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Abstract

This paper proves a convergence result for a discretization scheme for simulating jump-
diffusion processes with state-dependent jump intensities. With a bound on the intensity, the
point process of jump times can be constructed by thinning a Poisson random measure using
state-dependent thinning probabilities. Between the jump epochs of the Poisson random
measure, the dynamics of the constructed process are purely diffusive and may be simulated
using standard discretization methods. Under conditions on the coefficient functions of the
jump-diffusion process, we show that the weak convergence order of this method equals the
weak convergence order of the scheme used for the purely diffusive intervals: the construction
of jumps does not degrade the convergence of the method.

1 Introduction

This paper proves a convergence result for a discretization scheme used in the numerical sim-

ulation of a class of jump-diffusion processes with state-dependent jump intensities. Under a

boundedness condition on the intensity, the point process of jump times can be constructed by

thinning a Poisson random measure using state-dependent thinning probabilities. Between the

jump epochs of the Poisson random measure, the dynamics of the constructed process are purely

diffusive and may be simulated using standard discretization methods. At each jump epoch, a

candidate jump is accepted or rejected according to a state-dependent thinning probability eval-

uated at the approximating discretized process. Under conditions on the coefficient functions

of the jump-diffusion process (and the class of admissable “test functions”), we show that the

weak convergence order of this method equals the weak convergence order of the scheme used

for the purely diffusive intervals. In other words, the jumps do not degrade the convergence of

the method.

The method we consider was proposed and numerically tested in Glasserman and Merener

[6] in the context of a class of interest rate models with jumps. Numerical simulation is required
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there for the pricing of interest rate derivative securities. This paper therefore provides rigorous

support for the numerical results in our earlier paper, proving a convergence result stated

without proof in [6].

The analysis in this paper is not limited to the specific model investigated in [6]. However,

to provide some motivation for the class of processes we consider, in Section 2 we give a brief

overview of stochastic models with jumps arising in mathematical finance and their implications

for simulation. Section 3 specifies the general model dynamics we consider. Section 4 explains

the thinning construction and Section 5 presents discretization methods. The main convergence

result is stated in Section 6 and proved in Section 7.

2 Jumps in Financial Modeling

Among the earliest investigations of continuous-time models of asset prices with jumps is the

work of Merton [13]. To model the dynamics of a stock price subject to occasional large moves,

Merton proposed the stochastic differential equation

dS(t)
S(t−)

= (µ− λm) dt + σ dW (t) + d


N(t)∑

j=1

(Yj − 1)


 , (1)

in which W is a standard Brownian motion; N is a Poisson process independent of W with

constant arrival rate λ; the Yj are i.i.d. positive random variables with mean m+1, independent

of N and W ; the constant µ is the instantaneous expected rate of return for the stock and σ is

a constant volatility parameter. The compound Poisson process

J(t) =
N(t)∑
j=1

(Yj − 1)

has bounded variation so the differential dJ(t) may be understood in the usual Stieltjes sense.

We take N and S to be right-continuous; the left limit S(t−) of S at t is the value just before

a possible jump at t. If the jth jump of N occurs at τj , then the dynamics in (1) specify

S(τj) = S(τj−)Yj. Requiring that the Yj be positive ensures that the stock price does not jump

to a negative value.

The term λm in the drift of (1) compensates the jumps in the sense that J(t) − λmt is a

martingale. The presence of this term in the drift is important in the financial interpretation

of the model. Related but much more general terms arise in the dynamics considered in [6].

The solution to the stochastic differential equation (1) is

S(t) = S(0) exp
(

(µ− λm− 1
2
σ2)t+ σW (t)

) N(t)∏
j=1

Yj. (2)
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Merton [13] used this solution to derive a formula for the value of an option on S. From (2) it

becomes evident that one may simulate paths of S over a fixed set of dates without discretization

error by simulating the increments of W (normal random variables), the increments of N

(Poisson random variables), and values of the Yj . Important special cases for the distribution of

the Yj are the lognormal considered by Merton [13] and the asymmetric log-Laplace considered

by Kou [8].

One direction for generalizing Merton’s model (1) notes that (2) is a process of the form

S(0) exp(X(t)) with X a Lévy process, a process with stationary independent increments. This

suggests the possibility of replacing X with a more general Lévy process. As a consequence of

the Lévy-Khinchine theorem, the only possible such generalization is to replace the compound

Poisson process J with a process having an infinite number of jumps in every interval. Spe-

cific models of this type (in which the Brownian component is dropped altogether) have been

developed by Barndorff-Nielsen [1] and Madan and Seneta [10]. These admit a fair amount of

tractability. Simulation at a fixed set of dates remains feasible given methods for sampling the

increments of the Lévy process. This is equivalent to the general problem of sampling from

infinitely divisible distributions.

An alternative direction for generalizing (1) keeps the number of jumps finite over finite

time intervals and relaxes the requirement that the timing of jumps be independent of the

level of the asset price. In the class of affine jump-diffusions (see Duffie, Pan, and Singleton

[4] and references there), the jump intensity is an affine function of the state, which may be

vector-valued. The affine framework encompasses many specific models proposed in the finance

literature. Affine state-dependence leads to a high degree of tractability, primarily through

transform inversion. The feasibility of simulation without discretization error depends on the

choice of model within this framework. In the general case, simulating state transitions of an

affine jump-diffusion entails sampling from distributions known only through their characteristic

functions.

