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This paper develops methods for fast estimation of option price sensitivities in Monte

Carlo simulation of term structure models. The models considered are based on

discretely compounded forward rates with proportional volatilities. The ef®cient

estimation of option deltas, gammas, and vegas are investigated in this setting.

Various general methods are available in the Monte Carlo literature for computing

such estimates; these methods are tailored to the term structure models and

approximations speci®c to this setting are developed in order either to accelerate

the methods or to expand their applicability. The authors provide some theoretical

support for the application of the basic methods and evaluate the approximations

through numerical experiments. The results indicate that the proposed algorithms can

substantially improve on standard ®nite difference estimates of sensitivities.

1. INTRODUCTION

This paper develops methods for fast estimation of option price sensitivities

based on Monte Carlo simulation of forward LIBOR models of the type

developed by Brace, Gatarek, and Musiela (1997), Jamshidian (1997), Miltersen,

Sandmann, and Sondermann (1997), and Musiela and Rutkowski (1997). These

models are similar in spirit to the general framework of Heath, Jarrow, and

Morton (1992) (hereafter referred to as HJM), but di�er in that they model the

dynamics of discretely compounded forward rates (directly observable in the

market) rather than instantaneous continuously compounded forward rates. As

in the HJM setting, arbitrage restrictions determine the dynamics of the forward

curve (now represented by a vector of discrete rates) once the volatility structure

and numeÂ raire have been chosen. The resulting dynamics are typically complex

enough to make Monte Carlo simulation the primary computational tool for

use with these models.

Price sensitivities are, of course, of central importance in any model for

pricing derivative securities because the sensitivities determine the trading

strategy that hedges the derivative security. A common criticism of Monte

Carlo simulation is that it produces poor estimates of greeks. Indeed, using

straightforward simulation, estimating deltas with respect to N underlying
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assets or rates requires simulating a minimum of N � 1 times as many paths as

estimating a price alone, and in spite of this the delta estimates obtained will

often be much less accurate than the estimated price. There are, however,

Monte Carlo methods speci®cally designed for the estimation of sensitivities.

Some of these are treated by, for example, Glasserman (1991), Glynn and

L'Ecuyer (1995), Ho and Cao (1991), Reiman and Weiss (1989), and

Rubinstein and Shapiro (1993), and the application of these and related

methods to option pricing has been considered by Broadie and Glasserman

(1996), FournieÂ et al. (1999), Fu and Hu (1995) and Pikovsky (1998); see also

the overview by Boyle, Broadie, and Glasserman (1997). But the class of

models for which we implement the methods here is somewhat more complex

than previous ®nancial applications of these methods and it raises both

practical and theoretical issues.

The problem of estimating sensitivities by simulation may be formulated

quite generally as one of estimating the derivative of an expectation with respect

to a parameter. In the case of estimating a delta, for example, the relevant

parameter is the initial value of a price or rate. Methods for estimating

sensitivities may be broadly classi®ed by whether they put the dependence on

the parameter in the underlying stochastic process or in the probability measure.

Both perspectives are generally possible, and this ¯exibility is analogous to two

ways of adding a drift � to Brownian motion: we may add �t at time t to each

Brownian path, or we can leave the paths unchanged and use Girsanov's

theorem to add a drift through a change of probability measure. Putting the

dependence on the parameter in the sample paths of the stochastic process leads

to estimators that di�erentiate the paths of the processÐwe call these pathwise

derivatives. Putting the dependence in the measure leads to estimators based on

di�erentiating probability densities; this is often referred to as the likelihood ratio

method (LRM).

We investigate the use of both pathwise derivatives and LRM in estimating

deltas and gammas and the use of pathwise estimators for `vega' (sensitivity to

changes in volatility). Our primary contribution to the literature on forward

LIBOR models lies in deriving and comparing a variety of methods and

identifying which are most practical and e�ective in this context. In this regard

our conclusions are as follows:

à For estimating deltas when the option payo� is a (Lipschitz) continuous

function of the forward rates, use the pathwise method with a forward-drift

approximation.

à For estimating deltas when the payo� is discontinuous (e.g. a digital or

knock-out payo�), use LRM with the forward-drift approximation.

à No method is entirely satisfactory for estimating gammas. Conventional

central di�erence approximations are very sensitive to the size of the

perturbation introduced. A mixed pathwise±LRM method appears prefer-

able.
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à A pathwise estimator using a forward-drift approximation is fast and e�ective

in estimating vega when the payo� is continuous.

Relative to the general literature on estimating sensitivities through simula-

tion, this paper makes three principal contributions:

(1) It proposes and evaluates fast approximations to an exact pathwise

algorithm speci®c to the forward LIBOR setting.

(2) It analyzes the convergence to the continuous-time limit of pathwise estim-

ators based on discrete-time simulation.

(3) It uses an approximate LRM estimator in a setting where the relevant

probability density is unknown and develops a method for applying LRM in

a singular setting where no density exists.

We comment brie¯y on each of these points. (1) In its exact version, the

pathwise method entails simulating a stochastic process of derivatives of state

variables in addition to the original state variables. In a model with the

complexity of the forward LIBOR models, the e�ort involved in simulating the

derivatives process can be comparable to that required to simulate a perturbed

copy of the original process, so the pathwise method may not o�er a large

advantage over a standard ®nite di�erence approximation to a derivative based

on resimulating the original process. The approximations we develop address

this issue. (2) The pathwise method can be formulated in continuous time

(di�erentiating a di�usion process with respect to a parameter) or in discrete

time (di�erentiating the discretized process in the simulation). We give

conditions under which the discrete-time estimator gives unbiased derivative

estimates for the simulated process and also under which it converges to the

correct continuous-time limit. (3) The application of LRM to estimating delta

entails knowledge of the transition density of the underlying state variables. No

such density is available in forward LIBOR models, so we use a Gaussian

approximation. This does not entirely resolve the problem because in a model

with fewer factors than state variables (i.e. a model in which the dimension of

the driving Brownian motion is smaller than the dimension of the state vector)

the distribution of the increments of the state variables over one simulated time

step is singular and fails to have a densityÐeven in the Gaussian case. The

increment over multiple time steps may nevertheless have a density, and we use

this observation to apply LRM.

The rest of this paper is organized as follows. Section 2 reviews the dynamics

of forward LIBOR models. Section 3 develops pathwise delta estimators, ®rst

deriving an exact method and then proposing and evaluating approximations.

Section 4 develops LRM delta estimators, ®rst reviewing the method in a purely

Gaussian setting, then tailoring its application to forward LIBOR models.

Section 5 addresses the somewhat harder problem of estimating gamma and

Section 6 deals with vega. Theoretical analysis of the pathwise estimators is

given in Section 7.
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2. PRELIMINARIES ON THE MODEL

We begin with a brief review of LIBOR market models based on a ®nite set of

maturities, as developed by Jamshidian (1997). The tenor structure is a ®nite set

of dates,
0 � T0 < T1 < � � � < TN < TN�1;

representing maturities spaced, for example, three months or six months apart.

For simplicity, we assume that the day-count fractions �i �4 Ti�1 ÿ Ti

�i � 0; . . . ;N� are all equal to a ®xed � (e.g. � � 0:25 years). In practice, day-

count conventions would make the lengths of these intervals slightly di�erent.

The left-continuous function � : �0; TN�1� ! f1; . . . ;N � 1g, de®ned by taking

��t� to be the unique integer satisfying

T��t�ÿ1 < t 6 T��t�;

gives the index of the next tenor date at time t. Associated with each tenor date

Ti is a zero-coupon bond maturing at that date; Bi�t� is the price of that bond at

time t 2 �0; Ti� and Bi�Ti� � 1.

The forward LIBOR rate at time t for the accrual period �Ti; Ti�1�, with t 6 Ti,

is

Li�t� � 1

�

�
Bi�t�

Bi�1�t� ÿ 1

�
; i � 1; . . . ;N: �1�

It is at times notationally convenient to extend the de®nition of Li beyond the

ith tenor date; we do so by setting Li�t� � Li�Ti� for t > Ti. At a tenor date Ti,

the price of any bond Bn, with n > i, that has not yet matured is given by

Bn�Ti� �
Ynÿ1
j�i

1

1� �Lj�Ti� ;

more generally, at an arbitrary time t < Tn, we have

Bn�t� � B��t��t�
Ynÿ1

j���t�

1

1� �Lj�t� : �2�

The dynamics of the forward LIBOR rates depend on the form assumed for

their volatilities and on the measure under which the model is speci®ed.

Throughout, we assume the LIBOR rates have deterministic volatilities (so that

caplets are priced by Black's formula, as in the work of Brace, Gatarek, and

Musiela (1997)) and we work in the spot LIBOR measure introduced by

Jamshidian (1997). This is the equivalent martingale measure associated with

the numeÂ raire

B��t� � B��t��t�
B1�0�

Y��t�ÿ1
j�1

Bj�Tj�
Bj�1�Tj� ;
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which may be interpreted as the result of buying 1=B1�0� bonds at time 0

maturing at T1, and then at each tenor date selling the bonds that matured and

investing the proceeds in the bond that matures next. This is thus a discretely

compounded analog of the money market account that gives rise to the usual

risk-neutral measure. A particular case of Jamshidian's construction is the

speci®cation

dLn�t�
Ln�t� �

Xn

i���t�

��n�t��i�t�0Li�t�
1� �Li�t� dt � �n�t� dWt; n � 1; . . . ;N; �3�

in which Wt is a standard d-dimensional Brownian motion under the spot

LIBOR measure and each �n is deterministic, bounded, and possibly time-

varying, with �n�t� a d-dimensional row vector. (Take �n�t� � 0 for t > Tn to

keep Ln�t� � Ln�Tn� on �Tn; TN�1�.) The form of the drift in (3) is necessitated by

the absence of arbitrage once the volatilities (and the numeÂ raire) are speci®ed. In

particular, with this choice of drift, de¯ated asset prices (ratios of asset prices to

B��t�) are martingales. It follows that the time-t value C�t� and time-T value C�T �
of a derivative security (that can be replicated by trading in the basic bonds) are

related by the pricing rule

C�t� � B��t�E C�T �
B��T �

���� F t

� �
; �4�

where fF ; t > 0g is the ®ltration generated by the Brownian motion.

