estimated Variance Ratios for Option on 
Zero-Coupon Bond Yield Spread in 
Three-Factor HJM Model

IS & IS & 
TE K Antithetics IS Strat. (m) Strat. (v1)

1.0 1 1.7 7.8 104 199
2 1.1 29 355 419

2.5 1 1.7 7.8 50 146
2 1.2 15 126 165

5.0 1 1.8 7.8 32 129
2 1.2 12 60 118

Long-term bond maturity TL = 15 years, short-term bond maturity
TS = 3 years, and strike = K times current spread.

 

 



is YL(NE) – YS(NE). If the strike is K times the current
spread, then the discounted payoff is 

G(Z) = 100DNE
(YL(NE) – YS(NE) – Kd)+ (21)

For this study, we fix TS = 3 years and TL =
15 years. The results, which are shown in Exhibit 10,
are similar to the previous cases: large variance reduc-
tions that increase as the option becomes more out of
the money (K increases) but decrease as the option
expiration time TE increases. Stratification on the best
eigenvector v1 provides significant improvements over
stratification on m.

Options with a 
Discontinuous Payoff Function

The theory developed in GHS [1999]
assumes, among other things, that the payoff function
G is a continuous function of the increments Z.
There are many types of options, however, for which
this is not true. While IS and stratification are still
valid techniques in this case, the asymptotic theoret-
ical justification for selecting an IS distribution by
maximizing the payoff times the probability density
function is not, strictly speaking, valid. Furthermore,
when the payoff is discontinuous, optimization using
standard non-linear programming packages becomes
dicey, at best; such packages often assume the exis-
tence of gradients.

Since our approach works so well on contin-
uous payoff functions, we seek to adapt it to options
with discontinuous payoff functions. The general
approach we take is to approximate the option’s true
payoff function G(z) by a continuous function ^G(z),
and then to pick the IS drift m by maximizing
^G(z)fn(z). Similarly, a stratification vector can be
found from the eigenvectors of the Hessian matrix of
log[^G(z)] evaluated at m. (In both cases, the approxi-
mation ^G is used solely to design the variance-reduc-
tion method; the simulation itself uses the true G.)
There is clearly much room for experimentation
here, and we report on the results of approaches that
work the best among those tested.

Consider a flex cap in which the holder receives
the payoffs of the first J caplets to expire in the money
over N periods, J < N. We assume that the first poten-
tial payment occurs at time 0.25, and we let T = NDt
be the time of the last potential payment. As before, let
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Ci denote the payoff of the i-th caplet. Let NJ denote the
(random) index of the J-th caplet to expire in the money
— that is, the J-th caplet for which Ci > 0. Then the
flex cap’s discounted payoff function is 

(22)

This is clearly a discontinuous function of Z,
since small changes in Z can change the integer-valued
variable NJ. To approximate this G, we select a ^G that is
the payoff function for an ordinary cap with initial pay-
ment at time N0Dt and final payment at time N1Dt for
appropriate values of N0 and N1. For an in-the-money
flex cap, we expect that, with high probability, the first J
payments will be positive, suggesting that we should set
N0 = 1 and N1 = J. This is the approach we follow,

G Z D Ci i
i

N NJ

( )
min( , )

= Â
=1

E X H I B I T 1 1
Estimated Variance Ratios for Flex Caps in 
Three-Factor HJM Model

IS & IS & 
T K J Antithetics IS Strat. (m) Strat. (v1)

2.0 0.05 2 2.1 1.5 2.3 2.3
4 3.2 3.8 4.8 4.5
6 4.3 7.9 18 16
8 3.4 6.2 37 34

2.0 0.0532 2 1.9 1.7 2.4 1.6
4 2.7 4.3 9.3 5.0
6 2.4 8.3 48 37
8 1.9 7.7 47 38

2.0 0.07 2 1.1 11.0 28 20
4 1.0 26.0 150 144
6 1.0 31.0 199 192
8 1.0 30.0 170 176

5.0 0.05 5 2.3 2.0 2.2 2.1
10 3.0 3.8 4.0 3.4
15 3.5 7.7 17 16
20 2.7 6.5 33 29

5.0 0.0564 5 2.0 1.8 2.0 1.8
10 2.4 4.5 6.5 5.6
15 2.1 8.2 25 35
20 1.7 8.2 37 34

5.0 0.08 5 1.2 6.0 11 9.6
10 1.2 15.0 74 66
15 1.1 20.0 133 128
20 1.1 19.0 105 88

 

 



except we find that setting N1 = J + 1 produces some-
what better results. 

For a deep out-of-the-money flex cap, we
expect that if any payoffs are positive, then with high
probability, they will be from among the last J pay-
ments. This suggests that we should set N0 = N – J and
N1 = N (the approach we follow). If the flex cap
becomes at the money at some intermediate time LDt,
then N0 should be about L, and N1 should be about
max(N, L + J). In this case, to account for the variation
in the time of the first and last payments, the optimiz-
ing cap uses N0 = L – 1 and N1 = max(N, L + J + 1). 