The setting developed by Björk, Kabanov, and Runggaldier [2] is among the most general

models of asset-price dynamics with jumps and provides part of the motivation leading to the

numerical method we consider here and in [6]. Björk et al. [2] model jumps through a random

measure µ(dz, dt) on the product of an abstract mark space E∗ and the time axis [0,∞). Think

of µ(dz, dt) as assigning unit mass to (z, t) if a mark z arrives at time t. Suppose, for example,

that jumps arrive at distinct, ordered times τ1 < τ2 < · · · with marks Z1, Z2, . . .. Let N(t)

count the number of jumps in [0, t] and let h denote a real-valued function on E∗. Then within
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this formalism we can write the counting process

N(t)∑
j=1

h(Zj)

as ∫ t

0

∫
E∗
h(z)µ(dz, dt).

A stochastic intensity for µ(dz, dt) is a measure-valued process ν(dz, t) that compensates µ in

the sense that ∫ t

0

∫
E∗
h(z)µ(dz, dt) −

∫ t

0

∫
E∗
h(z) ν(dz, t)dt (3)

is a martingale (in t) for all bounded h. The compound Poisson process in (1) can be represented

within this framework by a Poisson random measure on �×�+ and is characterized by having

as its intensity λf(z) dz, with f the common density of the Yj .

Glasserman and Kou [5] use the framework of Björk et al. [2] to develop a class of interest

rate models with jumps. Their use of this very general framework requires comment. An

essential tool within both the theory and practice of pricing derivative securities is the ability

to describe how asset dynamics transform under certain changes of measure (see, e.g., Musiela

and Rutkowski [16]). In a pure diffusion model, the change of measure typically leads to a

change of drift; with jumps we also get a change of intensity (see, e.g., [3]). Even if jumps

under one measure are Poisson, this property is typically not preserved by the relevant changes

of measure, because these transformations introduce state-dependence in the intensity. As

in Glasserman and Merener [6], we may restrict ourselves to the case in which the intensity

is stochastic only to the extent that depends on the current state because this property is

preserved by the relevant changes of measure. (The dynamics we consider are made explicit

in the next section.) In the general framework of Björk et al. [2] the intensity could depend

more generally on, e.g., the past of the process; at the other extreme, a deterministic intensity

characterizes the case of a Poisson random measure.

3 Model Dynamics

We now give a concise formulation of the class of jump-diffusion models with state-dependent

intensities that are the focus of our attention in this paper. The dynamics of the M -dimensional

right-continuous process X(t), t ∈ [0, T ], with fixed initial condition X(0), are given by

dX(t) = ã(X(t−))dt + b(X(t−))dW (t) +
∫

E∗
H(X(t−), z)µ(dz, dt). (4)

4



The functions ã : �M → �M , b : �M → �M×d, and H : �M × E∗ → �M are deterministic and

will be subject to regularity conditions in Theorem 6.1 below; W (t) ∈ �d is a vector Brownian

motion with independent components, and µ(dz, dt) a random measure defined on the product

of the mark space E∗ and the time axis. To avoid inessential complications, we take E∗ to be a

subset of Euclidean space. As explained in the previous section, think of µ(dz, dt) as assigning

unit mass to (z, t) if a mark z arrives at time t. We assume that the random measure µ has

intensity ν(z,X(t−), t) dz for a deterministic non-negative function ν.

Relative to (3), this use of ν represents a relatively minor abuse of notation. The key

point is that we now assume that ν is a deterministic function; the stochastic intensity is

obtained by evaluating this function at the current state X(t−). Of secondary importance is the

assumption that ν(·,X(t−), t) is absolutely continuous so that we may write ν(z,X(t−), t) dz

for ν(dz,X(t−), t). This is primarily for notational convenience.

A special case of (4) is a model driven by a Poisson random measure p(dz, dt) with a

deterministic intensity λP (dz, t) such that λP (dz, t) = λ0(t) f(z) dz, with f(z) a probability

density on E∗. Thus, the arrival times follow a Poisson process with deterministic (possibly

time-varying) intensity λ0(t), and the marks are independent and distributed with density f .

In the Poisson case, the arrival rate is independent of the state of the system. We will see

that this leads to important computational gains because the random jumps can be sampled

exactly, for each path, independently from the state of the system along the path. This desirable

decoupling does not hold in the general case (4) where the arrival rate of the jumps depends

on the state of the system. As mentioned in Section 2, state-dependent jump arrival rates may

appear in the dynamics of financial variables through the change in intensity produced by a

change of measure.

A standard problem in finance is the valuation of a derivative security as an expectation

E[g(X(T ))], (5)

for some discounted payoff function (or “test function”) g. Models of the form (4) (even if the

driving jump measure is Poisson) are usually not solvable, in the sense that formulas for (5) are

not available in closed form. In principle, (5) could be evaluated through numerical integration;

however, this requires the distribution of X(T ) which is itself intractable for (4).

This leaves Monte Carlo simulation as the only general approach to computing (5). A

large number of paths of discrete-time approximations of X are generated numerically, and

the expected value in (5) is estimated as the sample average computed on the terminal states

of the simulated paths. A crucial element in this approach is the construction of a discrete-
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time approximation to X, a task that is simplified if the model is driven by a Poisson random

measure. In this case, the itensity is deterministic therefore, as noted earlier, an algorithm

that generates jump times of the Poisson measure p does not need to know about the discrete

solution, and the jump times can be generated exactly.