In order to delta hedge a derivative with positions in the underlying bonds,

we need to calculate, for example,

@C�0�
@Bn�0� �

@

@Bn�0� B��0�E C�T �
B��T �
� �� �

; n � 1; . . . ;N � 1:

In light of the deterministic relations (1) and (2), this is equivalent (through the

chain rule of ordinary calculus) to computing sensitivities

@C�0�
@Lk�0� �

@

@Lk�0� B��0�E C�T �
B��T �
� �� �

; k � 0; . . . ;N;

setting L0 � �1=B1�0� ÿ 1�=�. This may be viewed as a type of bucket hedging in

which a separate delta is computed with respect to each component of the

forward-rate vector. Given either bucket deltas or deltas with respect to zero-

coupon bonds, one can in turn compute deltas with respect to the basic

instruments used to build a forward curve again using just the ordinary chain

rule, because the bond prices and forward rates are deterministically related to

the basic instrumentsÐthe deterministic relation being embodied in the curve-

building algorithm.
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3. PATHWISE DELTAS

3.1 Preliminaries

To motivate the ®rst method we develop, consider a caplet with strike K paying

�
ÿ
Ln�Tn� ÿK

��
at Tn�1. From (4) and the de®nition of B�, it follows that its

price at time 0 is

Cn�0� � B1�0��E
�ÿ

Ln�Tn� ÿK
��Yn

i�1

1

1� �Li�Tn�
�
: �5�

Much as in the work of Brace, Gatarek, and Musiela (1997), this expectation

is evaluated by the Black formula

Cn�0� � CBlack

ÿ
��n;K;Ln�0�;Bn�1�0�; Tn

�
;

where

CBlack��;K; r; b; T � � �b r�
log�r=K� � 1

2 �
2T

�
����
T
p

 !
ÿK�

log�r=K� ÿ 1
2 �

2T

�
����
T
p

 !" #
;

�6�

where � is the cumulative normal distribution and

��n �
�����������������������������Tn

0

k�n�t�k2 dt

s
:

Of course, since we want to develop a general method, we will not use the fact

that a caplet can be priced in closed form except to compare numerical results.

To compute, for example, @Cn�0�=@Lk�0�, we need to compute the sensitivity

of the expectation in (5) with respect to Lk�0�. Provided that derivative and

expectation can be interchanged, we have

@

@Lk�0�E
�ÿ

Ln�Tn� ÿK
��Yn

i�1

1

1� �Li�Tn�
�

� E
�

@

@Lk�0�
�ÿ

Ln�Tn� ÿK
��Yn

i�1

1

1� �Li�Tn�
��
: �7�

If we can evaluate the derivative inside the expectation on the right for each

simulated path, then by averaging over paths we obtain an estimate of the

expectation and thus of the derivative on the left. The chain rule suggests

@

@Lk�0�
�ÿ

Ln�Tn� ÿK
��Yn

i�1

1

1� �Li�Tn�
�

�
Xn

i�1

@

@Li�Tn�
�ÿ

Ln�Tn� ÿK
��Yn

i�1

1

1� �Li�Tn�
�
@Li�Tn�
@Lk�0� :
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One may question whether the expression within the large parentheses can be

di�erentiated as indicated in light of the presence of the positive-part operator.

However, the mapping x 7! �xÿK�� is Lipschitz-continuous and thus di�eren-

tiable almost everywhere and equal to the inde®nite integral of its a.e.-de®ned

derivative. With probability 1, we have

@

@Lk�0�
ÿ
Ln�Tn� ÿK

�� � 1fLn�Tn� > Kg @Ln�Tn�
@Lk�0� :

(The expression 1f � g takes the value 1 when the event in braces occurs and 0

otherwise.)

Generalizing the setting, to estimate

@

@Lk�0�E
�
g
ÿ
L1�t1�; . . . ;LN�tN�

��
for some Lipschitz-continuous g and arbitrary dates ti, we bring the derivative

inside the expectation to arrive at the (continuous-time) pathwise delta estimator

XN
n�1

�
@

@Ln�tn� g
ÿ
L1�t1�; . . . ;LN�tN�

��
�nk�tn�;

with

�nk�t� � @Ln�t�
@Lk�0� ; n;k � 1; . . . ;N:

In practice, we can at best simulate discrete-time approximations L̂n and �̂nk to

these continuous-time variables. We thus arrive at the pathwise delta estimator:

XN
n�1

�
@

@Ln�tn� g
ÿ
L̂1�t1�; . . . ; L̂N�tN�

��
�̂nk�tn�: �8�

It should now be clear that the key to this method is the evaluation of the

LIBOR sensitivities �nk and their discretized counterparts �̂nk.

3.2 Exact Pathwise Method

Recall that the evolution of the forward LIBOR rates is determined by

dLn�t� � �n�t�Ln�t� dt � �n�t�Ln�t� dWt; n � 1; . . . ;N; �9�
where

�n�t� �
Xn

i���t�

��n�t��i�t�0Li�t�
1� �Li�t� :
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Heuristically di�erentiating both sides with respect to Lk�0� suggests

d�nk�t� � �nk�t� �n�t� dt � �n�t� dWt� � � Ln�t�
XN
j�1

@�n�t�
@Lj�t��jk�t� dt

� �nk�t� dLn�t�
Ln�t� � Ln�t�

XN
j�1

@�n�t�
@Lj�t��jk�t� dt; n � 1; . . . ;N; k � 1; . . . ;N:

�10�

In Section 7, we justify this equation by showing that the system of SDEs

(9)&(10) has a solution for which indeed �nk�t� � @Ln�t�=@Lk�0�.
From the perspective of simulation, the problem has now been reduced to one

of simulating discrete-time approximations to the system of SDEs (9)&(10). The

question of discretization of (9) is investigated by Glasserman and Zhao (1999),

where it is shown that there are advantages to discretizing SDEs for de¯ated

bond prices (or their increments) rather than the forward LIBOR rates

themselves. Di�erentiating these SDEs leads to a set of derivative SDEs

analogous to (10) and it is possible to simulate a discrete-time approximation

to those. Indeed, one could even choose to simulate the de¯ated bond price

SDEs together with the derivative SDEs (10). In continuous time, all such

variations are ultimately equivalent. The possible discrete-time approximations

are limitless. To make the general method as transparent as possible, we restrict

attention to (9)&(10).

Among the methods for simulating (9) considered by Glasserman and Zhao

(1999) is the recursion

L̂n

ÿ�i� 1�h� � L̂n�ih� expf��̂n�ih� ÿ 1
2�n�ih��n�ih�0�h� �n�ih�

���
h
p

Zi�1g; �11�

in which h is the time increment, Z1;Z2; . . . are independent d-dimensional

standard normal vectors,

�̂n�ih� �
Xn

j���ih�

��n�ih��j�ih�0L̂j�ih�
1� �L̂j�ih�

; �12�

and L̂n�0� � Ln�0�. (Ahat indicates a discrete-time approximation to acontinuous-

time variable.) Equation (11) may be interpreted as an Euler scheme for logLn.

Among all the ways of discretizing (10), the one that di�erentiates (11) seems the

most natural and yields the exact pathwise algorithm:

�̂nk

ÿ�i� 1�h� � �̂nk�ih�
L̂n

ÿ�i� 1�h�
L̂n�ih�

� L̂n

ÿ�i� 1�h�XN
j�1

@�̂n�ih�
@L̂j�ih�

�̂jk�ih�h; �13�

with initial condition �̂nk�0� � 1fn � kg.
Indeed, it is easy to see that

�̂nk�ih� � @L̂n�ih�
@Lk�0� �14�
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for every outcome of Z1; . . . ;Zi, and this is the sense in which the algorithm is

exact. Moreover, the same algorithm evaluates @L̂n�ih�=@Bk�0� if we change the

initial condition �̂nk�0� to @Ln�0�=@Bk�0�.
More signi®cant than the sample path property (14) is the fact that, for any

Lipschitz-continuous g : RN ! R and any ®xed times i1h; . . . ; iNh,

@

@Lk�0�E
�
g
ÿ
L̂1�i1h�; . . . ; L̂N�iNh��� � E

�XN
j�k

@g

@L̂j�ijh�
�̂jk�ijh�

�
; �15�

as shown in Section 7. (The range of summation starts at k because �̂jk � 0 if

j < k.) For example, to use this to estimate the sensitivity of a caplet price to an

initial forward rate, let g be the discounted caplet payo� (the right-hand side of

(5) but without the expectation) and evaluate

XN
j�k

@g

@L̂j�Tn�
�̂jk�Tn�;

with

@g

@L̂j�Tn�
� B1�0��

Yn
i�1

1

1� �L̂i�Tn�

�
1fL̂n�Tn� > Kg ÿ ÿL̂n�Tn� ÿK

�� �

1� �L̂j�Tn�

�
:

Equation (15) indicates that this gives an unbiased estimate of the delta in the

discrete-time model (assuming the time grid fh; 2h; . . .g includes the tenor

dates Tn).

