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Monte Carlo simulation is widely used to measure the credit risk in portfolios of loans, corporate bonds, and
other instruments subject to possible default. The accurate measurement of credit risk is often a rare-event
simulation problem because default probabilities are low for highly rated obligors and because risk management
is particularly concerned with rare but significant losses resulting from a large number of defaults. This makes
importance sampling (IS) potentially attractive. But the application of IS is complicated by the mechanisms used
to model dependence between obligors, and capturing this dependence is essential to a portfolio view of credit
risk. This paper provides an IS procedure for the widely used normal copula model of portfolio credit risk.
The procedure has two parts: One applies IS conditional on a set of common factors affecting multiple obligors,
the other applies IS to the factors themselves. The relative importance of the two parts of the procedure is
determined by the strength of the dependence between obligors. We provide both theoretical and numerical

support for the method.
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1. Introduction

Developments in bank supervision and in markets
for transferring and trading credit risk have led the
financial industry to develop new tools to measure
and manage this risk. An important feature of mod-
ern credit risk management is that it takes a portfo-
lio view, meaning that it tries to capture the effect of
dependence across sources of credit risk to which a
bank or other financial institution is exposed. Captur-
ing dependence adds complexity both to the models
used and to the computational methods required to
calculate outputs of a model.

Monte Carlo simulation is among the most widely
used computational tools in risk management. As in
other application areas, it has the advantage of being
very general and the disadvantage of being rather
slow. This motivates research on methods to accel-
erate simulation through variance reduction. Two
features of the credit risk setting pose a particu-
lar challenge: (i) it requires accurate estimation of
low-probability events of large losses; (ii) the depen-
dence mechanisms commonly used in modeling port-
folio credit risk do not immediately lend themselves
to rare-event simulation techniques used in other
settings.

This paper develops importance sampling (IS) pro-
cedures for rare-event simulation for credit risk mea-
surement. We focus on the normal copula model
originally associated with J. P. Morgan’s CreditMet-
rics system (Gupton et al. 1997) and now widely used.
In this framework, dependence between obligors
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(e.g., corporations to which a bank has extended
credit) is captured through a multivariate normal vec-
tor of latent variables; a particular obligor defaults if
its associated latent variable crosses some threshold.
The Creditrisk+ system developed by Credit Suisse
First Boston (Wilde 1997) has a similar structure but
uses a mixed Poisson mechanism to capture depen-
dence. We present an IS method for that model in
Glasserman and Li (2003) together with some prelim-
inary results on the model considered here.

In the normal copula framework, dependence is
typically introduced through a set of underlying
“factors” affecting multiple obligors. These some-
times have a tangible interpretation—for example, as
industry or geographic factors—but they can also be
by-products of an estimation procedure. Conditional
on the factors, the obligors become independent,
and this feature divides our IS procedure into two
steps: We apply a change of distribution to the con-
ditional default probabilities, given the factors, and
we apply a shift in mean to the factors themselves.
The relative importance of the two steps depends on
the strength of the dependence across obligors, with
greater dependence putting greater importance on the
shift in factor mean.

The idea of shifting the factor mean to gener-
ate more scenarios with large losses has also been
suggested in Avranitis and Gregory (2001), Finger
(2001), and Kalkbrener et al. (2003), though with lit-
tle theoretical support and primarily in single-factor
models. The single-factor case is also discussed in
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Glasserman (2004, §9.4.3). The main contributions of
this paper lie in providing a systematic way of select-
ing a shift in mean for multifactor models, in inte-
grating the shift in mean with IS for the conditional
default probabilities, and in providing a rigorous
analysis of the effectiveness of IS in simple mod-
els. This analysis makes precise the role played by
the strength of the dependence between obligors
in determining the impact of the two steps in the
IS procedures.

The rest of the paper is organized as follows. Sec-
tion 2 describes the normal copula model. Section 3
presents background on an IS procedure for the case
of independent obligors, which we extend in §4 to the
case of conditionally independent obligors. Section 5
combines this with a shift in factor mean. We present
numerical examples in §6 and collect most proofs in
the appendix.

2. Portfolio Credit Risk in the Normal
Copula Model

A key element of any model of portfolio credit risk is
a mechanism for capturing dependence among oblig-
ors. In this section, we describe the widely used
normal copula model associated with CreditMetrics
(Gupton et al. 1997) and related settings (Li 2000).

Our interest centers on the distribution of losses
from default over a fixed horizon. To specify this dis-
tribution, we introduce the following notation.

m = number of obligors to which portfolio is exposed
Y, = default indicator for kth obligor

= 1 if kth obligor defaults, 0 otherwise
pr = marginal probability that kth obligor defaults
¢, = loss resulting from default of kth obligor

L=c¢gY 4+ --+c,Y, =total loss from defaults

The individual default probabilities p, are assumed
known, either from credit ratings or from the mar-
ket prices of corporate bonds or credit default swaps.
We take the ¢, to be known constants for simplic-
ity, though it would suffice to know the distribu-
tion of ¢, Y;. Our goal is to estimate tail probabilities
P(L > x), especially at large values of x.

To model dependence among obligors we need to
introduce dependence among the default indicators
Y,, ..., Y,. In the normal copula model, dependence
is introduced through a multivariate normal vector
(Xi, ..., X,,) of latent variables. Each default indicator
is represented as

Y =UX,>x}, k=1,...,m,
with x, chosen to match the marginal default prob-
ability p;. The threshold x; is sometimes interpreted
as a default boundary of the type arising in the
foundational work of Merton (1974). Without loss of

generality, we take each X; to have a standard nor-
mal distribution and set x, = ®7'(1 — p;), with ® the
cumulative normal distribution. Thus,

P(Y,=1)=P(X;> @ (1-p) =1 (D" (1—-py)) =p;-

Through this construction, the correlations among
the X; determine the dependence among the Y;. The
underlying correlations are often specified through a
factor model of the form

Xy =02y + -+ a,Z; + brey, 1)

in which

* 7Z,,...,Z; are systematic risk factors, each hav-
ing an N(0, 1) (standard normal) distribution;

* ¢, is an idiosyncratic risk associated with the
kth obligor, also N(0, 1) distributed;

® a4y,...,a4,; are the factor loadings for the
kth obligor, a3, +---+az, < 1.

o be=\/1(a} +--+a},) so that X, is N(0, 1).

The underlying factors Z; are sometimes given eco-
nomic interpretations (as industry or regional risk
factors, for example). We assume that the factor load-
ings a;; are nonnegative. Though not essential, this
condition simplifies our discussion by ensuring that
larger values of the factors Z; lead to a larger number
of defaults. Nonnegativity of the 4;; is often imposed
in practice as a conservative assumption ensuring that
all default indicators are positively correlated.

Write a, for the row vector (a,,, ..., a,;) of factor
loadings for the kth obligor. The correlation between
X and X;, j#k, is given by akajT. The conditional
default probability for the kth obligor given the factor
loadings Z=(Z,, ..., Z,)" is

p(Z2) =P(Y,=1|2)
= P(Xy > x| 2) = P(Z + by, > @7 (1= py) | Z)

_ @(—”kz +;I:1(”k)>. )

3. Importance Sampling: Independent
Obligors

Before discussing IS in the normal copula model, it
is useful to consider the simpler problem of estimat-
ing loss probabilities when the obligors are indepen-
dent. So, in this section, we take the default indicators
Y, ..., Y, tobe independent; equivalently, we take all
a,; =0.