In order to apply this concept to the solution of a general model (4), we will discuss next

how the random measure associated to a state-dependent intensity of interest may nevertheless

be constructed through state-dependent thinning of a Poisson random measure.

4 State-Dependent Thinning

Models with state-dependent intensities provide a general formalism for constructing models

with jumps, but are difficult to work with computationally. In contrast, a Poisson random

measure is easy to simulate, and the literature provides discretization schemes for stochastic

differential equations driven by Brownian motion and Poisson random measures. These con-

siderations motivate the approach in Glasserman and Merener [6] in which a Poisson random

measure is used to construct more general models with state-dependent intensities. The idea is

to generate a driving jump process associated with a state-dependent intensity from a Poisson

random measure and a state-dependent thinning mechanism. A thinning function θ randomly

accepts or rejects the marks of the Poisson process with probability proportional to the value

of the state-dependent intensity at the moment of the jump. The resulting process of accepted

marks has the required state-dependent law.

We begin with the following Poisson driven model:

dX(t) = ã(X(t−)) dt + b(X(t−)) dW (t) +
∫

E∗

∫ 1

0
H(X(t−), y) θ(y, u,X(t−), t) p(dy × du, dt) (6)

where p(dy× du, dt) denotes a Poisson random measure with mark space E = E∗× (0, 1). This

Poisson random measure has intensity λP (y, u, t) = λ0f(y), y ∈ E∗, u ∈ (0, 1). Thus, the marks

y ∈ E∗ are distributed as f(y), with total arrival rate λ0, and u is uniformly distributed in

(0,1). The functions ã, b, and H are as in (4). We will use the additional mark component u

to implement the acceptance-rejection decision in the thinning construction.

Next, we make a crucial assumption. Let the intensity function ν for (4) satisfy

ν(y, x1, . . . , xM , t) < λ0f(y) with k = 1, . . . ,M. (7)

Under this assumption, we can use ν to define the deterministic thinning function θ; it acts on

X(t) as

θ(y, u,X(t−), t) =

{
1, u < ν(y,X(t−),t)

f(y)λ0

0, otherwise.
(8)
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The interpretation of the thinning function θ is as follows. Associated with each jump time of

the Poisson random measure is a mark (y, u). Because of nonnegativity of the function ν and

definition (8), and conditional on y and X(t−), the probability of θ being nonzero at a jump

time of the Poisson process is, from (8), ν(y,X(t−), t)/λ0f(y). Intuitively, the jump process

associated to the random measure

µ(dy, dt) =
∫ 1

0
θ (y, u,X(t−), t) p(dy × du, dt) (9)

has a point in [t, t+ ∆) with mark y with probability ν(y,X(t−), t)∆ + o(∆), given X(t−).

Using (9), we may rewrite (6) as

dX(t) = ã(X(t−)) dt + b(X(t−)) dW (t) +
∫

E∗
H(X(t−), y)µ(dy, dt) (10)

which is formally equivalent to (4). Proposition 3.1 in Glasserman and Merener [6] verifies that

(4) and (10) (and therefore (6)) are indeed the same model under this construction of µ. Thus,

under the assumption (7), it is possible to write a model driven by a random measure with

state-dependent intensity as a model driven by a Poisson random measure.

5 Discretization Schemes

Now we turn our attention to the numerical solution of (6), for which we draw on Mikulevicius

and Platen [14]. In order to make our notation consistent with theirs, we aggregate the effect

of H and θ in a function c. We consider then the M -dimensional process X(t), t ∈ [0, T ] that

follows

dX(t) = ã(X(t)) dt + b(X(t)) dW (t) +
∫

E
c(X(t), z)p(dz, dt) (11)

where p(dz, dt) is a Poisson random measure on E× [0, T ] with intensity λ0 h(z) For simplicity,

we take W to be a scalar Brownian motion, though the schemes can be easily generalized to

the multifactor case. The deterministic functions ã, b, and c are M -dimensional vectors with

components ãj, bj , and cj . An explicit time-dependence in the coefficients of (11) could be

accommodated by, e.g., including time as a component of the vector X(t).

We construct approximate solutions to models of the form (11) at a discrete set of times

{τi}. This set is the superposition of the random jump times of a Poisson process on [0, T ]

and a deterministic grid T1, . . . , TM . As stressed before, the random Poisson jump times can

be computed without any knowledge of the realized path of (11). Mikulevicius and Platen [14]

(see also [11, 12, 17, 18]) introduced explicit schemes that generate approximate solutions Y (τi)

of (11) on the grid points τi. The main distinction between our work and theirs is that they
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imposed smoothness conditions on the function c in (11) which are violated by the discontinuous

nature of the thinning construction.

We measure the quality of discretization schemes through a weak convergence criterion,

which is appropriate for the computation of derivatives prices (5). A scheme {Y (τi)} is said to

have weak order of convergence ξ if for all sufficiently small ε

|E(g(X(T ))) − E(g(Y (T )))| ≤ constant · εξ

with ε the maximum step size in the deterministic grid and g ranging over a class of functions,

such as those with 2(ξ+ 1) polynomially bounded derivatives (see p.327 of Kloeden and Platen

[7]).