3.3 Approximations

For options with Lipschitz-continuous payo�s, the pathwise method makes it

possible to estimate deltas from a single simulation pathÐi.e. without actually

changing any initial values in the model. The computational e�ort required by

(11) (for all k � 1; . . . ;N and all n � k; . . . ;N) is comparable to the e�ort

involved in resimulating all �L̂1; . . . ; L̂N� an additional N times, slightly

changing the value Lk�0� on the kth of these. Hence, the exact pathwise method

may not o�er an overwhelming advantage compared with a standard ®nite

di�erence estimator. We propose approximations to the exact algorithm that are

much faster to simulate and appear to give very good accuracy.

One of the most time-consuming steps in (13) is the recomputation of all the

@�̂n=@L̂j at every time step. For typical parameter values, each �n will be quite

small (they di�er from 0 just enough to keep the forward-rate dynamics

arbitrage-free), so our ®rst approximation simply sets @�̂n=@L̂j � 0 in the

derivative recursions. Clearly, (13) then collapses to the zero-drift pathwise

approximation:

�̂nk

ÿ�i� 1�h� � L̂n

ÿ�i� 1�h�
Lk�0� 1fn � kg: �16�

This would give the exact pathwise derivative if the forward rates were driftless
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multivariate geometric Brownian motionÐi.e. if all the �n were indeed 0. It

must be emphasized that, although we make this approximation in the

algorithm for �̂, we continue to use the original �̂n for the simulation of the

L̂n, as in (11).

Evaluating the �̂nk under the zero-drift approximation requires virtually no

e�ort beyond that involved in simulating the forward LIBOR rates themselves.

However, the approximation seems rather crude. Our next approximation lies

between the exact and zero-drift methods in terms of both the computing time

and the accuracy with which it estimates @L̂n=@Lk. In this approximation, we

di�erentiate L̂n as though the ordinary discretized drift �̂n�ih� in (12) were

instead

�̂0
n�ih� �

Xn

j���ih�

��n�ih��j�ih�0Lj�0�
1� �Lj�0� :

In other words, we replace the L̂j�ih� with their time-0 forward values Lj�0�, in
the spirit of the approximations introduced by Brace et al. (1997) to derive

pricing formulas. The sensitivity of the approximate drift to Lk�0� simpli®es to

@�̂0
n�ih�

@Lk�0� �
��n�ih��0k�ih�
�1� �Lk�0��2

1f��ih�6 k6 ng:

Observe that these values are time-varying but deterministic. If �̂0 were the true

drift, we would be able to solve the SDE for the forward LIBOR rates and

di�erentiate this solution with respect its initial condition. Doing so yields the

forward-drift approximation:

�̂nk�ih� � L̂n�ih�
Lk�0� 1fn � kg � L̂n�ih�

Xiÿ1
r�0

@�̂0
n�rh�

@Lk�0� : �17�

The derivatives of �̂0 used in this expression can be precomputed, so this

approximation is only slightly more e�ort to implement than the zero-drift

approximation. In particular, unlike the exact algorithm, it does not entail

simulation of an additional recursion.

3.4 Numerical Comparisons

We compare the speed and accuracy of the exact and approximate pathwise

algorithms through numerical results. All our results are based on � � 0:25
(quarterly rates), h � � (simulation time step equal to length of accrual

intervals), and N � 1 � 20 (a ®ve-year horizon). The initial term structure takes

the form Ln�0� � log�a� bn�, with a and b chosen so that L0�0� � :05 and

L19�0� � :07. The volatilities are constant over the intervals �Ti; Ti�1�, with

�n�Ti� � ��nÿ i�; i � 0; . . . ; nÿ 1; n � 1; . . . ; 19;
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and each ��j� drawn randomly from the uniform distribution on �0:15; 0:25�.
The speci®c values of the ��j� used are

0:2216; 0:1919; 0:1631; 0:1751; 0:1993; 0:2444; 0:1894; 0:2286; 0:1539; 0:2147

0:1741; 0:2441; 0:2414; 0:1820; 0:1866; 0:2423; 0:2169; 0:1917; 0:1520; 0:2128:

We compare the performance of the exact pathwise algorithm, the zero-drift

approximation, and the forward-drift approximation in estimating

@Cn�0�=@Lk�0�, with Cn a caplet price as in (5). Although in practice one would

be interested in deltas for more complicated instruments or portfolios of

instruments, using caplets allows us to compare with exact (continuous-time)

values from Black's formula.

In principle, there are N2 values of @Cn�0�=@Lk�0� to be estimated, corres-

ponding to the possible combinations of n and k, though the delta is clearly 0

for k > n and the most interesting case is n � k. Estimating all these deltas using

®nite di�erences (i.e. changing each Lk�0� and resimulating) requires N � 1

simulated paths per observationÐone for the original scenario and additional

path for each perturbed Lk�0�. Using central di�erences, the number increases to

2N � 1. At the expense of some overhead per path, all the deltas can be

estimated from the same simulated paths using any of the pathwise algorithms.

In our experiments, estimating all deltas using the exact pathwise algorithm is

about four times as fast as estimating all deltas using ®nite di�erences, the

forward-drift approximation is about three times as fast as the exact pathwise

algorithm, and the zero-drift approximation is faster by another factor of 2.

Rather than attempt to report numerical results for all N2 deltas, we focus on

the most interesting and most di�cult cases. The most interesting deltas are the

diagonal cases, n � k. The most computationally demanding cases ®x n � N

and let k range from 1 to N. In comparing methods, there are two standards one

might reasonably apply in gauging accuracy: proximity to the discrete-time delta

obtained by di�erentiating with respect to Lk�0� while keeping the time step h

®xed, or proximity to the continuous-time delta. The exact pathwise algorithm is

unbiased for the former butÐlike any simulation methodÐis subject to

discretization error in estimating the latter. In order to give as complete a

picture as possible, we include information on both types of error.

Figure 1 shows estimated biases (in percent) for the diagonal deltas @Ck=@Lk

compared with the deltas obtained from Black's formula. The exact values range

from 0:10 to 0:13. We can see that all three methods are close to each other and

perform well. The standard errors of these estimates are about 0:1%, so most of

the estimated biases for the exact and forward-drift methods fail to be

statistically signi®cant. It should be stressed that the results for the exact

pathwise estimate represent the best one could hope to achieve using ordinary

®nite di�erence estimates. If we wanted to compare with the discrete-time delta

rather than the continuous-time limit, we could use the exact pathwise estimate

as the standard, since it is unbiased for the discrete-time delta. The forward-drift

approximation does a particularly e�ective job of approximating the exact

method, with some gradual degradation at longer maturities.
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Figure 2 shows the relative bias in deltas of the last caplet, @C19=@Lk�0�
�k � 1; . . . ; 19�. The absolute values of these deltas for k � 1; . . . ; 18 are around

0:0005, which is about 200 times smaller than @C19=@L19�0�. In relative terms,

the zero-drift approximation method produces a large bias (up to 60%) for the

o�-diagonal deltas, the forward-drift approximation produces a substantially
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FIGURE 2. Estimated bias of @C19=@Lk�0�.
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smaller bias, and the exact method produces no discernible bias at all. It should

be emphasized that in all cases in Figure 2 the absolute errors are very small and

the large relative errors are due to the fact that we are estimating values so close

to 0. Based on these and other consistent numerical results, taking into account

both accuracy and computing time, the forward-drift approximation appears to

be the most e�ective method.

4. LIKELIHOOD RATIO DELTAS

The only signi®cant limitation of the method developed in the previous section

is that it is restricted to payo�s that are at least continuous. This precludes

application of the method to, for example, a caplet with a digital payo�

1fLN�TN� > Kg

or a knock-out caplet with payo�ÿ
LN�TN� ÿK

��
1
n

min
i�1;...;N

Li�Ti� > b
o
:

In both cases, the pathwise derivative with respect to some Lk�0� actually exists

with probability 1, but fails to re¯ect the discontinuity in the indicator function

and thus provides an uninformative estimate. (For the digital caplet, the

pathwise derivative is identically zero wherever it exists.) Put more precisely,

these are examples in which the interchange of derivative and expectation

required in (7) does not hold. We now present an alternative method for

estimating deltas based on moving the dependence on Lk�0� from the sample

paths to the measure, thereby eliminating the need for smoothness in the option

payo�. As noted in Section 1, the distinction is analogous to two ways of adding

a drift to Brownian motion: we can add �t at time t to each Brownian path, or

we can leave the paths unchanged and use Girsanov's theorem to add a drift

through a change of probability measure.

4.1 LRM in the Gaussian Setting

We begin our discussion of the likelihood ratio method (LRM) by considering

the somewhat simpler setting of estimating sensitivities with respect to a

parameter of the mean of a Gaussian vector. We then extend this to assets

described by geometric Brownian motion and ultimately show how the method

can be applied (with some necessary modi®cations) to LIBOR models.

Suppose, then, that the random n-vector X is multivariate normal with mean

vector m��� and covariance matrix �. Here, � is a scalar parameter and we are

interested in sensitivities with respect to �. We suppose � has full rank and

denote by

�
ÿ
x;m���; �� � expfÿ1

2 �xÿm����0�ÿ1�xÿm����g
�2��n=2j�j1=2
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the density of X. For any g : Rn! R,

E��g�X�� �
�
Rn

g�x��ÿx;m���; �� dx; �19�

where we have subscripted the expectation to emphasize the dependence of the

measure on �. Di�erentiating and then interchanging derivative and integral

yields
d

d�
E��g�X�� �

�
g�x� _�ÿx;m���; �� dx

�
�

g�x�
_�
ÿ
x;m���; ��

�
ÿ
x;m���; ���ÿx;m���; �� dx; �20�

the dot on � indicating di�erentiation with respect to �. Some algebra shows that

_�
ÿ
x;m���; ��

�
ÿ
x;m���; �� � �xÿm����0�ÿ1 _m���:

Making this substitution in (20) and interpreting the integral there as an

expectation, we arrive at

d

d�
E��g�X�� � E�

�
g�X��Xÿm����0�ÿ1 _m����: �21�

Hence, the expression inside the expectation on the right provides an unbiased

estimator of the derivative on the left. Moreover, this derivation requires

smoothness in the dependence of � on �, but no smoothness at all in g. The

key quantity _�=� is the derivative with respect to � of the likelihood ratio

�
ÿ
x;m�� � ��; ��=�ÿx;m���; ��Ðhence the name likelihood ratio method.