The results are given in Exhibit 11. For each T
there are three strikes K: the first in the money, the sec-
ond the K for which the caplet paying at time T/2 is at
the money, and the third a deep out-of-the-money
strike. Then, for each pair of T and K, we set the max-
imum number of payoffs J to be 0.25N, 0.50N, 0.75N,
and N. Results are only marginally better than anti-
thetics for in- and at-the-money caplets when J =
0.25N, but improve as J increases. For small values of J,
the variability in the time of the first and last payments
reduces the amount of variance reduction. Variance
reductions for the out of-the-money strikes are much
better, and again increase as J increases.

We have undertaken a similar investigation for
an option with a trigger event — a simplified trigger
swap — and obtain results broadly consistent with those
reported for flex caps. In particular, the discontinuity
arising from the trigger markedly diminishes the effec-
tiveness of the method. We obtain somewhat better
results when the possible times of the trigger event are
tightly constrained. (This is consistent with the results
for the flex caps, where we observed greater variance
reduction for larger J; larger J imposes greater con-
straints on which caplets exercise.) Details are available
from the authors. 

Overhead and Approximate Optimization

We use the GRG2 optimization package from
Optimal Methods, Inc., which performs satisfactorily
for all the continuous payoff functions considered.
While convergence to a suboptimal local maximum
sometimes occurs when the optimization is initialized
at a random starting point, good results are obtained
when the optimization is started with all components
equal to 0, and the optimization is preceded by a
“Phase I” step to find a non-zero payoff. 

For example, in a cap, this is accomplished by set-
ting a constraint Cj 0 for one of the caplets in the pay-
off interval. Typically, convergence to an accurate, opti-
mal m occurs in between 5 to 10 ¥ n paths (evaluations
of G[(z)], where n is the number of variables. In other
examples with discontinuities, we sometimes find that
the optimization fails to converge when initialized to a
random starting point. 

To compute the Hessian matrix, we use a central
differencing scheme as described in Press et al. [1996, p.
187]. To compute the Hessian with this approach
requires about 2n2 paths. To reduce both the optimiza-
tion and Hessian overheads, we apply the approaches
described in Section III. We obtain the most consistent
results using linear interpolation. 

Exhibit 12 lists the results when applying this
approach to caplets. The columns show the number of
paths required to solve the ensuing optimization prob-
lem, the number of paths to compute the Hessian
matrix, and the resulting variance ratios when combin-
ing IS with stratification upon m or the approximate
eigenvector. We observe dramatic savings in overhead
with little loss in variance reduction. 

For example, with T = 10.0, the full problem
has 117 ( = 3 ¥ 39) variables. With the linear(3)
method, the number of variables is reduced to nine,
and the number of optimization paths is reduced by
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E X H I B I T 1 2
Overheads and Estimated Variance Ratios Using
Approximate Optimization for Caplets in 
Three-Factor HJM Model (K = 0.07)

Optimization Hessian Variance Variance 
T Method Paths Paths Ratio (m) Ratio (v1)

2.5 Full 183 1459 510 444
Linear(3) 101 163 415 465
Linear(4) 123 289 417 467

5.0 Full 480 6499 259 252
Linear(3) 107 163 282 278
Linear(4) 136 289 296 292

10.0 Full 718 27,379 70 185
Linear(3) 84 163 64 111
Linear(4) 136 289 75 156

15.0 Full 1257 62,659 22 112
Linear(3) 95 163 16 44
Linear(4) 118 289 18 74
Linear(5) 143 451 18 95

 

 



about a factor of ten with little loss in variance reduc-
tion (when stratifying on m). The cost to compute the
Hessian matrix is reduced by a factor of 171, but we
still obtain about 60% of the benefit of stratifying on
the best eigenvector. Similar results for yield spreads
are shown in Exhibit 13.

V. CONCLUSIONS

We have explored the application of an efficient
Monte Carlo algorithm to pricing path-dependent
European-style interest rate options in a multifactor
HJM setting. The approach is based on importance
sampling and stratification. When the option’s payoff
function is continuous in the underlying increment
variables, large variance reductions of one to two orders
of magnitude can be obtained using this approach. 

Typically, the variance reductions increase as
the instrument becomes more out of the money and
decrease as the time interval over which the instru-
ment is defined increases. The effectiveness of the
method is reduced for options with discontinuous
payoff functions, but may still produce quite useful
variance reductions.

The method involves overhead: solving a
multidimensional optimization problem and, option-
ally, computing a Hessian matrix and its eigenvec-
tors. In high dimensions, this overhead may become
quite significant compared to the number of paths
desired for actually pricing the option. By using
approximation techniques, almost all the potential
variance reduction can be achieved with greatly
reduced overheads.