Among the simplest schemes is a stochastic Taylor approximation of order one, also called

an Euler scheme. The vector Y (τi) is iteratively computed from the initial condition Y (0) using

Y (τ−i+1) = Y (τi) + f0(Y (τi))(τi+1 − τi) + f1(Y (τi))(Wτi+1 −Wτi), (12)

Y (τi+1) = Y (τ−i+1) +
∫

E
c(Y (τ−i+1), z)p(dz, τi+1) (13)

f0(Y (τi)) = ã(Y (τi)) and f1(Y (τi)) = b(Y (τi)). (14)

At each grid point, (13) computes the magnitude of a jump exactly, conditional on Y (τi+1−),

if τi+1 is indeed a point of the Poisson random measure (rather than one of the deterministic

grid points). Otherwise, the jump term is zero. (The integral in (13) entails at most a single

evaluation of the function c because p(dz, τi+1) is a point mass at the mark z that arrives at

τi+1 if τi+1 is a jump epoch.)

Next we present the generalization of the Milstein [15] scheme proposed by Mikulevicius

and Platen [14], a stochastic Taylor approximation of order two. As in the first-order scheme,

jump magnitudes are computed exactly conditional on the state of the system at τ−i+1 and the

diffusion is approximated, though more accurately now. The scheme for the continuous part of

the path is

Y (τ−i+1) =

Y (τi) + f0(Y (τi))(τi+1 − τi) + f1(Y (τi))Zi + f00(Y (τi))
1
2
(τi+1 − τi)2

+ f10(Y (τi))Ui + f01(Y (τi))(Zi(τi+1 − τi) − Ui) + f11(Y (τi))
1
2
(Z2

i − (τi+1 − τi)) (15)

where Ui =
∫ τi+1
τi

∫ s2
τi
dWs1ds2 ∼ N(0, 1

3 (τi+1 − τi)) and Zi =
∫ τi+1
τi

dWs ∼ N(0, (τi+1 − τi)) with

EUiZi = (τi+1−τi)2 are sampled without error from a bivariate normal distribution. The updat-

ing of the rates at a jump time is as in (13). TheM -dimensional functions {f0, f1, f00, f10, f01, f11}
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arise in the truncation of the stochastic (Ito calculus) Taylor expansion. The first order coeffi-

cients {f0, f1} are as in (14). Writing ∂j for a partial derivative with respect to Xj , the others

are

f00(Y ) =
M∑

j=1

ãj(Y )∂j ã(Y ) +
1
2

M∑
j=1

M∑
k=1

bj(Y )bk(Y )∂jkã(Y ), f11(Y ) =
M∑

j=1

bj(Y )∂jb(Y ),

f10(Y ) =
M∑

j=1

bj(Y )∂j ã(Y ), f01(Y ) =
M∑

j=1

ãj(Y )∂jb(Y ) +
1
2

M∑
j=1

M∑
k=1

bj(Y )bk(Y )∂jkb(Y ). (16)

6 Convergence

Mikulevicius and Platen [14] introduced a hierarchy of schemes which, under regularity con-

ditions on ã, b, c and the payoff function g, are shown to have arbitrarily high order of weak

convergence. In particular, the Euler scheme converges weakly with order one and the Milstein

scheme with order two. But the continuous-time models we are considering violate their hy-

potheses in an important way: the thinning procedure at the heart of our construction makes

the function c discontinuous, whereas the analysis in Mikulevicius and Platen [14] requires that

this function be several times continuously differentiable. We therefore present an alternative

convergence result that allows for discontinuous c, though it imposes stronger requirements on

g.

Define

a(y) = ã(y) +
∫

E
c(y, z)h(z)λ0 dz,

so the dynamics (11) can be written (as in [14]) as

dX(t) = a(X(t−)) dt + b(X(t−)) dW (t) +
∫

E
c(X(t−), z) q(dz, dt)

where q(dz, dt) = p(dz, dt) − h(z)λ0 dz is a Poisson martingale measure on E × [0, T ]. In the

applications we are considering, E = [0,∞) × (0, 1).

Let Bξ(C) be the class of 2(ξ+1)-times continuously differentiable real-valued functions for

which the function itself and its partial derivatives up to order 2(ξ + 1) are uniformly bounded

by a constant C.

For bounded ψ : �M → � let

φ(x) =
∫

E
ψ(x+ c(x, z))h(z) dz (17)

and let

φ̄(x) =
∫

E
(x+ c(x, z))h(z) dz. (18)
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With the notation above, we present a weak convergence result, stated without proof in

Glasserman and Merener [6], where the method was tested numerically on a class of interest

rate models.

THEOREM 6.1 Fix ξ ∈ {1, 2}. Let the payoff function g : �M → � be in Bξ(G) for some G

and let {X(t), t ∈ [0, T ]} be as in (11). We assume:

(i) φ̄(x) is 2(ξ + 1)-times continuously differentiable with uniformly bounded derivatives;

(ii) there is a constant K such that if ψ ∈ Bξ(Ψ) for some Ψ then φ(x) ∈ Bξ(KΨ) in (17);

(iii) a and b are 2(ξ+ 1)-times continuously differentiable with uniformly bounded derivatives;

(iv) there is a constant K2 such that, if the functions f(y) in Sξ are well defined, they satisfy

|f(y)| ≤ K2(1 + ‖y‖), with S1 = {f0, f1} as in (14) and S2 = {f0, f1, f00, f10, f01, f11} as

in (16).

Then the approximation defined by (12)-(14) has weak convergence order one and the approxi-

mation defined by (15)-(16) has weak convergence order two.