In a simulation, we would typically sample X by setting X � m��� � AZ,

where A is an n� n matrix satisfying AA0 � � and Z is a vector of independent

standard normal random variables. Making this substitution, we get

d

d�
E��g�X�� � E

�
g
ÿ
m��� � AZ

�
Z0Aÿ1 _m����: �22�

The expectation on the right is with respect to the n-dimensional standard

normal distribution, and hence not subscripted by �.
This derivation applies directly to the estimation of delta for path-dependent

options on geometric Brownian motion. Let

St � S0 exp��t � �Wt�; t > 0;

with Wt a one-dimensional Brownian motion and � and � constants. Suppose

we want to estimate
d

dS0
E�f �St1 ; . . . ; Stn��
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for some dates 0 < t1 < � � � < tn and some f to be interpreted as the discounted

payo� of a path-dependent option. With g chosen appropriately, we can

reexpress the payo� in the following form:

f �St1 ; . . . ; Stn� � g�log St1 ; log St2 ÿ log St1 ; . . . ; log Stn ÿ log Stnÿ1�:

Now make the correspondences � S0,

X 
log St1

log St2 ÿ log St1

..

.

log Stn ÿ log Stnÿ1

26664
37775; m 

log S0 � �t1
��t2 ÿ t1�

..

.

��tn ÿ tnÿ1�

26664
37775;

and

� 
�2t1 0 � � � 0
0 �2�t2 ÿ t1� � � � 0

..

. ..
. . .

. ..
.

0 0 0 �2�tn ÿ tnÿ1�

26664
37775:

We may clearly take A to be diagonal in solving AA0 � �. Let Z0 � �Z1; . . . ;Zn�
be independent standard normals used to simulate the process, in the sense that

Sti�1 � Sti exp
�
��ti�1 ÿ ti� � �

����������������
ti�1 ÿ ti
p

Zi�1
�
; i � 0; 1; . . . ; nÿ 1;

(so that X � m� AZ). We now ®nd that

Z0Aÿ1 _m � Z1

S0�
����
t1
p

and (22) becomes

d

dS0
E�f �St1 ; . . . ; Stn�� � E

�
f �St1 ; . . . ; Stn �

Z1

S0�
����
t1
p

�
:

We may therefore use

f �St1 ; . . . ; Stn�
Z1

S0�
����
t1
p

to estimate delta. A similar expression was derived by Broadie and Glasserman

(1996). Notice that we used the function g to make a direct correspondence with

the previous example but g plays no role in the ®nal estimator. Moreover, f

could be generalized to any function of the path of the underlying asset that

depends only on values of the underlying after some time t1 > 0.

The case of multidimensional geometric Brownian motion works similarly

and will bring us one step closer to the LIBOR model. Suppose we have d assets

S
�i�
t �i � 1; . . . ; d�, satisfying

S�i�t � S
�i�
0 exp��it � �iW

�i�
t �;

with E�W �i�t W
�j�
t � � �ijt. Suppose the d � d matrix � with entries �ij � �i�j�ij
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has full rank and let A satisfy AA0 � �. Write f �S� for the value of some

function of the d assets that depends on their values only after some time t1 > 0.

Suppose we simulate the d assets by setting

S�i�t1
� S

�i�
0 exp��it1 �

����
t1
p �AZ�i�;

with Z a vector of d independent standard normals. Proceeding as before, we

arrive at

d

dS
�k�
0

E�f �S�� � E
�
f �S� �Z

0Aÿ1�k
S
�k�
0

����
t1
p

�
:

The expression inside the expectation on the right thus provides an unbiased

estimator of the delta with respect to the kth asset.

4.2 LRM in LIBOR Models

In order to see both the possibilities and di�culties in applying LRM in the

LIBOR model, it is convenient to take logarithms in (11) to get

log L̂n

ÿ�i� 1�h� � log L̂n�ih� � ��̂n�ih� ÿ 1
2k�n�ih�k2�h�

���
h
p

�n�ih�Zi�1;

n � 1; . . . ;N: �23�

Two issues now arise. The ®rst is that �̂n is a function of the forward LIBOR

rates themselves and hence implicitly of the Lk�0�. This makes it di�cult to move

all the dependence on the Lk�0� out of the sample paths and into the probability

measure. We address this issue as we did in Section 3.3 by di�erentiating as

though the drift were deterministic (while simulating the forward LIBOR rates

with the original drift). If we use the zero-drift approximation, the problem

reduces to applying LRM to constant-drift multidimensional geometric Brow-

nian motion, just as in Section 4.1. But we work primarily with the forward-drift

approximation, which is only slightly more complicated.

Under the forward-drift approximation, (23) describes the evolution of a

Gaussian process, so the development of the previous section potentially

appliesÐif only as an approximation. But we still face a second issue not dealt

with previously: equation (23) describes the evolution of a vector of N rates

driven by (say) d-dimensional vectors of normal random variables, where d is

simply the number of factors in the original formulation of the model. Over a

single time step, the covariance matrix of the increments in (23) has rank d. If

d < N (and we usually have d � N), the matrix is singular, so the development

in Section 4.1Ðwhich includes inverting the covariance matrixÐis not applic-

able. Indeed, even the starting point of the derivation (19) is problematic

because the N-vector of increments fails to have a density in RN . This issue is

not speci®c to the LIBOR setting. Had we not assumed that the covariance

matrix � of the multidimensional Brownian motion in Section 4.1 is non-

singular, precisely the same issue would have arisen there.
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To address this issue, we consider the distribution of the increments over

multiple time steps rather than just one. Unraveling (23) yields

log L̂n�ih� � logLn�0� � h
Xiÿ1
j�0
��̂n�jh� ÿ 1

2k�n�jh�k2�

�
���
h
p �

�n�0� j �n�h� j � � � j �n

ÿ�iÿ 1�h���Z1;Z2; . . . ;Zi

�0
;

where the row vectors �n�jh� have been concatenated into a single vector of

length i � d and the column vectors Zj have been stacked into a column vector of

the same length. For su�ciently large i�, the N � i�d matrix

�h�i�� �

�1�0� j �1�h� j � � � j �1
ÿ�i� ÿ 1�h�

�2�0� j �2�h� j � � � j �2
ÿ�i� ÿ 1�h�

..

. ..
. ..

. ..
.

�N�0� j �N�h� j � � � j �N

ÿ�i� ÿ 1�h�

26666664

37777775
may have rank N, even if d < N. This means that the covariance matrix

�h�i���h�i��0 of the logLn�i�h� �n � 1; . . . ;N� is invertible andÐusing a

deterministic approximation to the driftÐthe derivation of the previous section

applies.

Suppose, then, that �h�i�� has full rank. To apply the method of Section 4.1

in the form given in (21), make the following correspondences: � L̂k�0�,

X �log L̂1�i�h�; . . . ; log L̂N�i�h��0; �24�

mn���  logLn�0� � h
Xi�ÿ1
r�0
��̂0

n�rh� ÿ 1
2k�n�rh�k2�; n � 1; . . . ;N; �25�

(�̂0 is the forward-drift approximation of Section 3.3), � ���
h
p

�h�i�� ����
h
p

�h�i���h�i��0, and A ���
h
p

Ah�i�� for any i�d � i�d matrix Ah�i�� satisfying
Ah�i��Ah�i��0 � �h�i���h�i��0, and

_mn  1fn � kg
Lk�0� � h

Xi�ÿ1
r�0

@�̂0
n�rh�

@Lk�0� ; n � 1; . . . ;N: �26�

With these substitutions, we arrive at (see (21)) the following LRM delta

estimator for an arbitrary discounted payo� g
ÿ
L̂1�t1�; . . . ; L̂N�tN�

�
:

g
ÿ
L̂1�t1�; . . . ; L̂N�tN�

��Xÿm�0�ÿ1 _m; �27�

with X, m, �, and _m as in (24)±(26).

Precomputing the vector �ÿ1 _m reduces the computational e�ort per

simulated path to evaluate the quadratic form in (27) from O�N2� to O�N�.
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If we can take i� � N=d, so that �h�i�� is square, then we can rewrite the

quadratic form to get the estimator

g
ÿ
L̂1�t1�; . . . ; L̂N�tN�

�
hÿ1=2Z0�h�i��ÿ1 _m;

where Z is the column vector obtained by stacking the i� d-vectors of

independent normals used to simulate the d-factor model for i� steps. This puts
the estimator in the form of (22). Much as in (27), we can precompute

�h�i��ÿ1 _m.

To illustrate the use of this method, we return to the examples with which we

began this section. Consider the estimation of

B1�0� � d

dLk�0�E
�
1fLN�TN� > Kg

YN
i�1

1

1� �Li�Ti�
�
;

the delta of the digital caplet with respect to the kth forward rate. For the LRM

method to be applicable, we need the quantity inside the expectation to be a

function of the L̂i�t� for t > i�h but not t < i�h. One way to achieve this is to

choose the time step h su�ciently small so that T1 > i�h. But the method can

actually be applied with any h6 � if we recall that Li�t� � Li�Ti� for all t > Ti.