' this setting, the problem of efficient estimation
of P(L > x) reduces to one of applying IS to a sum of
independent (but not identically distributed) random
variables. For this type of problem there is a fairly
well-established approach, which we now describe.
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It is intuitively clear that to improve our estimate
of a tail probability P(L > x) we want to increase
the default probabilities. If we were to replace each
default probability p, by some other default probabil-
ity q;, the basic IS identity would be

P(L>x)= E[1{L > x) 1‘[ (@>Yk (ﬂ)w}, 3)

k=1 \ 4k 1—g;

where 1{-} denotes the indicator of the event in braces,
E indicates that the expectation is taken using the new
default probabilities g, ..., g,,, and the product inside
the expectation is the likelihood ratio relating the orig-
inal distribution of (Y3, ..., Y,,) to the new one. Thus,
the expression inside the expectation is an unbiased
estimate of P(L > x) if the default indicators are sam-
pled using the new default probabilities.

3.1. Exponential Twisting

Rather than increase the default probabilities arbitrar-
ily, we apply an exponential twist: We choose a param-
eter  and set

pre’

Tl oD @

Pk, 6
If 6 >0, then this does indeed increase the default
probabilities; a larger exposure ¢, results in a greater
increase in the default probability. The original prob-
abilities correspond to 6 =0.
With this choice of probabilities, straightforward
calculation shows that the likelihood ratio simpli-
fies to

m Ye 1— =%
k=1 ’ !

where

Y(6) =log E[e"] =} log(1+p,(e" — 1))

k=1

is the cumulant generating function (CGF) of L. For
any 6, the estimator

1L > x}e 0L ®

is unbiased for P(L > x) if L is generated using the
probabilities p, ,. Equation (5) shows that exponen-
tially twisting the probabilities as in (4) is equivalent
to applying an exponential twist to L itself.

It remains to choose the parameter 6. We would like
to choose ¢ to minimize variance or, equivalently, the
second moment of the estimator. The second moment
is given by

My (x) = My(x, 0) = E5[1{L > x}e 2"1+2/ 0]

< e—29x+21/;(0) (6)

— 7

where E, denotes expectation using the 6#-twisted
probabilities and the upper bound holds for all
6 > 0. Minimizing M,(x, 6) is difficult, but minimiz-
ing the upper bound is easy: we need to maximize
Ox —(0) over 6 > 0. The function ¢ is strictly con-
vex and passes through the origin, so the maximum
is attained at

unique solution to ¢'(0) =x, x> ¢'(0); )
0, = 7
0, x=¢'(0).

To estimate P(L > x), we twist by 0,.

A standard property of exponential twisting (e.g.,
as in Glasserman 2004, p. 261), easily verified by
direct calculation, implies that

Eo[L1=4(0),

and this facilitates the interpretation of ,. The two
cases in (7) correspond to x > E[L] and x < E[L]. In
the first case, our choice of twisting parameter implies

B, [L]=4(0,) =x;

thus, we have shifted the distribution of L so that x is
now its mean. In the second case, the event {L > x} is
not rare, so we do not change the probabilities.

3.2. Asymptotic Optimality
A standard way of establishing the effectiveness of
a simulation estimator in a rare-event setting is to
show that it is asymptotically optimal as the event of
interest becomes increasingly rare, meaning that the
second moment decreases at the fastest possible rate
among all unbiased estimators (see, e.g., Heidelberger
1995 for background). Asymptotic optimality results
are often based on making precise approximations of
the form

P(L>x)~e™ ", M,(x) ~ e 2%, (8)
for some vy > 0. The key point here is that the second
moment decays at twice the rate of the probability
itself. By Jensen’s inequality M,(x) > (P(L > x))?, so
this is the fastest possible rate of decay.

To formulate a precise result, we let the number
of obligors m increase together with the threshold x.
This is practically meaningful—bank portfolios can
easily be exposed to thousands or even tens of thou-
sands of obligors—as well as theoretically convenient.
We therefore need an infinite sequence (p;,c;), k =
1,2,..., of obligor parameters. Write ¢,,(0) for the
CGF of the loss in the mth portfolio. We require that

DO = S log(14py(e" 1) > TO) )
k=1
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for all 0, for some strictly convex . This holds, for
example, if the {p,} have a limit in (0, 1) and the {c;}
have a limit in (0, o). Write L,, for the loss in the mth
portfolio, write 6,, for the value of 6,,, in (7) for the
mth portfolio, and write M,(xm, 0,,) for the second
moment of the IS estimator of P(L,, > xm) using 6,,.

_ TueoreM 1. Suppose (9) holds for all 6 and there is a
0, > 0 at which ' (6,) =x. Then

1
lim p log P(L,, > xm) = —y

1
lim P log M,(xm, 6,,) = -2,

m— oo

where _
Y= sgp{ﬁx —p(6)}.

Thus, the IS estimator is asymptotically optimal.

Proor. The result would follow from a more gen-
eral result in Sadowsky and Bucklew (1990) but for a
difference in the choice of twisting parameter. (They
use 6,..) Under (9), the Girtner-Ellis theorem (as in
Dembo and Zeitouni 1998, §2.3) gives

liminf % log P(L,, > xm) > —7y. (10)
Using (6), we find that

1
lim sup p log M,(xm, 6,,)

m—oc

< lim sup _2(0m'x - "/lm(em)/m)

m— o0

=< lim sup _z(éxx - lpm(éx)/m)

By Jensen’s inequality, M,(xm, 6,,) > P(L,, > xm)? so
the liminf in (10) and the limsup in (11) hold as
limits. O

This use of Jensen’s inequality in the proof of the
limit applies in the proofs of all other theorems in this
paper. So, it will suffice to prove the liminf of the
probability and the limsup of the second moment as
in Theorem 1 in subsequent theorems.

The limits in Theorem 1 make precise the approx-
imations in (8). This result (and its extension in the
next section) continues to hold if {Y.c,, k > 1} is
replaced with a more general sequence of indepen-
dent light-tailed random variables under modest reg-
ularity conditions.

4. Dependent Obligors: Conditional
Importance Sampling

As a first step in extending the method of §3 to

the normal copula model of §2, we apply impor-

tance sampling conditional on the common factors Z.

Conditional on Z = z, the default indicators are inde-
pendent, the kth obligor having conditional default
probability p,(z) as defined in (2). We may therefore
proceed exactly as in §3.

In more detail, this entails the following steps for
each replication:

1. Generate Z ~ N(0, I), a d-vector of independent
normal random variables.

2. Calculate the conditional default probabilities
p(Z), k=1,...,m, in (2). If

E[L|Z]=2 p(Z)e = x,

k=1

set 6,(Z) =0; otherwise, set 6,(Z) equal to the unique
solution of

d
%lpm(ef Z) =X,
with .
¥ (0, 2) = 3" log(1+pi(z) (™ —1)). (12)

k=1
3. Generate default indicators Y;, ..., Y,, from the
twisted conditional default probabilities
pi(Z) e D
T+ P (D) (@5 — 1)
4. Compute the loss L =¢;Y;+---+¢,,Y,, and return
the estimator

1L > x}exp(—0,(Z)L + ¢ (0.(2), Z)). (13)

k=1,...,m.