Before proceeding with the proof of Theorem 6.1 we briefly discuss its connection with

Theorem 3.3 of Mikulevicius and Platen [14] which is also a weak convergence result. They

have shown that, under regularity conditions on a, b, c and the payoff function g, the scheme

defined by (12)-(14) has weak convergence order one and the scheme defined by (15)-(16) has

weak convergence order two. More precisely, Mikulevicius and Platen [14] assume that the

payoff g is 2(ξ+ 1)-times continuously differentiable and with polynomial growth, and that the

coefficients a, b, and c satisfy:

(a) a, b and c are 2(ξ + 1)-times continuously differentiable with uniformly bounded deriva-

tives;

(b) there is a constant K2 such that the functions f(y) in Sξ satisfy |f(y)| ≤ K2(1 + ‖y‖),
with S1 = {f0, f1} as in (14) and S2 = {f0, f1, f00, f10, f01, f11} as in (16).

We will later show (in the proof of Theorem 6.1) that assumptions (i) and (iii) of Theorem

6.1 guarantee that the functions f ∈ Sξ are well defined. This fact, and assumption (iv) in

Theorem 6.1, are equivalent to assumption (b) of Mikulevicius and Platen. Also, it is clear that

regularity conditions for a and b are identical for both convergence results. The results differ

in their requirements for c and the payoff g. Theorem 6.1 allows for discontinuous c, though it
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imposes stronger requirements on g. Next, we will show explicitly that the requirements for c

in Mikulevicius and Platen indeed imply assumptions (i) and (ii) in Theorem 6.1.

PROPOSITION 6.1 If the function c in (11) is 2(γ + 1)-times continuously differentiable

with derivatives uniformly bounded by a constant C, then assumptions (i) and (ii) in Theorem

6.1 are satisfied.

Proof. We denote by 1k ∈ �M the vector with kth component equal to one, and the rest equal

to zero. For (i) in Theorem 6.1 observe that

∂φ̄(x)
∂xk

=
∂

∂xk

∫
E
(x+ c(x, z))h(z) dz =

∫
E
(1k +

∂

∂xk
c(x, z))h(z) dz k = 1 . . . ,M (19)

where the boundedness of ∂
∂xk

c(x, z) has allowed us to invoke the Bounded Convergence Theo-

rem and exchange differentiation and integration to show that ∂φ̄(x)
∂xk

exists, and can be written

as in the rightmost expression in (19). Furthermore, since ∂
∂xk

c(x, z) is uniformly bounded, and

h(z) is a probability density, then ∂φ̄(x)
∂xk

is also uniformly bounded. The same argument applies

to show that derivatives of φ̄ up to order 2(γ + 1) exist and are uniformly bounded. Therefore,

assumption (i) in Theorem 6.1 holds.

For assumption (ii) in Theorem 6.1 we take ψ ∈ Bξ(Ψ). That φ in (17) is uniformly bounded

follows from the fact that ψ is uniformly bounded. Next, we consider the derivatives of φ. By

the chain rule, we have that

∂

∂xk
ψ(x+ c(x, z)) = ∇ψ · (1k +

∂c(x, z)
∂xk

)

wich is bounded by MΨ(1 +C). Therefore, we can invoke the Bounded Convergence Theorem

to write

∂φ(x)
∂xk

=
∂

∂xk

∫
E
ψ(x+ c(x, z))h(z) dz =

∫
E

∂

∂xk
ψ(x+ c(x, z))h(z) dz

Furthermore, |∂φ(x)
∂xk

| < MΨ(1 + C). Computation of the bound for higher order derivatives is

straightforward. Therefore, assumption (ii) in Theorem 6.1 holds. �

To summarize, we have shown that hypotheses (i) and (ii) in Theorem 6.1 are implied by the

regularity condition for c in Theorem 3.3 of Mikulevicius and Platen [14]. But, as mentioned

above, Theorem 6.1 is obtained under more restrictive conditions for g than in the result of

Mikulevicius and Platen [14].

Next we present a proof of Theorem 6.1. The proof holds in fact for the entire hierarchy

of schemes proposed in Mikulevicius and Platen [14], which have arbitrarily high orders of
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convergence. Schemes of order higher than two are constructed using the funcions f in Sξ

which are defined in a recursive way in [14].

7 Proof of Theorem 6.1

The result follows from the proof of Theorem 3.3 of Mikulevicius and Platen [14] once we

establish that two key properties used in their proof hold in our setting as well: the existence

of a stochastic Taylor formula, and smoothness of the solution v of a backward Kolmogorov

equation and associated functionals.

The stochastic Taylor formula introduced in Section 2 of Mikulevicius and Platen [14] re-

quires that the coefficients functions f ∈ Aξ+1 (in the notation of Section 2 in [14]) are well

defined. The functions in Aξ+1 are computed through up to ξ + 1 recursive applications of the

differential operators

Π0f(x) ≡
M∑

j=1

ãj(x)∂jf(x) + 1/2
M∑

i,r=1

bj(x)br(x)∂jrf(x), and Π1 ≡
M∑

j=1

bj(x)∂jf(x), (20)

and involve derivatives up to order 2ξ. These coefficient functions include those in S1 and S2,

which are used in the construction of the truncated Taylor expansion.

The solution of a Kolmogorov equation used in Lemma 4.3 of Mikulevicius and Platen [14]

is

v(s, x) ≡ E
[
g(X(T ))|X(s) = x

]
,

and we will also use the functional

Πv(s, x) ≡
∫

E

[
v(s, x+ c(x, z)) − v(s, x)

]
h(z) λ0 dz. (21)

The following lemma presents sufficient conditions on g, v, Πv and the coefficients functions

f ∈ Aξ+1 in order to prove Theorem 6.1 using the proof of Mikulevicius and Platen [14].