The discounted payo� on the digital caplet can thus be reexpressed as

B1�0�1fLN�TN� > Kg
YN
i�1

1

1� �Li�TN�

and the delta estimated using (with the notation in (24)±(26))

�
B1�0�1fLN�TN� > Kg

YN
i�1

1

1� �Li�TN�
�
hÿ1=2�Xÿm�0�h�i��ÿ1 _m:

A similar rewriting of the discounted payo� on the knock-out caplet leads to the

estimator

�
B1�0��

ÿ
LN�TN� ÿK

��1n min
i�1;...;N

Li�TN� > b
oYN

i�1

1

1� �Li�TN�
�

� hÿ1=2�Xÿm�0�h�i��ÿ1 _m;

for its delta with respect to Lk�0�.
The derivation above simpli®es somewhat in the important special case that

h � �, i.e. when the simulation time step coincides with the spacing between

tenor dates. If, in particular, we have d � 1 (a single-factor model), then the key
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matrix to check for nonsingularity is

���N� �

�1�0� j �1�T1� j � � � j �1�TNÿ1�
�2�0� j �2�T1� j � � � j �2�TNÿ1�

..

. ..
. ..

. ..
.

�N�0� j �N�T1� j � � � j �N�TNÿ1�

266664
377775:

Under our convention that �n�t� � 0 for t > Tn (so that Ln�t� � Ln�Tn� for
t > Tn), this matrix is block lower triangular. Suppose the forward-rate

volatilities depend solely on time-to-maturity in the sense that

�n�t� � ��Tn ÿ t�

for some function �� � � and all n and t. (We require that � assign a value of 0 to

negative arguments.) In this case, ���N� and its inverse have the general

(Toeplitz) form

���N� �

a1
a2 a1
a3 a2 a1

..

. ..
. ..

. . .
.

aN aNÿ1 aNÿ2 � � � a1

2666664

3777775;

���N�ÿ1 �

b1
b2 b1
b3 b2 b1

..

. ..
. ..

. . .
.

bN bNÿ1 bNÿ2 � � � b1

2666664

3777775:

The inverse is particularly easy to compute because b1 � 1=a1,

b2 � ÿ�a2b1�b1; b3 � ÿ�a3b1 � a2b2�b1; . . . ; bN � ÿ�aNb1 � � � � � a2bNÿ1�b1:

Fast computation of �ÿ1� �N� may be especially important when the simulation is

embedded in an iterative procedure to calibrate a model through choice of �� � �.

4.3 Numerical Results

Consistent with observations of Broadie and Glasserman (1996) and the

broader literature on sensitivity estimation, we ®nd that when the pathwise

method is applicableÐin the present context meaning that the option payo� is

Lipschitz-continuousÐit provides more precise estimates than LRM. We

therefore evaluate the LRM estimator in estimating deltas for two discontinu-

ous payo�s: a caplet with a digital payo� 1fLn�Tn� > Kg, and a knock-out
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caplet with payo�

ÿ
Ln�Tn� ÿK

��Yn
i�1

1fLi�Ti� < big; bi � 1:2Li�0�; i � 1; . . . ;N:

The model parameters are as in Section 3.4.

Because the pathwise method is inapplicable, the alternative against which we

compare is a ®nite di�erence estimator. For the digital caplets we can ®nd the

exact (continuous-time) delta from a straightforward variant of the Black

formula; for the knock-out caplet our `accurate' value is obtained from a large

number of simulations of a ®nite di�erence estimator using a small increment.

The ®nite di�erence estimator works as follows. To estimate, for example,

@Cn=@Bi�0�, we simulate a pair of paths, one starting from the original value

of Bi�0� (and all other bond prices) and one with the ith initial bond price

perturbed to Bi�0� ��b, for some small increment �b. The two paths are

simulated with the same normal random variables as inputs. From the paired

paths we compute the estimated option values Ĉn

ÿ
Bi�0� ��b

�
and Ĉn

ÿ
Bi�0�

�
and then compute the estimator

Ĉn

ÿ
Bi�0� ��b

�ÿ Ĉn

ÿ
Bi�0�

�
�b

and average over many pairs of paths to arrive at the estimated delta.

As in Section 3.4 the large number of deltas one could consider makes it

necessary to focus the numerical comparison on informative cases. Each caplet

Cn (whether digital or standard) can be perfectly hedged using the bonds Bn and

Bn�1, so hedge ratios with respect to these underlying assets are particularly

interesting. Our numerical results focus on these deltas.

TABLE 1. Deltas for digital caplets using LRM and finite differences. To balance the
computing time required to estimate all deltas, we use 1 000 000 replications for LRM
and 110 000 for the finite difference estimators. The quantity �b is the increment in

B10�0� used in the finite difference estimation.

Method Delta Estimator SE RMSE

Exact value @C9=@B10�0� ÿ22.665 Ð Ð
@C10=@B10�0� 20.731 Ð Ð

Likelihood ratio @C9=@B10�0� ÿ22.731 0.073 0.098

@C10=@B10�0� 20.777 0.072 0.085

Finite di�erence �b � 0:0005 @C9=@B10�0� ÿ22.868 0.294 0.357
@C10=@B10�0� 20.798 0.278 0.286

�b � 0:001 @C9=@B10�0� ÿ22.793 0.201 0.238
@C10=@B10�0� 20.233 0.190 0.533

�b � 0:002 @C9=@B10�0� ÿ22.432 0.132 0.268
@C10=@B10�0� 19.316 0.125 1.421
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Applying the likelihood ratio method, we can compute the estimators of all

deltas @Cn=@Bi�0� for all n � 1; . . . ; 19 and i � 1; . . . ; 20 from each simulation

path. However, using a ®nite di�erence method, each pair of paths yields an

estimate of @Cn=@Bi�0� for all n � 1; . . . ; 19 but with i ®xed. It follows that the

computing e�ort required to estimate all deltas using ®nite di�erence estimation

is approximately 20 times greater than using LRM. In our numerical experi-

ments, we balance the number of paths simulated using each method so that the

computing time used to estimate all @Cn=@Bi�0� is the same across methods.

Table 1 shows the numerical comparison of selected deltas for the digital

option. (We choose i � 10 as a typical case.) Because E�Z0�h�i��ÿ1 _m� � 0, we

use Z0�h�i��ÿ1 _m as control variate in the implementation of LRM, as is often

done. This reduces the standard error by about 25%. The ®nite di�erence

methods are based on simulating from the initial values B10�0� and B10�0� ��b

for three values of �b. Smaller values tend to reduce bias but increase variance;

the two e�ects are captured by the root mean square error (RMSE). The results

indicate that the LRM estimator outperforms the ®nite di�erence estimators.

Table 2 summarizes a similar numerical comparison for knock-out caplets.

The `accurate' values are estimates calculated using the ®nite di�erence method

with �b � 0:00001 and 100 million replications. Root mean square errors

(RMSE) are estimated relative to the accurate values. The LRM method

substantially outperforms the ®nite di�erence estimators when the computing

e�ort required to estimate all deltas is held ®xed.

5. GAMMA

Second derivatives are typically somewhat harder to estimate than ®rst

derivatives. In this section, we present and compare three methods for estimating

TABLE 2. Deltas for knock-out caplets using LRM and finite differences. To balance the
computing time required to estimate all deltas, we use 1 000 000 replications for LRM
and 100 000 for the finite difference estimators. The quantity �b is the increment in

B10�0� used in the finite difference estimation.

Method Delta Estimator SE RMSE

Accurate value @C9=@B10�0� ÿ0.05934 0.00041 Ð
@C10=@B10�0� 0.06965 0.00042 Ð

Likelihood ratio @C9=@B10�0� ÿ0.05889 0.00032 0.00047

@C10=@B10�0� 0.06959 0.00058 0.00059

Finite di�erence �b � 0:0002 @C9=@B10�0� ÿ0.06218 0.00283 0.00401
@C10=@B10�0� 0.06704 0.00307 0.00403

�b � 0:00005 @C9=@B10�0� ÿ0.05579 0.00185 0.00400
@C10=@B10�0� 0.06285 0.00205 0:00701

�b � 0:001 @C9=@B10�0� ÿ0.05464 0.00124 0.00486
@C10=@B10�0� 0.05793 0.00151 0.01182
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second derivatives of option prices with respect to initial values of forward rates

(or equivalently of initial bond prices): the standard central di�erence estimator,

a combination of the pathwise and likelihood ratio methods, and a pure

likelihood ratio method.

As in Section 3, denote by g
ÿ
L̂1�t1�; . . . ; L̂N�tn�

�
the discounted payo� of

some derivative security and consider the generic problem of estimating

@2

@Lk�0�2 E
�
g
ÿ
L̂1�t1�; . . . ; L̂N�tn�

�� �28�
or

@2

@Bk�0�2 E
�
g
ÿ
L̂1�t1�; . . . ; L̂N�tn�

��
: �29�

Using the deterministic relation between the initial forward rates and the initial

bond prices, we can convert an estimator of either gamma into an estimator of

the other. To emphasize the dependence of the expected value on the initial term

structure, we write

G
ÿ
L0�0�;L1�0�; . . . ;LN�0�

� � E
�
g
ÿ
L̂1�t1�; . . . ; L̂N�tn�

��
or G

ÿ
B1�0�; . . . ;BN�1�0�

�
for the same quantity. To emphasize the role of a

single forward rate Lk�0� with all others held ®xed, we write G
ÿ
Lk�0�

�
.

For a central di�erence estimator, we choose an � > 0 and make the

approximation

@2

@Lk�0�2
E
�
g
ÿ
L̂1�t1�; . . . ; L̂N�tn�

��
� 1

�2
�
G
ÿ
Lk�0� � �� ÿ 2G

ÿ
Lk�0�

��G
ÿ
Lk�0� ÿ �

��
: �30�

The terms G
ÿ
Lk�0� � �

�
are estimated in separate simulations in which the initial

value of the kth forward LIBOR rate is set to Lk�0� � �. The accuracy of this

method can be very sensitive to the choice of �: smaller values will lead to larger

variance in the di�erence estimator because of the � in the denominator of (30);

larger values will lead to larger bias due to the approximation in (30). Ideally,

one would like to choose � to balance these considerations by, for example,

minimizing mean square error, but the optimal � may be quite sensitive to the

form of the discounted payo� g and to model parameters.