Pk, 6.(2) (2)=

Although here we have tailored the parameter 6 to a
particular x, we will see in the numerical results that
the same value of 6 can be used to estimate P(L > x)
over a wide range of loss levels.

The effectiveness of this algorithm depends on the
strength of the dependence among obligors. When
the dependence is weak, increasing the conditional
default probabilities is sufficient to achieve substan-
tial variance reduction. But this method is much less
effective at high correlations, because in that case
large losses occur primarily because of large outcomes
of Z, and we have not yet applied IS to the distribu-
tion of Z.

To illustrate these points more precisely, we con-
sider the special case of a single-factor, homogeneous
portfolio. This means that Z is scalar (d = 1), all p,
are equal to some p, all ¢, are equal to a fixed value
(which we take to be 1), and all obligors have the
same loading p on the single factor Z. Thus, the latent
variables have the form

szpZ+ \Y 1—p2€k,
and the conditional default probabilities are
p(z) = P(Y,=1|Z=2)=P(X, > —\(p) | Z=2)

- cp(%). (15)

k=1,...,m, (14)
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As in Theorem 1, we consider the limit as both the
number of obligors m and the loss level x increase. We
now also allow p to depend on m through a specifica-
tion of the form p =a/m* for some a, « > 0. Thus, the
strength of the correlation between obligors is mea-
sured by the rate at which p decreases, with small
values of a corresponding to stronger correlations. If
we kept p fixed, then by the law of large numbers,
L,,/m would converge to p(Z) and, with0 <g <1,

P(L,, > qm) — P(p(Z) > q)

1 (D(Cb‘l(q)\/ﬁ— cI>‘1(P)) o

p

(16)

Thus, with p fixed, the event {L, > gm} does not
become vanishingly rare as m increases. By letting p
decrease with m we will, however, get a probability
that decays exponentially fast.

Define
1_P 1-q p q
os(1=5) (5) ren
81y q P=1 (17)

0, p=>q;

G(p) <0, and exp(mG(p)) is the likelihood ratio
at L=mgq for the independent case with marginal
individual default probability p. Also define (with

p=a/m®)
F(a,z) = lim G(p(zm*)) = G(®(az+ 7' (p)))  (18)

and

F(2) = =0,,,(2)mq + 1,,(8,,4(2), 2) = mG(p(2)) ~ (19)

using the expression for p(z) in (15); F(a,z) <0 and
E,(z) <0 because G(p) <0. The following lemma is
verified by differentiation.

LemMma 1. In the single-factor, homogeneous portfolio
specified by p, =p, ¢, =1, and (14), the function z
F,(2) is increasing and concave.

Write M,(mq,6,,,) for the second moment of the
IS estimator (13) with x =mgq.

THEOREM 2. Consider the single-factor, homogeneous
portfolio specified by p, =p € (0,1/2), ¢, =1, and (14).
For constant q > p, if p=a/m®, a >0, then

(a) For a>1/2,

lim m ' log P(L,, > mq) = F(0, 0)

lim m~'log M, (mq, 0,1g) =2F (0, 0).

m— oo

(b) For a=1/2,
lim m ™" log P(L,, > mq) = max{F(a, z) — z*/2}

m—o00

lim m~"log My(mq, 0,,,) = max{2F(a, z) — z*/2}.

m— o0

(c) For0<a<1/2,

lim m~**log P(L,, > mq)

m—o0

= lim m~**log M,(mq, 6,,,) = —22/2,

with z, = (®7'(q) — ®~'(p))/a.

This result shows that we achieve asymptotic opti-
mality only in the case a > 1/2 (in which the cor-
relations vanish quite quickly), because only in this
case does the second moment vanish at twice the rate
of the first moment. At @ =1/2, the second moment
decreases faster than the first moment, but not twice
as fast, so this is an intermediate case. With a <1/2,
the two decrease at the same rate, which implies
that conditional importance sampling is (asymptoti-
cally) no more effective than ordinary simulation in
this case.

The failure of asymptotic optimality in (b) and (c)
results from the impact of the common risk factor Z
in the occurrence of a large number of defaults. When
the obligors are highly correlated, large losses occur
primarily because of large moves in Z, but this is not
(yet) reflected in our IS distribution.

This is also suggested by the form of the limits
in the theorem. The limits in all three cases can be
put in the same form as (b) (with (a) corresponding
to the limiting case 4 — 0 and (c) corresponding to
a — oo) once we note that F(0, z) is independent of z
in (a) and F(a,z,) =0 in (c). In each case, the two
terms in the expression F(a, z) — z%/2 result from two
sources of randomness: the second term results from
the tail of the common factor Z and the first term
results from the tail of the conditional loss distribu-
tion given Z. Because our conditional IS procedure is
asymptotically optimal for the conditional loss prob-
ability given Z, a factor of 2 multiplies F(a, z) in each
second moment. To achieve asymptotic optimality for
the unconditional probability, we need to apply IS
to Z as well.

5. Dependent Obligors: Two-Step
Importance Sampling

5.1. Shifting the Factors

We proceed now to apply IS to the distribution of
the factors Z = (Z,,...,Z;)" as well as to the condi-
tional default probabilities. To motivate the approach
we take, observe that for any estimator p, of P(L > x)
we have the decomposition

Var[p,] = E[Var[p, | Z]] + Var[E[p, | Z]].

Conditional on Z, the obligors are independent, so
we know from §3 how to apply asymptotically opti-
mal IS. This makes Var[p, | Z] small and suggests that
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in applying IS to Z we should focus on the second
term in the variance decomposition. When p, is the
estimator of 84, E[p, | Z] = P(L > x | Z), so this means
that we should choose an IS distribution for Z that
would reduce variance in estimating the integral of
P(L > x | Z) against the density of Z.

The zero-variance IS distribution for this problem
would sample Z from the density proportional to the
function

z+> P(L>x|Z=2z)e " #2.

But sampling from this density is generally infeasi-
ble—the normalization constant required to make it a
density is the value P(L > x) we seek. Faced with a
similar problem in an option-pricing context, Glasser-
man et al. (1999) suggest using a normal density with
the same mode as the optimal density. This mode
occurs at the solution to the optimization problem

maxP(L > x| Z=z)e* 72, (20)

which is then also the mean of the approximating nor-
mal distribution.

Once we have selected a new mean u for Z, the
IS algorithm proceeds as follows:

1. Sample Z from N(u, I).

2. Apply the procedure in §4 to compute 6.(Z)
and the twisted conditional default probabilities
Pr.o0.2(Z2), k=1,..., m, and to generate the loss under
the twisted conditional distribution.

3. Return the estimator

1L > x)e 4 OLHHOD, ) gr Z4uT /2 @1)

The last factor in the estimator (the only new one)
is the likelihood ratio relating the density of the
N(0, I) distribution to that of the N(w,I) distribu-
tion. Thus, this two-step IS procedure is no more dif-
ficult than the one-step method of §4, once u has been
determined.

The key, then, is finding u. Exact solution of (20) is
usually difficult, but there are several ways of simpli-
fying the problem through further approximation:

Constant Approximation. Replace L with E[L | Z =z]
and P(L > x| Z=z) with {E[L | Z =z] > x}. The opti-
mization problem then becomes one of minimizing
z'z subject to E[L | Z =z] > x.