LEMMA 7.1 Fix ξ ∈ {1, 2}. Let the payoff function g : �M → � be in Bξ(G) and let

{X(t), t ∈ [0, T ]} be as in (11). We assume:

(i) v(s, x) and Πv(s, x) are 2(ξ + 1)-times continuously differentiable in the initial condition

x;

(ii) a and b are 2(ξ+ 1)-times continuously differentiable with uniformly bounded derivatives;

(iii) the functions f ∈ Aξ+1 are well defined;

12



(iv) there is a constant K2 such that the functions f(y) in Sξ satisfy |f(y)| ≤ K2(1 + ‖y‖),
with S1 = {f0, f1} as in (14) and S2 = {f0, f1, f00, f10, f01, f11} as in (16).

Then the approximation defined by (12)-(14) has weak convergence order one and the approxi-

mation defined by (15)-(16) has weak convergence order two.

Proof of lemma. We check that the assumptions of the lemma guarantee that the proof of

Theorem 3.3 in Mikulevicius and Platen also applies to prove this result.

First, g ∈ Bξ(G) implies that g is 2(ξ + 1)-times continuously differentiable and with poly-

nomial growth, as required in Theorem 3.3 of [14].

Next, Assumption (iii) guarantees the existence of a stochastic Taylor formula as introduced

in Section 2 of Mikulevicius and Platen [14] and used in Section 5 of [14].

Last, because of (i), (2(ξ+1)-times continuous differentiability of v), Lemma 4.3 and Lemma

4.8 in Mikulevicius and Platen [14] hold.

Therefore, Lemma 7.1 is proved by Section 6 of Mikulevicius and Platen [14], which is the

proof of the convergence result (Theorem 3.13) in [14], and where assumption (i) (2(ξ+1)-times

continuous differentiability of v and Πv), is used to apply the Taylor formula in (6.6) and (6.13)

of [14]. �

Armed with the lemma above, it is clear that to prove Theorem 6.1 it will suffice to show

that assumptions of Theorem 6.1 imply the assumptions of Lemma 7.1. In particular, we need

to check that the functions f in Aξ+1 (and therefore those in Sξ) are well defined and that

smoothness properties of v and Πv hold. Verification of these two properties divides the proof

into two parts.

Part 1 of proof. As mentioned above, the stochastic Taylor formula requires that the coefficients

functions f ∈ Aξ+1, computed through the repeated application of Π0 and Π1 in (20), are well

defined. In order to be able to apply Π0 and Π1 it will suffice to show 2ξ-times continuous

differentiability of

ã(x) = a(x) −
∫

E
c(x, z)h(z)λ0 dz.

From (18) we have that ∫
E
c(x, z)h(z)λ0 dz = λ0 φ̄(x) − λ0 x

leading to

ã(x) = a(x) − λ0 φ̄(x) + λ0 x . (22)

Therefore, both ã and the right hand side of the equality are 2(ξ + 1)-times continuously

differentiable, the latter by assumptions (i) and (iii) in Theorem 6.1.
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This ends the first part of the proof. Next we introduce an auxiliary result that we will

later use to prove the 2(ξ+1)-fold continuous differentiability of the solution v of a Kolmogorov

equation and associated functionals (21).

We have assumed in Theorem 6.1 that a, b and φ̄ are 2(ξ + 1)-times continuously differ-

entiable with bounded derivatives, so (22) implies that the derivatives of ã are also bounded.

We have also assumed in Theorem 6.1 that both f0 = ã(y) and f1 = b(y) are of linear growth.

Therefore, the assumptions of the following auxiliary lemma are implicit in the hypotheses of

Theorem 6.1.

LEMMA 7.2 Let Z(t) ∈ �M be an Ito process, t ∈ [0, T ], Z(0) = x a.s., with

dZ(t) = ã(Z(t)) dt + b(Z(t)) dW (t) (23)

where the functions ã, b are 2(ξ + 1)-times continuously differentiable with uniformly bounded

partial derivatives. Let a, b be of linear growth; i.e., ‖ã(y)‖ + ‖b(y)‖ ≤ K2 (1 + ‖y‖) for some

constant K2. Let g : �M → � be in Bξ(G) and define φD(s, t, x) = E[g(Z(t))|Z(s) = x]. Then

φD(s, t, ·) ∈ Bξ(D(ξ)G) where D(ξ) is independent of g

Proof of lemma. We need to prove that φD is bounded and that φD(s, t, ·) has continuous

bounded partial derivatives up to order 2(ξ + 1). That |φD| ≤ G follows from the fact that

|g| ≤ G.

We analyze the derivatives of φD within the framework of Chapter V of Krylov [9] in

which, under technical conditions, it is possible to exchange differentiation and expectation.