A pure extension of the pathwise method in Section 3 to gamma is rarely

possible because option payo�s are seldom twice di�erentiable. The example of

a caplet should make this clear. We argued in Section 3 that the mapping

Ln 7! �Ln ÿK�� could be di�erentiated almost everywhere to yield

d

dLn

�Ln ÿK�� � 1fLn > Kg: �31�

When we try to di�erentiate a second time to produce a gamma estimator, we
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face exactly the same obstacle as in estimating delta for a digital payo�. The

indicator can be di�erentiated almost everywhere, but its derivative is zero

wherever it exists and is thus completely uninformative.

It is, however, possible to combine a pathwise estimate of delta with an LRM

term to arrive at a mixed estimate of gamma: the LRM term has the e�ect of

`di�erentiating' the pathwise delta estimate. Consider, then, a pathwise delta

estimate of the form XN
i�1

@g

@L̂i�ti�
�̂ik�ti�: �32�

We restrict attention to the case in which �̂ is calculated based on the forward-

drift approximation (17). If we now want to apply the LRM method, we must

note that the initial values Lk�0� a�ect the expected value of (32) in two ways:

implicitly through the distribution of the L̂i�ti� ( just as in Section 4.2) but also

explicitly through the functional dependence of the �̂0
i on these values. The

latter dependence enters (32) through the dynamics of �̂ik. This dependence is

di�erentiable a second time (even though the derivative of g may not be), so we

use a second application of the pathwise method for this term together with

LRM. This results in the mixed pathwise±LRM gamma estimator:�XN
n�1

@g

@L̂n�tn�
�̂nk�tn�

�
�Xÿm��ÿ1 _m�

XN
n�1

@g

@L̂n�tn�
�̂nkk�tn�; �33�

with

�̂nkj�ih� �
@�̂nk�ih�
@Lj�0�

� L̂n�ih�
Lk�0�

Xi

r�1

@�̂0
n�rh�

@Lj�0�
� �̂nj�ih�

Xi

r�1

@�̂0
n�rh�

@Lk�0�
� L̂n�ih�

Xi

r�1

@2�̂0
n�rh�

@Lk�0�@Lj�0�
;

�34�
and X, m, _m, and � as in (24)±(26).

A few remarks on this estimator are in order.

à Equation (34), though a bit more complex than those we encountered in

Section 3, is easily evaluated because (unlike the exact pathwise expression

(13)) it is not recursiveÐit can be evaluated at time ih directly from the

simulated forward LIBOR rates at that time and from derivatives of �̂0 that

can be precomputed.

à The estimator in (33) applies to the `diagonal' gamma @2=@L2
k�0� and uses

�̂nkj only with j � k. We have included the more general case in (34) to

include the possibility of estimating an `o�-diagonal' gamma of the form

@2=@Lj�0�@Lk�0�. For this case, replace �̂nkk with �̂nkj in (33), and in the

de®nition (26) of _m replace k with j.

à The recursion in (34) determines the values of the �̂nkj on the time grid

f0; h; 2h; . . .g, whereas in (33) we have implicitly allowed evaluation of these
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variables at arbitrary times. In practice, one can either arrange to have all

relevant dates lie on the simulation time grid or else interpolate linearly

between grid points.

à The estimator in (33) would in fact be unbiased (for the discretized process

with time step h) if the forward-drift approximation held exactly (i.e. if the

LIBOR rates were multivariate geometric Brownian motion with time-

varying drift) provided that the full-rank condition necessary to de®ne �ÿ1

holds. Hence, (33) does not entail any approximations beyond the forward-

drift approximation and the time discretization inherent in simulation.

Just as we derived the mixed gamma estimator by applying LRM to a

pathwise delta estimate, we can derive an alternative estimator by applying LRM

to an LRM delta estimate. For example, in the Gaussian setting surrounding

(20), we could di�erentiate twice to get

d2

d�2
E��g�X�� �

�
g�x� ��ÿx;m���; �� dx

�
�

g�x�
��
ÿ
x;m���; ��

�
ÿ
x;m���; ���ÿx;m���; �� dx: �35�

Simple calculations show that

��
ÿ
x;m���; ��

�
ÿ
x;m���; �� � f�xÿm����0�ÿ1 _mg2 ÿ _m0�ÿ1 _m� �xÿm����0�ÿ1 �m: �36�

Evaluating this expression at x � X and multiplying it by g�X� yields the LRM

estimator of the second derivative with respect to �. In the LIBOR model, we

make the correspondences (24)±(26) and

�mn  ÿ 1fn � kg
L2

k�0�
� h

Xi�ÿ1
r�0

@2�̂0
n�rh�

@L2
k�0�

; n � 1; . . . ;N; �37�

with

@2�̂0
n�rh�

@L2
k�0�

� ÿ2�
2�n�ih��0k�ih�
�1� �Lk�0��3 1f��ih�6 k6 ng:

We thus arrive at the LRM gamma estimator:

g
ÿ
L̂1�t1�; . . . ; L̂N�tn�

�f��Xÿm�0�ÿ1 _m�2 ÿ _m0�ÿ1 _m� �Xÿm�0�ÿ1 �mg; �38�

with X, m, �, _m as in (24)±(26) and �m as in (37).

An LRM estimator for @2=@Lj�0�@Lk�0� can be derived similarly: replace the

scalar parameter � of � with a vector and replace (36) with the calculation of

@2=@�j@�k; then make the usual correspondences to convert to the LIBOR

setting.
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5.1 Numerical Results

As mentioned in Section 4.3, a standard caplet Cn can be hedged using just the

bonds Bn and Bn�1. Conversely, Bn is useful in hedging Cnÿ1 and Cn. Second

derivatives of the form @2Cnÿ1=@B
2
n and @2Cn=@B

2
n are thus relevant in checking

gamma estimates.

Table 3 presents numerical results for caplet gammas of this form. The pure

LRM gamma estimator produces very large standard errors in this application

and is therefore omitted from further comparison. Exact values are calculated

from Black's formula. Much as in Section 4.3, the computing time required to

estimate all gammas using ®nite di�erences is roughly 20 times as great as the

time required to estimate all gammas using the mixed pathwise±LRM method.

The results in the table are based on balancing the number of simulated paths

for each method so that the total computing time to estimate all gammas would

be equal across methods. The results for the mixed method also use the control

variate Z0�h�i��ÿ1 _m, which reduces the standard error by about 20%. The

increment in Bn used for the ®nite di�erence estimates is indicated in the table

by �b.

The results in the table are consistent with the view that estimating gammas is

more di�cult than estimating deltas; the accuracy we get for the gamma of these

Lipschitz-continuous payo�s is similar to what we get for the deltas of

discontinuous payo�s, consistent with the discussion surrounding (31). The

mixed pathwise±LRM method is sometimes outperformed by the best ®nite

di�erence estimate. However, the ®nite di�erence method is very sensitive to the

choice of �b, and a good �b may not be known in advance. Unless �b can be

chosen carefully, the mixed method appears preferable.

TABLE 3. Gamma estimates for caplets. To balance the computing time required to
estimate all gammas, we use 500 000 replications for the mixed pathwise±LRM
estimator and 100 000 for the finite difference estimators. The quantity �b is the

increment in B10�0� used in the finite difference estimation.

Method Delta Estimator SE RMSE

Exact value @2C9=@B10�0�2 105.851 Ð Ð
@2C10=@B10�0�2 96.374 Ð Ð

Pathwise±LRM @2C9=@B10�0�2 105.377 0.639 0.796

@2C10=@B10�0�2 96.872 1.365 1.452

Finite di�erence �b � 0:0005 @2C9=@B10�0�2 105.420 1.146 1.225
@2C10=@B10�0�2 97.549 1.099 1.609

�b � 0:001 @2C9=@B10�0�2 105.566 0.778 0.829
@2C10=@B10�0�2 97.007 0.745 0.977

�b � 0:002 @2C9=@B10�0�2 104.295 0.499 1.634

@2C10=@B10�0�2 95.620 0.481 0.895

�b � 0:003 @2C9=@B10�0�2 102.071 0.365 3.326

@2C10=@B10�0�2 93.853 0.355 2.546
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6. VEGA

We now turn to estimating sensitivities with respect to changes in volatility. We

frame the problem by introducing a parameter � in the volatilities �n�t� and
considering derivatives with respect to �. Setting @�n��; t�=@� � 1 for some n

(and all t) but @�i��; t�=@� � 0 for all i 6� n corresponds to a parallel shift in the

volatilities of Ln; setting @�n��; t�=@� � 1 for all n corresponds to a parallel shift

in all volatilities. Sensitivities to volatility buckets can be modeled by restricting

nonzero values of @�n��; t�=@� to t in some interval.

Write �̂n�t� � �̂n��; t� for @L̂n�t�=@�. Once we have computed the �̂n, the

general pathwise estimator takes the form in (8) but with �̂nk replaced by �̂n.

Di�erentiating (11) yields the exact pathwise algorithm for vega:

�̂n

ÿ�i� 1�h� � �̂n�ih�
L̂n

ÿ�i� 1�h�
L̂n�ih�

� L̂n

ÿ�i� 1�h���@�̂n�ih�
@�

ÿ @�n�ih�
@�

�0n�ih�
�
h� @�n

@�
Zi�1

���
h
p �

;

�39�
with initial condition �̂n�0� � 0.

In (39), @�n=@� and �n are row vectors and Zi�1 and �0n are column vectors.