Normal Approximation. Note that E[L | Z = z] =
Yipe(2)e and Var[L | Z = z] = ¥, ipi(2)(1 — pi(2))
and use the normal approximation

P(L>x|Z=z)%1_®<M>

Var[L [ Z =z]
in (20).

Saddlepoint Approximation. Given the conditional
cumulant generating function (6, Z) in (12), one can

approximate P(L > x | Z = z) using any of the vari-
ous saddlepoint methods in Jensen (1995), as in, for
example, Martin et al. (2001). These are approximate
methods for inverting the conditional characteristic
function of L given Z. (In cases for which precise
inversion of the characteristic function is practical,
one may use the conditional Monte Carlo estima-
tor P(L > x | Z) and dispense with simulation of the
default indicators.)
Tail Bound Approximation. Define

F.(2) = —0.(2)x + ¥(6(2), 2); (22)

this is the logarithm of the likelihood ratio in (13)
evaluated at L = x. The smallest maximizer of F,(z)
is the solution using the constant approximation
described above because F,(z) attains its maximum
value 0 only when E[L | Z = z] > x. The inequality
1y > x} <exp(0(y — x)), 6 >0, gives

P(L>x|Z=2)< E[eex(z)(fo) |Z=2]= oFe@)

By treating this bound as an approximation in (20)
and taking logarithms, we arrive at the optimization
problem

J(x) = mzax{Fx(z) — 12"z}, (23)

Other approximations are possible. For example, in
a related problem, Kalkbrener et al. (2003) calculate
the optimal mean for a single-factor approximation
and then “lift” this scalar mean to a mean vector for Z.
We focus on (23) because it provides the most con-
venient way to blend IS for Z with IS conditional
on Z. The expression in (22) is also the exponent of the
usual (conditional) saddlepoint approximation, which
lends further support to the idea of using this upper
bound as an approximation. The various methods
discussed above will generally produce different val-
ues of u. Our asymptotic optimality results are based
on (23), but this does not preclude the possibility that
the other methods are asymptotically optimal as well.

5.2. Asymptotic Optimality: Large Loss Threshold
We now turn to the question of asymptotic opti-
mality of our combined IS procedure. We establish
asymptotic optimality in the case of the single-factor,
homogeneous portfolio used in Theorem 2 and then
comment on the general case. As in §§3 and 4, we
consider a limit in which the loss threshold increases
together with the size of the portfolio. In contrast to
Theorem 2, here we do not need to assume that the
correlation parameter p decreases; this is the main
implication of applying IS to the factors Z.

As noted in (16), when the size of the homoge-
nous portfolio increases, the normalized loss L, /m
converges to a nonrandom limit taking values in
the unit interval. In order that P(L,, > x,,) vanish as
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m increases, we therefore let x,,/m approach 1 from
below. The following specification turns out to be

appropriate:
.= P(c,/logm ),
n=(cylogm),
0<c<+2

Here g, approaches 1 from below and 1 — g, is
O(m~=</%). Write M, for the maximizer in (23) with
x =x,, and write J(x,,) for the maximum value. That
the maximizer is unique is ensured by Lemma 1. It
follows that the objective in (23) is strictly concave
and that the maximum is attained at just one point.
Write M,(x,,, 1,,) for the second moment of the com-
bined IS estimator of P(L,, > x,,) using u,,.

Xy =M Gy,

THEOREM 3. Consider the single-factor, homogeneous
portfolio specified by p, =p, ¢, =1, and (14). With x,, as
in (24) let

c21—p? )
7=E 2 ;
then
lim ! log P(L,, > x,,) =—7v
m—co log m meo
;11113;[0 fog m log M, (x,,, ) = —2.

The combined IS estimator is thus asymptotically optimal.

This result indicates that our combined IS proce-
dure should be effective in estimating probabilities of
large losses in large portfolios. Because we have nor-
malized the limits by log m, this result implies that the
decay rates are polynomial rather than exponential in
this case: P(L,, > x,,) *m~" and M,(x,,, s,,) = m=>.

Although Theorem 3 is specific to the single-factor,
homogeneous portfolio, we expect the same IS proce-
dure to be effective more generally. We illustrate this
through numerical examples in §6, but first we offer
some observations.

The key to establishing the effectiveness of the
IS procedure is obtaining an upper bound for the sec-
ond moment. As a direct consequence of the concav-
ity of F(-), the argument in the appendix shows that

M, (x,,, i) < exp(Zm{mzax{Fxm (z) — 1z"z} ]), (25)

without further conditions on the portfolio, and this
bound already contains much of the significance of
Theorem 3. In fact, the assumption of concavity can
be relaxed to the requirement that the tangent to
some optimizer u be a dominating hyperplane in the
sense that

E(2) < E(w) + VE(0)(z — ), (26)

with VE, (a row vector) the gradient of F,. In the proof
of Theorem 3, we show that the maximizer of (23)
coincides, in the limit, with the smallest maximizer

of F. (the solution using the constant approximation
described in §5.1) in the sense that their ratio tends
to 1. Property (26) is satisfied by any maximizer of F,,
so we expect it to be satisfied by a maximizer of (23)
as m increases. This suggests that (25) should hold for
large m in greater generality than that provided by
Theorem 3.

We view the limiting regime in Theorem 3 as more
natural than that of Theorem 2 because we are inter-
ested in the probability of large losses in large portfo-
lios. In Theorem 2, we are forced to let the correlation
parameter decrease with the size of the portfolio
in order to get a meaningful limit for the second
moment; this indicates that twisting the (conditional)
default probabilities without shifting the factor mean
is effective only when the correlation parameter is
small. In practice, we face fixed loss levels for fixed
portfolios, not limiting regimes; we therefore supple-
ment our asymptotic optimality results with numeri-
cal experiments.

5.3. Asymptotic Optimality: Small Default
Probability
We next show that our two-step IS procedure is also
effective when large losses are rare because individual
default probabilities are small. This setting is relevant
to portfolios of highly rated obligors, for which one-
year default probabilities are extremely small. (Histor-
ical one-year default probabilities are less than 0.1%
for A-rated firms and even smaller for firms rated AA
or AAA)) It is also relevant to measuring risk over
short time horizons. In securities lending, for exam-
ple, banks need to measure credit risk over periods
as short as three days, for which default probabilities
are indeed small.
For this limiting regime, it is convenient to take

x,=m-q, 0<g<l,

p(M) = Cb(—Cﬁ),

Here p™ decreases toward zero and is O(exp(— mc?/2)).
We again consider a single-factor, homogeneous port-
folio in which all obligors have the same default prob-
ability p=p™ and all have a loss given default of 1.

c>0. 27)

THEOREM 4. For a single-factor, homogeneous portfo-
lio with default probability p™ and loss threshold x,, as
in (27), let

then

1
lim —logP(L,, > x,)=—v

m—oo 1M

lim 1 log M, (x,,, t,,) = —27.

m—oo 11

The combined IS estimator is thus asymptotically optimal.
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6. Numerical Examples
We now illustrate the performance of our two-step
IS procedure in multifactor models through numerical
experiments. For these results, we shift the mean of
the factors Z to the solution of (23) and then twist the
conditional default probabilities by 6,(Z), as in (21).
Our first example is a portfolio of m =1,000 oblig-
ors in a 10-factor model. The marginal default proba-
bilities and exposures have the following form:

P, =0.01-(1+sin(16mk/m)), k=1,...,m; (28)
¢, =([5k/m])*, k=1,...,m. (29)

Thus, the marginal default probabilities vary between
0% and 2% with a mean of 1%, and the possible expo-
sures are 1, 4, 9, 16, and 25, with 200 obligors at each
level. These parameters represent a significant depar-
ture from a homogeneous model with constant p;
and c¢;.