A P P E N D I X
Summary of Simulation Algorithm

Purpose: Estimate E[G(Z)], Z ~ N(0, In). (Interpret
G(Z) as discounted payoff of a derivative security when paths
of underlying assets are driven by Z.)

Preprocessing: Find m as solution to optimization
problem:

or equivalently:

Choose stratification direction u:

• Either u ¨ m, with m as above, or
• Find eigenvectors v1, ..., vn and associated eigenvalues l1,

..., ln of Hessian for F at m, ordered so that

and choose u ¨ v1.
Simulation: Repeat these steps for k replications:

1. Draw U(1), ..., U(M) independently and uniformly over (0,
1). (M is the number of strata.)

2. Set

i = 1, ..., M.
3. Set X(i) ¨ F–1(V(i)), i = 1, ..., M. (F is the standard

normal cumulative distribution.)
4. Draw Y(1), ..., Y(M) from N(0, In).
5. Set Z(i) ¨ uX(i) + (In – uu¢)Y(i), i = 1, ..., M. (This

is a stratified sample from N(0, In), stratified along
direction u.)

6. Add drift vector: Z(i) ¨ Z(i) + m, i = 1, ..., M.
7. Evaluate likelihood ratios: L(i) ¨ exp(–m¢Z(i) + 1/2m¢m),

i = 1, ..., M. (If u = m, this is the same as L(i) ¨
exp(–X(i) – 1/2m¢m).)

8. Evaluate discounted payoffs G(Z(i)), and average:
^G = M–1SM

i=1G(Z(i))L(i).
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E X H I B I T 1 3
Overheads and Estimated Variance Ratios Using
Approximate Optimization for Yield Spread Option
in Three-Factor HJM Model

Optimization Hessian Variance Variance 
T Method Paths Paths Ratio (m) Ratio (v1)

2.5 Full 233 1801 126 165
Linear(3) 109 163 123 187
Linear(4) 138 289 120 184

5.0 Full 442 7201 60 118
Linear(3) 98 163 63 105
Linear(4) 136 289 65 109

 

 



Repeating this procedure k times yields independent
replications ^G1, ..., 

^Gk of  ^G. (The total numer of paths gen-
erated is kM.)

Output: Sample mean
-
G = k–1Sk

i=1
^Gi and standard

error S/ , with 

ENDNOTES

This research is supported in part by National Sci-
ence Foundation grants DMI-9457189 and DMI-9625297.

1We use N(a, B) to denote the normal distribution
with mean vector a and covariance matrix B; Id denotes the
d ¥ d identity matrix.

2Here and throughout, a prime denotes vector or
matrix transpose.

3In the continuous-time limit represented by (1), we
may change the drift of the driving Brownian motion but
not its covariance structure if we are to maintain equivalence
of the associated probability measures.

4Fast approximations to the inverse normal F–1 are
given in Marsaglia, Zaman, and Marsaglia [1994] and Moro
[1995].

5Alternatively, the stratification method could be
applied in multiple dimensions: Partition the unit hypercube
(0, 1)n into Mn subhypercubes by partitioning each coordi-
nate into M strata; sample uniformly from each subhyper-
cube; and map each coordinate to the real line using F–1.
The result is a stratified sample from N(0, In). 

The drawback of this generalization is that it requires
Mn values to generate a complete stratified sample, so if n is
even moderately large, M must be quite small. Rather than
apply a coarse stratification to many coordinates, we apply a
finer stratification to a small number (typically one) of care-
fully chosen directions. Yet another variant of the method
applies quasi-Monte Carlo to a few important directions and
ordinary Monte Carlo to the rest.

6See, e.g., Hull [1997, p. 427] for a derivation of the
discrete drift.

7As noted in Heath, Jarrow, and Morton [1992], a
deterministic proportional volatility is incompatible with the
continuous-time dynamics in (10); however, since we will
keep Dt fixed in (12) and bounded away from zero, we can
use this specification in the simulation.

8For d = 1, N = 5, and k = 3, the M corresponding
to the linear interpolation method is given by

S
k

G Gi
i

k
=

-
-Â

=

1
1

2

1
( ˆ )

k

For d = 3, N = 5, and k = 9 (i.e., with three variables per fac-
tor), the M will be a block-diagonal, 15 ¥ 9, matrix with
matrices like the above constituting each block.

9For if vi = Mx [with vi the i-th eigenvector of H,
ranked according to the criterion in (9)] for some x, then
(M¢M)–1M¢HMx = lix, and x will be among the -vi [the i-th
eigenvector of the reduced matrix ranked according to the
criterion in (9)], up to a scalar multiple.

Finding the eigenvalues and eigenvectors of
(M¢M)–1HM is a “generalized eigenproblem” as described
in Press et al. [1996, p. 462]: find (x, l) to solve B–1Ax
= lx where A and B are symmetric, and B is positive-
definite. The eigenvectors are real, and efficient algorithms
are built into many scientific libraries.
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