We introduce the following notation. The vector ηk1...kn(t) ∈ �M is obtained by formally

differentiating Z(t) with respect to the components xk1, . . . , xkn of x, n ∈ {1, . . . , 2(ξ + 1)}.
These processes will be derivatives of Z(t) in probability though we will not need to check this

explicitly. We need to show that these processes are solvable by Euler’s method in the mean

(SEM) as defined in V.3 of Krylov [9]. The dynamics of the i-th component of the first order

derivative process is

dηk1
i = (∇ãi · ηk1) dt + (∇bi · ηk1) dW (24)

with ηk1
k1

(0) = 1, ηk1
j (0) = 0 for j 
= k1, ∇ãi, ∇bi ∈ �M . The components of the second order

derivative processes evolve as

dηk1k2
i = (ηk�

2 · (∇∇ãi) · ηk1) + ∇ãi · ηk1k2)dt+ (ηk�
2 · (∇∇bi) · ηk1 + ∇bi · ηk1k2) dW

with ηk1k2(0) = 0 (and ∇∇ denoting the Hessian). In general, for each k1, . . . , kn through

repeated differentiation we define a∗ and b∗ and then

dηk1k2...kn
i = ã∗i dt+ b∗i dW
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with ηk1k2...kn(0) = 0 for derivatives of order higher than two. It is easy to check, as is clear for

the lowest two derivatives, that for a derivative of order n, both ã∗ and b∗ are polynomials in

the derivative processes of order less than n and affine functions of ηk1k2...kn . Viewing a∗ and

b∗ as functions of ηk1k2...kn with all other derivative processes held fixed, we therefore have

‖ã∗(ηk1k2...kn)‖ + ‖b∗(ηk1k2...kn)‖ ≤ K1(1 + ‖ηk1k2...kn‖),
‖ã∗(ηk1k2...kn) − ã∗(ηk1k2...kn + h)‖ + ‖b∗(ηk1k2...kn) − b∗(ηk1k2...kn + h)‖ ≤ K2‖h‖ (25)

where K1, K2 are independent of ηk1k2...kn . These are Lipschitz and linear growth conditions.

Furthermore, ã∗ and b∗ are continuously differentiable in ηk1k2...kn . Remark V.7.3 in Krylov [9]

and the hypotheses of Lemma 7.2 imply that the system of equations formed by (23) and (24)

is SEM. Then, as in Remark V.3.5 of [9], we can inductively add higher order derivatives to

the system. These derivatives satisfy the regularity conditions (25) so the expanded system is

SEM. Let η be the vector formed by all derivatives processes up to order 2(ξ + 1). It follows

from Remark V.3.2 in [9] that for any positive p there exist positive constants q, M∗ such that

E[‖η(t)‖p] ≤ M∗(1 + ‖η(0)‖q). The norm of each derivative process at time 0 is bounded by

one, so M∗ may be chosen to satisfy E[‖ηk1...kn(t)‖p] ≤M∗.

We consider now ∂φD/∂xk1 . By Lemma V.7.1 of [9], the hypotheses of Lemma 7.2 and the

fact that the derivative processes are SEM, we have that φD is continuously differentiable and

we may exchange differentiation and expectation to get

∂φD

∂xk1

(t) = E[∇g · ηk1(t)] ≤ E[‖∇g‖‖ηk1(t)‖] ≤ (E[‖∇g‖2])
1
2 (E[‖ηk1(t)‖2])

1
2

where last step is the Cauchy-Schwarz inequality. Also, (E‖∇g‖2)
1
2 ≤ Gd

1
2 because ∇g ∈

�M , g ∈ Bξ(G). We also have that E‖ηk1(t)‖2 is bounded as shown above. Therefore

|∂φD/∂xk1(t)| ≤ GD with D independent of g.

Next we consider second order derivatives. These are

∂2φD

∂2xk1xk2

=
∂

∂xk2

E[∇g · ηk1 ]. (26)

The quantity between brackets in (26) is of polynomial growth, and the derivative processes

ηk1 , ηk1k2 satisfy the hypotheses of Lemma V.7.1 in [9]. This, again, ensures continuous differ-

entiability of ∂φD/∂xk1 and allows us to interchange differentiation and expectation to get

E[ηk�
2 · (∇∇g) · ηk1 + ∇g · ηk1k2 ] ≤ E[‖ηk�

2 · (∇∇g) · ηk1 + ∇g · ηk1k2‖]
≤ E[‖ηk�

2 · (∇∇g) · ηk1‖] + E[‖∇g · ηk1,k2‖].
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All partial derivatives of g have been assumed bounded by G and we have shown before that

the norm of the derivative processes have bounded moments for finite time t. Thus, Hölder’s

inequality and some algebra lead to |∂2φD/∂2xk1xk2(t)| ≤ GD with D independent of g.

We avoid presenting here the cumbersome but straightforward computations that generalize

the result to higher derivatives. The proof repeatedly uses the regularity of the derivative

processes to apply Lemma V.7.1 in [9]. These computations are analogous to those made

explicit above and prove that, for finite ξ, partial derivatives of φD up to order 2(ξ + 1) exist,

are continuous, and bounded in absolute value by D(ξ,G) = D(ξ)G. �

Part 2 of proof. We continue now with the proof of Theorem 6.1. The second issue we need to

address to apply the approach of Mikulevicius and Platen [14] is the 2(ξ + 1)-fold continuous

differentiability of the solution v of a Kolmogorov equation and associated functionals (21).

That is, we need to show that

v(s, x) = E
[
g(X(T ))|X(s) = x

]
,

Πv(s, x) =
∫

E

[
v(s, x+ c(x, z)) − v(s, x)

]
h(z)λ0 dz

are 2(ξ + 1)-times continuously differentiable in the initial condition x.