For the factor loading, we generate the a; inde-

pendently and uniformly from the interval (0, 1/ JE),
d =10; the upper limit of this interval ensures that the
sum of squared entries a3, +- - - +4az, for each obligor k
does not exceed 1.

Our IS procedure is designed to estimate a tail
probability P(L > x), so we also need to select a
loss threshold x. The choice of x affects the param-
eter 0.(z) and the optimal solution to (23) used as
the mean of the factors Z under the IS distribution.
For this example, we use x =1,000. The components
of the factor mean vector (the solution we found
to (23)) are all about 0.8, reflecting the equal impor-
tance of the 10 factors in this model. Using a modi-
fied Newton method from the Numerical Algorithms
Group library (function e04lbc) running on a SunFire
V880 workstation, the optimization takes 0.2 seconds.

Although the IS distribution depends on our choice
of x, we can use the same samples to estimate
P(L >y) at values of y different from x. The IS esti-
mator of P(L >y) is (see (21))

1L > y)e @HI0:2), D g Z+uTus2, (30)

In practice, we find that this works well for values
of y larger than x, even much larger than x.

Figure 1 compares the performance of importance
sampling (labeled IS) and ordinary Monte Carlo sim-
ulation (labeled Plain MC) in estimating the tail of
the loss distribution, P(L > y). The Plain MC results
are based on 10,000 replications whereas the IS results
use just 1,000. In each case, the three curves show the
sample mean (the center line) and a 95% confidence
interval (the two outer lines) computed separately at
each point.

The IS estimates of P(L > y) are all computed
from the same samples and the same IS distribution,

Figure 1 Comparison of Plain Monte Carlo Simulation (Using 10,000
Replications) with IS (Using 1,000 Replications) in
Estimating Loss Probabilities in a 10-Factor Model
10°
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Note. In each case, the three curves show the mean and a 95% confidence
interval for each point.

as in (30), with x fixed at 1,000. The figure indicates
that the IS procedure gives excellent results even for
values of y much larger than x. With the loss distri-
bution of L centered near 1,000 under IS, small losses
become rare events, so the IS procedure is not useful
at small loss levels. To estimate the entire loss distri-
bution, one could therefore use ordinary simulation
for small loss levels and IS for the tail of the distri-
bution. The IS methods take approximately twice as
long per replication as ordinary simulation, but this is
more than offset by the dramatic increase in precision
in the tail.

Our next example is a 21-factor model, again
with m =1,000 obligors. The marginal default prob-
abilities fluctuate as in (28), and the exposures c;
increase linearly from 1 to 100 as k increases from 1
to 1,000. The matrix of factor loadings, A = (akj, k=
1,...,1,000, j =1,...,21), has the following block
structure:

F G I'4
F|G 8
with R a column vector of 1,000 entries, all equal
to 0.8; F, a column vector of 100 entries, all equal
to 0.4; G a 100 x 10 matrix; and g, a column vector of
10 entries, all equal to 0.4. This structure is suggestive
of the following setting: The first factor is a mar-
ketwide factor affecting all obligors, the next 10 fac-
tors (the F block) are industry factors, and the last 10
(the G block) are geographical factors. Each obligor

then has a loading of 0.4 on one industry factor and
on one geographical factor, as well as a loading of 0.8
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Figure 2 Comparison of Plain Monte Carlo Simulation (Using 10,000
Replications) with IS (Using 1,000 Replications) in
Estimating Loss Probabilities in a 21-Factor Model
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Note. In each case, the three curves show the mean and a 95% confidence
interval for each point.

on the marketwide factor. There are 100 combinations
of industries and regions and exactly 10 obligors fall
in each combination. This highly structured depen-
dence on the factors differentiates this example from
the previous one. The optimal mean vector (selected
through (23)) for this example has 2.46 as its first com-
ponent and much smaller values (around 0.20) for the
other components, reflecting the greater importance
of the first factor.

Results for this model are shown in Figure 2, which
should be read in the same way as Figure 1. The
parameters of the IS distribution are chosen with x =
10,000, but we again see that IS remains extremely
effective even at much larger loss levels.

The effectiveness of IS for this example is quantified
in Table 1. The table shows estimated variance reduc-
tion factors in estimating P(L > y) at various levels
of y, all using the IS parameters corresponding to x =
10,000. The variance reduction factor is the variance
per replication using ordinary simulation divided by
the variance per replication using IS. As expected, the
variance reduction factor grows as we move farther
into the tail of the distribution. The IS method takes

Table 1 Variance Reduction Factors Using IS at
Various Loss Levels
y P(L>Yy) V.R. factor
10,000 0.0114 33
14,000 0.0065 53
18,000 0.0037 83
22,000 0.0021 125
30,000 0.0006 278
40,000 0.0001 977

approximately twice as long per replication as ordi-
nary simulation, so the (large sample) efficiency ratios
are about half as large as the variance ratios. This
comparison does not include the fixed cost involved
in finding the optimal . In our experiments, the time
required for the optimization is equal to the time to
run 100-1,000 replications.

There is no guarantee that a local optimum in (23)
is a unique global optimum. If P(L > x | Z = z) is mul-
timodal as a function of z, the optimal IS distribution
for Z may also be multimodal. A natural extension
of the procedure we have described would combine
IS estimates using several local optima for (23), as in,
e.g., Avramidis (2001). However, we have not found
this to be necessary in the examples we have tested.

7. Concluding Remarks

We have developed and analyzed an IS procedure for
estimating loss probabilities in a standard model of
portfolio credit risk. Our IS procedure is specifically
tailored to address the complex dependence between
defaults of multiple obligors that results from a nor-
mal copula. The procedure shifts the mean of under-
lying factors and then applies exponential twisting to
default probabilities conditional on the factors. The
first step is essential if the obligors are strongly depen-
dent; the second step is essential (and sufficient) if the
obligors are weakly dependent. We have established
the asymptotic optimality of our procedure in single-
factor, homogeneous models and illustrated its effec-
tiveness in more complex models through numerical
results.
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Appendix. Proofs

Proor oF THEOREM 2. We first prove (b) and then use
similar arguments for (a) and (c). In all three cases, we prove
an upper bound for the second moment and a lower bound
for the probability, as these are the most important steps. We
omit the proof of the lower bound for the second moment
and the upper bound for the probability because they follow
by very similar arguments.