The di�erentiated drift appearing in (39) abbreviates the full expression

@�̂n

@�
�

Xn

j���ih�

�
@�̂n

@L̂j

�̂j �
Xd

k�1

@�̂n

@�jk

@�jk

@�

�
;

with �jk denoting the kth component of �j. The presence of the �̂j in this

expression makes simulation of (39) somewhat time-consuming, requiring e�ort

comparable to simulating another copy of the LIBOR rates with a perturbed

value of �.
We therefore consider the forward-drift approximation. Di�erentiating �̂0

n

with respect to � yields

@�̂0
n�ih�
@�

�
Xn

j���ih�

�Lj�0�
1� �Lj�0�

�
@�n�ih�
@�

�0j�ih� �
@�j�ih�
@�

�0n�ih�
�
: �40�

This expression is independent of the simulated path and can thus be

precomputed. Replacing �̂ with �̂0 in (11), di�erentiating, and then simplifying

the resulting expression yields the forward-drift approximation for vega:

�̂n�ih� � L̂n�ih�
�Xi

j�1

�
@�̂0

n�jh�
@�

ÿ @�n�jh�
@�

�n�jh�0
�
h�

Xi

j�1

@�n�jh�
@�

Zj

���
h
p �

: �41�
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Besides L̂n, the only term on the right-hand side of (41) that cannot be

precomputed is Xi

j�1

@�n�jh�
@�

Zj

���
h
p

:

But evaluating this expression along each simulated path requires very little

e�ort, making (41) much faster than the exact pathwise method or simulation of

a second copy of the LIBOR rates.

Table 4 presents numerical results for caplet vegas @Cn=@� with all

@�i=@� � 1, corresponding to a parallel shift in the term structure of volatility.

Exact values are calculated from Black's formula. Both the exact pathwise and

the forward-drift approximation methods perform well. The approximation

method produces larger bias at long maturities, but saves nearly one-third of

the computing time compared with the exact method.

7. CONVERGENCE OF PATHWISE ESTIMATORS

In this section, we give a theoretical analysis of the (exact) pathwise delta

estimators of Section 3. We show that the discrete-time algorithm produces

unbiased estimators for deltas of the discrete-time forward LIBOR process, the

TABLE 4. Estimated caplet vegas @Cn=@� and standard errors (all in basis
points). Estimates are based on 100 000 replications.

n Exact value Exact
pathwise

Pathwise
approximation

Estimator SE Estimator SE

1 24.77 24.62 0.13 24.62 0.13

2 35.13 35.18 0.19 35.17 0.19
3 43.03 43.06 0.24 43.03 0.24
4 49.95 50.08 0.29 50.03 0.29

5 56.11 56.01 0.33 55.91 0.33
6 61.38 61.20 0.38 61.01 0.37
7 66.53 66.05 0.41 65.76 0.41
8 71.23 70.61 0.45 70.17 0.44

9 75.50 74.80 0.48 74.23 0.47
10 79.69 78.91 0.51 78.12 0.50
11 83.62 82.82 0.54 81.81 0.53

12 87.16 86.42 0.57 85.06 0.56
13 90.55 89.54 0.59 87.77 0.58
14 93.88 92.85 0.61 90.71 0.60

15 97.04 95.83 0.63 93.24 0.62
16 99.89 98.35 0.65 95.16 0.63
17 102.69 100.80 0.67 96.98 0.65

18 105.36 103.36 0.68 98.92 0.66
19 107.74 106.00 0.70 101.00 0.67
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continuous-time estimators are unbiased for the continuous-time forward

LIBOR process, and the discrete-time estimators converge to the continuous-

time deltas as the simulation time step decreases to zero. Theoretical support

for the (discrete-time) LRM estimators in a Gaussian setting follows fairly

well-established lines (see e.g. Glynn and L'Ecuyer 1995) and is therefore

omitted.

7.1 Unbiasedness: Discrete Time

Fix a time increment h and consider the processes de®ned by (11) and (13).

Theorem 1 Suppose g : RN ! R is Lipschitz-continuous. Then

E
�XN

n�1

�
@

L̂n�inh�
g�L̂1�i1h�; . . . ; L̂N�iNh��

�
�̂nk�inh�

�
� @

@Lk�0�E
�
g
ÿ
L̂1�i1h�; . . . ; L̂N�iNh���;

for any i1; . . . ; iN; i.e., the discrete-time pathwise estimator is unbiased.

Proof. Because g is Lipschitz-continuous, it is di�erentiable almost everywhere,

so the partial derivatives evaluated at the L̂n exist with probability 1. To

emphasize the dependence on initial conditions, write L̂n�ih� � L̂n

ÿ
ih;Lk�0�

�
and L̂�n�ih� � L̂n

ÿ
ih;Lk�0� � �

�
. Then

��gÿL̂�1�i1h�; . . . ; L̂�N�iNh��ÿ g
ÿ
L̂1�i1h�; . . . ; L̂N�iNh����6Kg

XN
n�1

��L̂�
n�inh� ÿ L̂�inh�

��
for some constant Kg. The theorem now follows from the dominated conver-

gence theorem once we show that

E��̂nk�ih�� � @

@L̂k�0�
E�L̂n�ih�� �42�

for all n and i.

Since n is arbitrary, we lighten the notation by writing simply L̂�ih� �
L̂n

ÿ
ih;Lk�0�

�
and L̂

��ih� � L̂n

ÿ
ih;Lk�0� � �

�
. We will use induction to prove that

1

�

��L̂��ih� ÿ L̂�ih���6Ki; �43�

where Ki is a random variable measurable with respect to fZ1; . . . ;Zig with
E�Ki� <1. It is easy to see that (43) holds for i � 0. Assuming that (43) holds
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for some i, we have

1

�

��L̂�ÿ�i� 1�h�ÿ L̂
ÿ�i� 1�h���
� 1

�
exp

�ÿ1
2�n�ih��n�ih�0h� �n�ih�

���
h
p

Zi�1
�

� ��L̂��ih� exp��̂ÿL̂��ih���ÿ L̂�ih� exp��̂ÿL̂�ih�����:
6 �
�

���exp��̂ÿL̂��ih����L̂��ih� ÿ L̂�ih����
� ��L̂�ih��exp��̂ÿL̂��ih���ÿ exp

�
�̂
ÿ
L̂�ih���	���

6 �C1Ki � �
�

��L̂�ih�C2

�
�̂
ÿ
L̂
��ih��ÿ �̂ÿL̂�ih�����

6 �C1Ki � �
�
C2

����L̂�ih� ÿ L̂
��ih���̂ÿL̂��ih����

� ��L̂��ih��̂ÿL̂��ih��ÿ L̂�ih��̂ÿL̂�ih����	
6 �C1Ki � �C3Ki � �C4Ki:

We have de®ned � � exp�ÿ1
2�n�ih��n�ih�0h� �n�ih�

���
h
p

Zi�1�, which is a random

variable independent of Ki. We have also used the fact that �̂� � � is bounded,

�̂
ÿ
L̂� � ��L̂n� � � is Lipschitz-continuous (as in (44) below) and the inequality

jex ÿ eyj6 Cjxÿ yj for bounded x and y. Now we can de®ne Ki�1 � �C1Ki�
�C3Ki � �C4Ki, and, clearly, we have E�Ki�1� <1. Equation (42) now follows

from the dominated convergence theorem. &

7.2 Unbiasedness: Continuous Time

We ®rst justify equation (10) for the dynamics of the �nk using a result from the

theory of stochastic ¯ows (as in Chapter 5 of Protter (1990)). Pikovsky (1998)

has also used the stochastic-¯ow formulation for the Monte Carlo estimation of

sensitivities. Write L for the vector �L1; . . . ;LN� and � for ��1k; . . . ; �Nk� with k

®xed but arbitrary. Insert the initial conditions L�0� and ��0� as arguments of

these processes. Write 1k for the N-vector whose nth coordinate is 1fn � kg.

Lemma 1 There exists a unique process
ÿ
L�t;L�0��; ��t; 1k�

�
satisfying the SDE

system (9)&(10). For each t, L
ÿ
t;L�0�� is continuously di�erentiable with respect

to L�0�, and �@Ln=@Lk�0��
ÿ
t;L�0�� � �nk�t; 1k�.

Proof. Set �max � supn;t k�n�t�k. It is straightforward to see that �n�t�Ln�t� is
globally Lipschitz-continuous, because

k�n�t; x�xn ÿ �n�t; y�ynk6 2N�2maxkxÿ yk:
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The ®rst derivatives

@

@xk

ÿ
�n�t; x�xn

� �
0 if k < ��t�
��n�

0
kxn

�1� �xk�2
if ��t�6 k < n

��n�
0
nxn

�1� �xn�2
� ��n�

0
nxn

1� �xn

if k � n

0 if k > n

8>>>>>>>>><>>>>>>>>>:
�44�

also satisfy a Lipschitz condition. Thus, the lemma follows from Theorem V.39

of Protter (1990). In particular, we can write the solution of the SDE system

(9)&(10) as

Ln�t� � Ln�0� exp
��t

0

�n�s� dsÿ 1
2

�t

0

�n�s��0n�s� ds�
�t

0

�n�s� dWs

�
; �45�

�nk�t� � 1fn � kg Ln�t�
Ln�0� � Ln�t�

�t

0

X
j

@�n�s�
@Lj�s��jk�s� ds: & �46�

We now show that the continuous-time pathwise estimator is unbiased.

Theorem 2 Let
ÿ
L� � �; �� � �� be the solution of the SDE system (9)&(10).

Suppose g : RN ! R is Lipschitz-continuous. Then

E
�XN

n�1

�
@

@Ln�tn� g
ÿ
L1�t1�; . . . ;LN�tN�

��
�nk�tn�

�
� @

@Lk�0�E
�
g
ÿ
L1�t1�; . . . ;LN�tN�

��
for any t1; . . . ; tN; i.e. the continuous-time pathwise estimator is unbiased.