We begin with v(s, x). Let N be the number of points in [s, T ] of the Poisson random

measure in (11), with strictly increasing jump times {τ1, . . . , τN}, N < ∞ a.s. We take the

paths of X to be right-continuous and write X(τj−) for limt→τj−X(t). Conditioning on the

jump times we define

vn(s, s1, . . . , sn, x) = E [g(X(T ))|X(s) = x,N = n, τi = si, i = 1, . . . , n]

with s ≤ s1 < . . . < sn. We show by induction in the number of jumps that vn(s, s1, . . . , sn, ·)
is in Bξ(KnDn+1G) for all s, s1, . . . , sn, with G and K as in Theorem 6.1. For n = 1 we have

v1(s, s1, x) =

E

[
E

[
E[g(X(T ))|X(s1), N = 1, τ1 = s1]

∣∣∣X(s1−), N = 1, τ1 = s1
] ∣∣∣∣∣X(s) = x,N = 1, τ1 = s1

]
.

The innermost expectation is computed conditional on no jumps in (s1, T ]; in the notation of

Lemma 7.2, it is φD(s1, T,X(s1)), which is in Bξ(DG). Thus,

v1(s, s1, x) = E
[
E

[
φD(s1, T,X(s1))|X(s1−), N = 1, τ1 = s1

]
|X(s) = x,N = 1, τ1 = s1

]
.

Since φD(s1, T, ·) is in Bξ(DG), by hypothesis (ii) of Theorem 6.1 the inner conditional expec-

tation is in Bξ(KDG). The outer conditional expectation is computed conditional on no jumps

in [s, s1) so again applying Lemma 7.2 we conclude that v1(s, s1, ·) ∈ Bξ(KD2G).
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For the inductive step define Sn = {s1, . . . , sn} and Θn = {τ1, . . . , τn}. Take as induction

hypothesis that

vn−1(s, s1, . . . , sn−1, x) = E [g∗(X(t))|X(s) = x,N = n− 1,Θn−1 = Sn−1]

belongs to Bξ(Kn−1DnG∗) for any fixed t ≤ T and g∗ ∈ Bξ(G∗). Now

vn(s, s1, . . . , sn, x)

= E [g(X(T ))|X(s) = x,N = n,Θn = Sn]

= E
[
E

[
E[g(X(T ))|X(sn), N = n, τn = sn]

∣∣∣X(sn−), N = n, τn = sn

]
∣∣∣X(s) = x,N = n,Θn = Sn

]
.

The same argument as in the case of one jump applies for the two innermost expectations,

allowing us to write

vn(s, s1, . . . , sn, x) = E [φ(sn,X(sn−))|X(s) = x,Θn−1 = Sn−1]

for some φ(sn, ·) in Bξ(KDG). For the last expectation we apply the induction hypothesis with

G∗ = KDG to conclude that vn(s, s1, . . . , sn, x) ∈ Bξ(KnDn+1G).

Next we integrate over the jump times and write

v(s, x, n) =
∫
. . .

∫
qn(s1, . . . , sn)vn(s, s1, . . . , sn, x) ds1, . . . , dsn,

where qn is the joint density of the jump times in [s, T ] of the Poisson random measure,

conditional on N = n. Because v(s, s1, . . . , sn, x) ∈ Bξ(KnDn+1G), the Bounded Conver-

gence Theorem allows us to interchange differentiation (in x) and integration and conclude

that the derivatives of v(s, x, n) up to order 2(ξ + 1) exist and are continuous. Furthermore,

vn(s, s1, . . . , sn, ·) ∈ Bξ(KnDn+1G) implies that v(s, x, n) ∈ Bξ(KnDn+1G) too.

Finally we treat v(s, x) = E[g(X(T ))|X(s) = x]. This can be written as

v(s, x) =
∞∑

n=0

P (N = n)v(s, x, n), with P (N = n) =
e−λ0(T−s)(λ0(T − s))n

n!
.

Any series of the form
∑∞

n=0 P (N = n)fn with |fn| ≤ Cn for some constant C is absolutely

convergent. Therefore v(s, x) is bounded. Notice that ∂mv(s,x,n)
∂xk1

...∂xkm
is continuous and that

∞∑
n=0

P (N = n)
∂mv(s, x, n)
∂xk1 . . . ∂xkm

≤
∞∑

n=0

|P (N = n)
∂mv(s, x, n)
∂xk1 . . . ∂xkm

|

≤
∞∑

n=0

P (N = n)KnDn+1G = C <∞.
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Then
∑∞

n=0 P (N = n) ∂mv(s,x,n)
∂xk1

...∂xkm
converges uniformly and is continuous. Therefore

∂mv(s, x)
∂xk1 . . . ∂xkm

=
∞∑

n=0

P (N = n)
∂mv(s, x, n)
∂xk1 . . . ∂xkm

which implies that ∂mv(s,x)
∂xk1

...∂xkm
exists and is continuous. Furthermore, v(s, x) ∈ Bξ(C).

To complete the proof of the theorem we need to show that

Πv(s, x) = λ0

∫
E
v(s, x+ c(x, z))h(z) dz − λ0 v(s, x)

is 2(ξ + 1)-times continuously differentiable in x. We only need to consider the first term.

The function v(s, ·) is in Bξ(C) so by hypothesis (ii) of Theorem 6.1 the integral (viewed as a

function of x) is in Bξ(KC) and in particular is 2(ξ+ 1)-times continuously differentiable. �

References

[1] Barndorff-Nielsen, O.E., Processes of Normal Inverse Gaussian Type, Finance and Sto-

chastics 2, 41–68, (1998).

[2] Björk, T., Kabanov, Y., and Runggaldier, W., Bond Market Structure in the Presence of

Marked Point Processes, Mathematical Finance, 7, 211-239, (1997).
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