(b) First we show that

limsup m~"log My(mq, 0,,,) < max{2F(a, z) — 32°}.  (32)

Define P as

~ B , , d , <a

Bley, zedn— | NG D@E  pE=A
Bin(y; m, p()$(2)dz, p(2)>4,

whereas under the original distribution, P(L =y, Z € dz) =
Bin(y; m, p(z))¢(z)dz. Here Bin(-; m,p) denotes the prob-
ability mass function of the binomial distribution with
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parameters m and p. As in (5), it follows that

1—p(Z m—L 7 L
run_|(57) (2) o,
4P(L, Z) L p(Z)>q

= exp(_omq(Z)L + l!/m(gmq(z)/ Z))/
with

[ A—p@gT
Bma(2) = [bg - q)p@] '

0,,) as an expectation E under P, we get
M,(mq,0,,) = E[1{L>mq}exp(—20,,,(Z)L+2¢,,(6,,,(2), Z))]
< Elexp(~26,,,(Z)mq+24,,(8,,,(Z), 2))]
= E[exp(2E,(2))]. (34)

Here F,(z) is as defined in (19). The function F,(z) is con-
cave from Lemma 1 and F,,(z) attains its maximum value 0
for all z > z,,4/m where

Zm:dfl(qwl—f/m—fb”(p) and  p(z, i) =

This is obtained from the fact that G(p(z)) attains its maxi-
mum value 0 for all p(z) > g and p(z) is an increasing func-
tion in z. Because g > p, we have z, > 0 for all sufficiently
large m.

For any z°, the concavity of F,(z) implies
F! (z°)(z — Z°). Then

Elexp(2F,(2)] = Elexp(2F, (2°) +2F,()(Z = 2))]

= exp(2F,(2°) — 2, (z")2" + 2(F, (2"))").

The term 2(E,(z°))? appears because E[exp(aZ)] = exp(a?/2)
for any constant a. Choose z° to be the point at which
2F,(z) — 1z* is maximized. Then 2F, (zo) =z and

Efexp(F, (2)] < exp(26,:) - 37 )
= exp(mzax{ZFm(z) - %zz})
= exp(mmzax{%m — %ZZD. (35)

Because p € (0, 1/2), ®~(p) < 0, comparison of (18) and (19)

Writing M, (mgq,

E,(z) <E,(z") +

shows that
E,(zv/) _ G<@(az+<b-l(p>))
m J1—a*/m
az a
= G<(D( 1—a?/m e (P)))
_ z
- (“’ m)
and therefore
o, (zy/m) 1,
mzax{ w27 }

ool )5
= max 2F(a, z —7z 1—a*/m
f2r(a,2) - 32~ a2
<(l-a /m)max{ZF a, z)—fz } (36)

Combining this with (34) and (35) proves (32).

Next we show that

liminfm~'log P(L > mq) > max{F(a z)—12%}. (37)

m—> 00

For any & > 0, define P; as in (33) but with g replaced
by g+ 6. It follows that

arL,z) _
dby(L,Z) exp(—05(Z)L +,,(05(2), 2)),
" 1-p@)q+87"
_ 150 A=P@)(q+9)
05(2) = [log 1—q=3)p(2) :| .

Writing P(L > mq) as an expectation Ea under P;, we get

S[U{L > 1) exp(—65(Z)L + 1, (65(2), 2))]
s[1mg < L < m(g+90)}

- exp(—05(Z)m(q +8) + 11,(05(2), 2))]
= Es[1{mq < L = m(q+8)}exp(mG,(p(2))]

> Es[1{mg <L <m(q+9)}
-exp(mG;(p(2O)Up(Z) <q+38}],  (38)

1-p 1-q—8 p g+
1 5;
Og<1—q—3) <q+5> o PRI

0, p>qg+4.

P(L>mgq) = Es[1
E;[1

v

with

Gs(p) =

Under P;, L and Z are independent given p(Z) < g+ 8. So

Esl1{mq < L <m(q+8)}exp(mGs(p(2)))1{p(Z) < g+ 8}]
=Es[1{mg <L <=m(q+8)}|p(Z) <q+ 9]
Eslexp(mG;(p(2))1{p(Z) < q+ 8}]. (39)
Also, given p(Z) < g+, the loss L has a binomial distribu-
tion with parameters m and g + 6 under P;. By the central
limit theorem, for m large enough,

Py(mq <L <m(q+8) | p(Z) <q+9)
L—m(q+0)

~ m
P( Vg+8)(1l—g— 5)6 Vm(g+8)(1—q—38)

so|p<Z)sq+a)z§ (40)

To bound the second factor in (39), we separate the cases

g<1and g> 1 If q < 3, we can choose & small enough

so that g+ 6 < 5. On the event {p(Z) < g+ 6}, we have
(a//m)Z + ®71 (p) <0 from the expression for p(Z) in (15).
Then for arbitrarily small € >0 and m > a’/e,
(a/v/m)Z + ‘P’I(P))

V1—€ '
Define z; = (®~1(g + 8) — ®~1(p))/a, combining the fact that
Up(Z) < q+ 8} = 1{(Z/v/m) < z5} with (38)-(40),

P(L > mgq)

e == e
)

p(2)= @(
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Here

F, .(a,2) =G8((D<%¢;@)>'

Applying an extension of Varadhan’s Lemma (as on p. 140
of Dembo and Zeitouni 1998), we get

liminf m~! log P(L > mq)
m—>o00

> liminfm

. . -1 1"’ Z Z
min log 1E5 exp| mF; . a,ﬁ 1 ﬁgzﬁ
> sup{Fale(a, z) — %zz} ZTZYEZl;({Fa,E(‘L z) — %zZ}. (42)

Z=zZs

The equality is obtained from the continuity of the function
F; (a, z).

Define Fy(a,z) = Gs(P(az + ®71(p))) and let p; be the
solution to the optimization problem max,_, {F;(a, z) — %zz}.
As € decreases to 0, the function F (a, us) — % w3 increases
to Fy(a, ps) — 3u3. With (42), this gives

liminf m~"'log P(L > mq) > max{F;(a, z) — 1z}
m— 00 zZ=z§

= mzax{Fa(a, z)—32°}. (43)

The equality comes from the fact that z; maximizes Fs(a, z)
and z5 > 0 because g > p and 6 small enough.

Similarly, define u to be the solution to the optimization
problem max,{F(a, z) — —z 2}. As & decreases to 0, Fy(a, u) —
z,u increases to F(a, M) — E,u,z Combmmg with (43), we
obtain the liminf in (37) for g < 3

If > 1, for m > a?/e,

(@7 (q+9)
Instead of (41), we get
P(L > mgq)

= Lliﬁa _exp<mG3 (q;( (W%I(P) )))

et ]

e fen(on )| )

Applying the extension of Varadhan’s Lemma, we get

{E(a, z) — 122}

1—a2/m—® ' (p))/a>z, ..

liminf m™"log P(L > mq) > max
=0 —@71(p)/asz=z;, e

Because 6 and e are arbitrary, the argument used for g < %
now shows that

liminfm'logP(L>mq)> max {F(a,z)—1z*}. (44)
@

1= o0 ~1(p)/asz=z;
Also, for m > a?/e and Z < —/m®~1(p)/a, we have

D)= ¢<<a/m>fj 20))

for p(Z) in (15). Because G;(-) is an increasing function,

e )
=)

ol e =)

A%

P(L > mq)

Again applying the extension of Varadhan’s Lemma, we get

liminf m~'logP(L >mgq)> max
m—oo z<—®1(p)/a

{B,c(a,2)—322}. (45)

Because € is arbitrary, (45) holds with F; . replaced by F;.
Combining this with (44) and using the fact that & is arbi-
trary, we obtain the liminf in (37) for g > 1.