Proof. As in Theorem 1, it su�ces to prove

@

@Lk�0�E�Ln�t�� � E��nk�t��: �47�

De®ne Xn�t� � logLn�t�, so that

dXn�t� � ��n�t� ÿ 1
2�n�t��0n�t�� dt � �n�t� dW�t�: �48�

Di�erentiate to get

dYnk�t� �
X

j

@�n�t�
@Xj�t� Yjk�t� dt �

X
j

@�n�t�
@Lk�t�Lk�t�Yjk�t� dt: �49�

From Theorem V.39 of Protter (1990), we know that there exists
ÿ
X�t�; Y�t��

solving the system (48)&(49) with Ynk�t� � @Xn�t�=@Xk�0� � Lk�0�@Xn�t�=@Lk�0�.
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In particular, we have

Xn�t� � logLn�t�

� logLn�0� �
�t

0

�n�s� dsÿ 1
2

�t

0

�n�s��0n�s� ds�
�t

0

�n�s� dW�s�; �50�

Ynk�t� � 1fn � kg �
�t

0

X
j

@�n�s�
@Lj�s�

@Lj�s�
@Xj�s� Yjk�s� ds

� 1fn � kg �
�t

0

X
j

@�n�s�
@Lj�s�Lj�s�Yjk�s� ds; �51�

and �nk�t�Lk�0� � Ln�t�Ynk�t�. Together, (45) and (51) solve the SDEs (9) and

(49). Moreover, �n� � �Ln� � �, �� � �Ln� � �, and
P

j�@�n� � �=@Lj� � ��Lj� � �Yjk� � �
satisfy a Lipschitz condition, so from Theorem V.9 of Protter (1990) we have

lim
�!0

E


�Ln; Ynk�

ÿ
t; �Lk�0� � �; 1k�

�ÿ �Ln; Ynk�
ÿ
t; �Lk�0�; 1k�

�

2 � 0: �52�

This gives us

lim
�!0

E


�nk

ÿ
t; �Lk�0� � �; 1k�

�ÿ�nk

ÿ
t; �Lk�0�; 1k�

�


� lim

�!0
E
�

1

Lk�0�


�Lk�0� � ���nk

ÿ
t; �Lk�0� � �; 1k�

�ÿ Lk�0��nk

ÿ
t; �Lk�0�; 1k�

�
ÿ ��nk

ÿ
t; �Lk�0� � �; 1k�

�

�
6 lim

�!0
C1E

�

Ln�t;Lk�0� � ��Ynk

ÿ
t; �Lk�0� � �; 1k�

�
ÿ Ln�t;Lk�0��Ynk

ÿ
t; �Lk�0�; 1k

�

�
6 lim

�!0
C1E

�

Ln

ÿ
t;Lk�0� � ��



kYnk

ÿ
t; �Lk�0� � �; 1k�

�ÿ Ynk

ÿ
t; �Lk�0�; 1k�

�

�
� lim

�!0
C1E

�

Ynk�t; �Lk�0�; 1k��




Ln�t;Lk�0� � �� ÿ Ln�t;Lk�0��



�
6 lim

�!0
C1

�
E


Ln�t;Lk�0� � ��



2E

Ynk

ÿ
t; �Lk�0� � �; 1k�

�ÿ Ynk

ÿ
t; �Lk�0�; 1k�

�

2	1=2
� lim

�!0
C1

�
E


Ynk

ÿ
t; �Lk�0�; 1k�

�

2E

Ln�t;Lk�0� � �� ÿ Ln�t;Lk�0��


2	1=2

� 0;

because EkLn�t�k2 and EkYnk�t�k2 are ®nite. This establishes the continuity of

E�
ÿ
t;Lk�0�

�
. On the other hand, from Lemma 1, we have

Ln

ÿ
t;Lk�0� � �

� � Ln

ÿ
t;Lk�0�

�� ��
0

�nk

ÿ
t;L�0� � �� d�:
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Taking the expectation on both sides, we get

E
�
Ln

ÿ
t;Lk�0� � �

�� � E
�
Ln

ÿ
t;Lk�0�

��� E
���

0

�nk

ÿ
t;L�0� � �� d��

� E
�
Ln

ÿ
t;Lk�0�

��� ��
0

E
�
�nk

ÿ
t;L�0� � ��� d�;

with the interchange of integral and expectation justi®ed by Tonelli's theorem

(Fubini for nonnegative integrands). This representation of E
�
Ln

ÿ
t;Lk�0�

��
implies (47)through the continuity of E

�
�nk

ÿ
t;L�0���. &

7.3 Convergence from Discrete to Continuous Time

We now show that the discrete-time �̂nk are asymptotically unbiased estimators

of the continuous-time derivatives @E�Ln�=@Lk�0� as the time increment h

decreases to 0.

Theorem 3 Suppose that
ÿ
Ln�t�; �nk�t�

�
solve the system (9)&(10) andÿ

L̂n�t�; �̂nk�t�
�
solve (11)±(13). Then we have

lim
h!0

E��̂nk�t�� � E��nk�t��: �53�

Proof. Discretize Ynk�t� using

Ŷnk

ÿ�i� 1�h� � Ŷnk�ih� �
Xn

j���ih�

@�n

ÿ
ih; L̂�ih��
@L̂j�ih�

L̂j�ih�Ŷjk�ih�h

� Ŷnk�ih� �
Xn

j���ih�

�L̂j�h�
�1� �L̂j�ih��2

Ŷjk�ih�h: �54�

Clearly, we have Lk�0��̂nk�ih� � Ŷnk�ih�L̂n�ih�. From the fact that �� � � is

positive and bounded, and the inequality ex 6 1� x� x2ex for all x > 0, we

get (writing Ai for fZ1; . . . ;Zig)

E

�����E�L̂n

ÿ�i� 1�h�ÿ L̂n�ih�
h

���� Ai

�
ÿ �n

ÿ
L̂�ih��L̂n�ih�

����2�
� E

�����E�L̂n�ih�
h

�
exp

�
�
ÿ
L̂�ih��hÿ 1

2�n�
0
n � �n

���
h
p

Zi

�ÿ 1
	 ���� Ai

�
ÿ �n

ÿ
L̂�ih��L̂n�ih�

����2�
� E

���L̂n�ih�
��2����1h �exp��ÿL̂�ih��h�ÿ 1

	ÿ �n

ÿ
L̂�ih������2�

6 E
���L̂n�ih�

��2����1h ��ÿL̂�ih��h� exp
�
�
ÿ
L̂�ih��h���ÿL̂�ih��h�2	ÿ �ÿL̂�ih������2�

6 C1h
2;
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and

E
�
1

h

��L̂n

ÿ�i�1�h�ÿ L̂n�ih� ÿ E
�
L̂n

ÿ�i�1�h�ÿ L̂n�ih�
��Ai

�ÿ �n�ih�L̂n�ih�Zi�1
���
h
p ��2�

� E
�jL̂n�ih�j2

h

��e��n�L̂n�ih��hÿ1
2�n�

0
nh��nZi�1

��
h
p � ÿ e�n�L̂n�ih��h ÿ �n�ih�Zi�1

���
h
p ��2�

� E
�jL̂n�ih�j2

h
E
�ÿ
e��n�L̂n�ih��hÿ1

2�n�
0
nh��nZi�1

��
h
p �ÿ e�n�L̂n�ih��hÿ �n�ih�Zi�1

���
h
p �2 ��Ai

��

� E
�jL̂n�ih�j2

h

ÿ
e�2�n�L̂n�ih��h��n�

0
nh� � e2�n�L̂n�ih��h

� �n�
0
nhÿ 2e2�n�L̂n�ih��h ÿ 2�n�

0
nhe

�n�L̂n�ih��h��

� E
�jL̂n�ih�j2

h

ÿ
e2�n�L̂n�ih��h�e�n�

0
nh ÿ 1� ÿ 2�n�

0
nhe

�n�L̂n�ih��h � �n�
0
nh
��

6 E
�jL̂n�ih�j2

h

ÿ
e2�n�L̂n�ih��h��n�

0
nh�e�n�

0
nh��n�

0
n�2h2� ÿ 2�n�

0
nhe

�n�L̂n�ih��h��n�
0
nh
��

6 E
�
�n�njL̂n�ih�j2

ÿ
e�n�L̂n�ih��h ÿ 1

�2�� C2h

6 C3h
2 � C2h:

A similar argument shows that Ŷnk� � � also satis®es these conditions. From

Theorem 9.6.2 of Kloeden and Platen (1992), we get

lim
h!0

E
��L̂n�t� ÿ Ln�t�

��2 � 0; lim
h!0

E
��Ŷnk�t� ÿ Ynk�t�

��2 � 0:

Thus,

lim
h!0

E
���̂nk�t� ÿ�nk�t�

��
� 1

Lk�0� limh!0
E
��Lk�0��̂nk�t� ÿ Lk�0��nk�t�

��
� 1

Lk�0� lim�!0
E
��Ŷnk�t�L̂n�t� ÿ Ynk�t�Ln�t�

��
6 1

Lk�0� limh!0

�
E
��Ŷnk�t��L̂n�t� ÿ Ln�t��

��� E
��Ln�t��Ŷnk�t� ÿ Ynk�t��

���
6 1

Lk�0� limh!0

�ÿ
E
��Ŷnk�t�

��2E��L̂n�t� ÿ Ln�t�
��2�1=2� ÿE��Ln�t�

��2E��Ŷnk�t� ÿ Ynk�t�
��2�1=2�

� 0: &
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In (53), we could replace �̂nk with any Lipschitz-continuous function of all

�L̂n; �̂nk� and obtain the corresponding result; however, the Lipschitz require-

ment rules out even the indicator function appearing in the pathwise estimator

of caplet deltas.
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