(a) Define a, = a/m*'/2, then p = a,,//m. First we
show that

limsup m " log M, (mgq, 0,40) <2F(0, 0). (46)

m—o0

By following the same steps as in (34), (35), and (36), we get

M,(mq, 6,,5) < exp(m(1— aZ/mza)mzax{zF(am, z) — 32%}).
(47)
For arbitrarily small { > 0, we can find some m; =
(a/)¥@D so that a,, < { for m > m,. Define u, to be the
solution to the optimization problem max,{2F (am, z) — 32%)
and p, to be the solution at a,, = {. It is obvious that u, >0
and p, > 0 because for any a > 0, the function F(a, z) — ;2% is
increasing in z < 0. We have F(a,,, z) < F({, z) for any z >0
and m > m; since the function F(a, z) is also increasing in a
for any z > 0. Then, with w, >0 and u, >0,

max{2F(a,, z) - 32’} <max{2F(,2) - 32°}.  (48)

Combining (47) and (48), we get

limsup m ™" log My (mq, 6,,,) < max{ZF({ z)— 12’} (49)
{ > 0 is arbitrary, so (49) holds at { = 0. The function
2F(0, z) — 3z* has maximum 2F(0, 0).
Next we show that
liminf m~! log P(L > mq) > F(0, 0). (50)
We also need to separate the cases g < 1 and > 1 as in (b).
We give out only the proof for q < 1. Similar proof follows

2
for g > 1. The argument used to show (41) now yields

P(L > mgq) > iﬁ‘s [exp(ml—"a/e<am, %))
'(7+9)

{Z ®- -
1 —<
N ay,

For m > m,, we have a,, < ¢, so

* ) }] (51)

iﬁs[exp(ml-},e@m, %))1{% 1(q+12n ~p) }]
el (- 2)
I{Z P (q+ 2 1(P)H
el 0 )
o g

The second inequality comes from the fact that for any z > 0,
the function F; .(a,z) is increasing in a. Combining (51)
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and (52), and applying the extension of Varadhan’s Lemma,
we get

lim inf m~'log P(L > mq)

m—o0

> max {E,.0,2)— 122} (53)
0=z<[®~1(3+8)- =1 (p)I/{

Because € and & are arbitrary, the argument used in (b) now
shows that

liminf m~*log P(L > mq)

> max F(0,z)— 122
Oszs[dfl(q)—@l(p)]/{{ ©2)=2 }
— F(0,0). (54)
(c) Recall a,,=a/m*'/2, p=a,,//m. First we show that
lim sup m2 log M, (mq, 0,,,) < —%Zﬁ. (55)

We use the upper bound on M, (mq, 6,,) in (47), which con-
tinues to apply. Define

_ g -2 (p)

am a

then lim,,_, .z, = 0. The function F(a,,-) is concave (as
can be verified by differentiation) and takes its maximum

value 0 for z>z, . Let u, be the point at which 2F(a,,, z) -
%zz is maximized. We will show that Mo, /Z,, — 1; i€, we
will show that for all small ¢ > 0, we can find m; large
enough that u, €(z, (1-§),z, ) for all m > m;. For this,
it suffices to show that

2F(a,,, z,,(1—§)) — z,, (1
2F'(a,,, Z, ) —Z

—¢)>0 and
<0,

m

where F’ denotes the derivative of F with respect to its
second argument. The second inequality holds because

F(a,,z, )=0and z, >0 when g> p. For the first inequal-
ity, the mean value theorem yields,

F/(aml Zam(l - f)) = F/(am/ Za,,,) - F”(am/ am)zam (56)
with z; a point in [z, (1-¢),z, ] For z <z, , differentia-
tion yields

F”(ﬂm, )_—H H(amr )/ (57)
with

e(a,z+ 2 '(p)
H(a,,6 z)= H
) = T Bayz+ 01 (p)Dlayz 4 o1 P
and
-1 “100 _ )2 _

Hi(a,,z) = Szt @) (P@,24 P (p) =9 " +q(1=9)

(1—=®(a,z+P7(p) P(a,z+ P~ (p))
—(a,z+ @7 (P)(P(a,z+ D7 (p)) —q)-

Here ¢(:) is the probability density function of the standard
normal distribution. If 4,,z + CIJ‘l(p) <0, then

Hl(am/ )
( @' (p) — a,2) (2,2 + P (p)) — 9)° +q(1 —q))
1- q)(amz + - 1(P))
+ (—@71 (p) - ﬂmZ)(q)(ﬂmZ +o 1(p)) - EI)
_ Pa,z+ 2 () (=P (p) —a,2)(1—9q)
B 1- q)(antz+q)71(p))

> 0.

The inequality comes from the fact that ¢(x)/x > ®(—x) for
x >0 (Feller 1968, p. 175).

Similarly, if a,,z + ®~(p) > 0, then H,(a,, z) > 0. Also,
H(a,, z) > 0 because H(a,,z) > 0. Simple algebra also
shows that H(a,, z) is bounded for z € [z, (1 - §),z, |
Thus, (57) implies that F’(a,,, z; ) < —a2,C for some con-
stant C > 0. We can now choose m; = ((1— &) /(a>C¢))V/(1-29),
so that F"(a,,, z4,) < (§ —1)/¢ for m > m;. Combining this
with (56), we have

2F/( Ay s am(l ‘f))_ am( _5)
=2F'(a —F'(a,, zl 1)z, E—2, (1—£)>0.

Therefore we have shown that for small ¢ > 0, we can find
my large enough that for m > m;, we have n, <(z, (1-¢),

Z,,), 1€, g, /2, — 1.
The definitions of M, and z, give

1.2 1.2 1,2 1,2
—3%,, =2F(ay, thm) — 2%, = 2F(a,,, /J“um) — Mg, = —3Mq,

2%ay,
1.2 1.2
so we also have max,{2F(a,,, z) — 3z }/(_Ezam) — 1, and
then’ SinCe am = a/m(x—l/Z and Z” = Zm/mail/zl

mrs IZ,,,

m' > max{2F(a,,, z) — 32°} - —3z. (58)

Applying this to (47) proves (55).
Next we show that

lim inf m>*log P(L > mq) > —122. (59)

a
m—oo

Similarly we also need to separate the cases q <iandg>1

as in (b). We give out only the proof for g < 5. Similar proof
follows for g > 1. The argument leading to (41) gives

P(L > mgq) > 1E6 [ex;a(mFa,E(a, %))1{% < zﬁ” (60)

Recall that F; (4, z5,) =0, F .(a,25,) =0, and arguing as
in the proof of the upper bound, 3 F/ .(a,z5 .)=—c <0 for ¢
some positive constant. Thus we have
E ((a, zs .
lim @207 g
7—0 ")”2

and for sufficiently small n, F; (4, z5 . — 1) > —(c+€)1?. So
if we choose 1 = \/€/(c +€)m*~'/2, then for m sufficiently
large, F; (4, z5 . — ) > —em**~. Therefore we have

1~ Z V4
EEB exp mF&E a,% 1 %Szﬁ
1 Z
. LopCarp(s-na< 2 <)
1 1 1
= fexp(—emz"‘)E exp(—izgmm)nmm
1
= —exp(—em

1 1,, € 2a-1/2
—— “« —m= . (61
2 mexp( 525 ) /C+Em (61)

The second inequality comes from the fact that P(x — 6 <
Z <x)>¢(x)d if x > 6.
Combining (60) and (61), we have

*)

lim inf m~*log P(L > mq)

1, €
> —e— 22+ liminfm *log( ./ —— m?*1/?
=€ 2 o m—o0 g< c+e

=—€—-2zj,

and because € and § are arbitrary, the liminf in (59) follows.
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Proor or THEOREM 3. First we show that

hmsup1 ogm log My(x,,, ) < —27. (62)

Mm— o0

Let E denote expectation under the IS distribution. Then

My (¥, ) = E[1{Ly, > x, }exp(=20,,, (Z)L+24,,(6,,,(Z),Z))
~exp(—2u,Z + )|
< E[exp(—26,, (2)x,, +2,,(6,,(2), Z))
-exp(—2p,mZ + /.Lf,,)]
= E[exp(2F,,(2)) exp(—2m, Z + 2], (63)

with F, (z) as in (19) but with g replaced by g,,.
For any z, the concavity of F,(z) implies

E,(2) < Ey(y) + B (1) (2 = ) = Fy () + oz — p2y, - (64)

The equality comes from the fact that F,(u,) = u,
because w,, is the unique maximizer in (23) with x = x,,,.
Substituting (64) into the upper bound in (63), we have

E[exp(2F,(2)) exp(—2,,Z + 12,)]
= E[eXP(ZFm (I‘Lm) + Z/J’mZ - 2/‘L$n - 2/‘LrnZ + /‘Lfn)]
=exp (2En (/"Lm) - /‘Lfn) (65)

_ V1—p2c/logm—®~1(p) .

Define

m

We have p(z,,) = g,, and F,(z) takes its maximum value 0
for all z> z,,. We show that for all small ¢ > 0, we can find
m, large enough that u,, € (z,,(1 — €), z,,) for all m > m,. It
suffices to show that

F(z,(1-§)) —

The second inequality holds because
when p < g,
For the first inequality in (66), we have

I 1-— A )
=m —
0=, t=n Tt
(p<pzm(1_§)+q>_l(p)> P )
V1—p? V1—p?
Using the property that 1 — ®(x) ~ ¢(x)/x as x — oo (Feller
1968, p. 175), we conclude that

z,(1—¢)>0 and F,(z,)—2z,<0. (66)
F (z,)=0and z,, >0

Fr:t(zm(]- -

I _ 1- I —
- W T W
and (1-&+ 0 (p)
Pzl — P>\ _ —(2/2)(1-8)7?
o ) <ot )

Therefore we have
E,(z,,(1— §)) = O(m'~(/20-%),
and as 0 < ¢ <+/2,

z, = O(c‘ /log m) = o(ml"(cz/Z)(l_f)z).

Then for m large enough, we obtain (66).

We have shown that for all ¢ > 0, we have u,,/z,, €
(1—£,1) for sufficiently large m. It follows that for all ve > 0
and all sufficiently large m we have —1z2, <F, (u,,) — 342, <

2 z2 (1 — vz). Combining this with (63) and (65), we get
My(x,,, ) < exp(—2z2,(1 — 1)), and as v, is arbitrary the
lim sup in (62) follows.

Next we show that

liminf

m—oo 1O ogm

log P(L,, > x,,) > —7. (67)

For any 6, >0,

P(Lm > xﬂl) Z P(Lm > xm |p(Z) = ql}‘l + am)P(p(Z) 2 qm + 8"1)'

(68)
Given p(Z) =q,,+96,, > q,,, from the definition of our change
of measure, L,, is binomially distributed with parameters m
and g,, + 6,,. Applying the bound (3.62) of Johnson et al.
(1993), we have

P(Lm > Xy | P(Z) ={y + 6m)
m 1
>1-P| - O | ==
B ( \/(qm+8m)(1_qm_6m) ) 2

It therefore suffices to consider the second factor in (68). If

we take
O, = (D(c,/logm +e) - @(c,/logm),
for some € > 0, then ®~(q,, +8,,) = c,/logm + €. Thus,

P(p(Z) = q,,+6,)

O )

p
-1 Bl
zP(‘/l PP (g +6,) —P (P)SZ
p
1- p2®71(q;n + 5m))
p
1 1(1—p?) (P71 5 )2\ &1
» L exp(~L 0N a0 2 )
= Vor P P
1 (1—p*)(c/1 2\ !
_ exp(—f p°)(c 2og111—|—e)> (p) (69)
Noxs 2 p p
and
lim inf ! logP(r(Z) = q,,+6,,)
imin
H— 00 O m Og p —qm m
—pn? 2
2_1 P im (c‘/logm—ke) _ .,
Zp m—mo ogm

which proves (67).
ProOF OoF THEOREM 4. The proof is similar to that of The-
orem 3. First we show that

hmsupflogMz(xm,me ~2y. (70)

m— o0

For this, set F,(z) = G(p'™ (z)) where

) (o pz+d71(p™M)
e = o Vs )

_V1=pPT () +evm

p

Define
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Here p(z,,) = ¢ and E,(z) takes its maximum value 0 for all
z > z,,. We show that for small £ > 0, we can find m, large
enough that u,, € (z,,(1 — €), z,,) for all m > m,. It suffices
to show (66). The second inequality in (66) holds because
E/(z,,) =0 and z,, > 0 when p™ < q. For the first inequality,
we have

’ —_— q 1_q
Fulzn(1-8) = m<p<'"><zm<1 —8)  1-p(z,( —5>>>

Pz, (1= §) —cy/m p
¢< V1—p? )\/1—,02. @
Since
q _ pzm(l_g)_c\/ﬁ >
p<m>(zm(1—§>>‘o(1/ o i )) ana

I el B

1 _p(m)(zm(l - f))
by applying the property that ¢(x)/®(—x) ~x as x — oo
to (71), we conclude that

=0(),

Eem?h? )
J1=p2)"

whereas z,, = O(ci/m). We thus obtain (66) for all suffi-
ciently large m.

It follows that for m > m,, w,,/z, € (1 —§,1), and cor-
respondingly —1z2, < F,(u,) — sp% < —122 (1 — £)*. Com-
bining this with (63) and (65), we have M,(x,, u,) <
exp(—z% (1 — £)?). Since € is arbitrary, we obtain the limsup
in (70).

Next we show that

E(zn(1— 6) = O(

1
lim inf - log P(L,, > x,,) > —7. (72)

m—o0

For arbitrary 6 >0,

P(Lyy > %) = P(Lyy > %, | p™(Z) =g+ 8) P(p" (Z) = 1+ 6).
(73)
Given p"(Z) = q+ & > q, from the definition of our change
of measure, L,, is binomial distributed with parameter m
and g+ 6. Applying the bound (3.62) of Johnson et al. (1993),
we have

P(L, > x, | p"(Z)=q+ )

2o~ fraa ) 2

Also notice that for any constant ¢, > 0,

(74)

N[ =

P(p™(2) 2 q+9)
_ p(z VTP (g +) - @*1<p<m>))
B P

N p<¢1 PO g+9) - ™) _

> ; <
V1= (g9 - ™) )
= 0

p

1 1(Y1-p2@ ' (g+8)— @' (p™) )2)
> expl—= +¢ C
o P( 2 ( P 0 0

1 1//1— p2d! B 2
SRS

(75)

Combining (73), (74), and (75), we obtain the liminf in (72).
By Jensen’s inequality, M,(x,,, u,,) > P(L,, > x,,)%, so the
limsup in (70) and the liminf in (72) hold as limits.
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