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1 Introduction

The interest rate modeling approach advanced in Miltersen et al. [22], Brace,
Gatarek, and Musiela [4], Musiela and Rutkowski [23], Jamshidian [13] and a
large subsequent literature has gained widespread acceptance in the derivatives in-
dustry. This market model approach emphasizes the use of market observables as
model primitives and ease of calibration to market data. This entails modeling the
term structure of interest rate through, e.g., simply compounded forward LIBOR
rates or forward swap rates rather than the continuously compounded instantaneous
forward rates at the heart of the Heath et al. [12] (HJM) framework or through the
instantaneous short rate of more traditional models. Ease of calibration to market
prices of derivatives requires tractable formulas for liquid instruments like caps or
swaptions.

The centerpiece of the market model framework is a class of models ([22,4,
13]) in which the prices of caps or swaptions coincide with the “Black [3] formu-
las” widely used in industry. Within this class of models, calibration to volatilities
implied by the Black formulas is essentially automatic.

However, precisely because these models reproduce Black-formula prices ex-
actly, they cannot generate a skew or smile in implied volatilities; all caplets of a
given maturity must share a common implied volatility regardless of strike. This
contradicts empirical evidence that implied volatilities in market prices do vary
with strike. Andersen and Andreasen [1] and Zühlsdorff [29] have developed ex-
tensions of the basic LIBOR market model combining more general volatility spec-
ifications with computational tractability; these extensions produce non-constant
implied volatilities. Glasserman and Kou [8] extend the market model to include
jumps in interest rates governed by marked point processes and illustrate the variety
of implied volatility patterns such a model can produce. This paper addresses com-
putational issues in the extension of the LIBOR market model to include jumps and
also some model formulation issues arising from computational considerations.

The potential importance of jumps in financial markets has been widely docu-
mented. Their impact is perhaps most pronounced in equity markets, but has been
documented in foreign exchange and interest rate markets as well. Jumps play two
related but somewhat distinct roles in modeling: one is providing a better fit to
time series data and the other is providing greater flexibility in matching deriva-
tive prices – i.e., in modeling dynamics under an equivalent martingale measure.
Equivalence of physical and martingale measures requires that both admit jumps
if either does, but their frequency and magnitudes can be quite different under the
two measures. Numerous references to the literature on modeling with jumps are
discussed in [8] so here we mention just a few. In empirical work, Das [6] and
Johannes [15] argue that the kurtosis in short-term interest rates is incompatible
with a pure-diffusion model. Models adding jumps to the HJM framework (and
thus focused on derivatives) include Björk et al. [2] (on which Glasserman and Kou
[8] build) and Shirakawa [27]. Jamshidian [14] has developed a very general ex-
tension of the market model framework in which interest rate dynamics are driven
by discontinuous semimartingales.
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This paper addresses the numerical solution, through discretization and sim-
ulation, of the market models with jumps developed in [8]. Glasserman and Kou
show how marked point process intensities can be chosen to produce closed-form
expressions for caplets or swaptions, but for pricing general path-dependent inter-
est rate derivatives simulation is necessary. The numerical solution of continuous
processes modeled through stochastic differential equations has been studied in
depth (see Kloeden and Platen [16] and its many references), but there has been far
less work on methods for models with jumps. The models addressed here present
special complications arising from the complex form of the intensities describing
the dynamics of the marked point processes (MPPs). These intensities are, in gen-
eral, functions of the current LIBOR term structure, and it is by no means obvious
how to simulate an MPP with the required intensity.

The source of the complication can be explained through analogy with the pure-
diffusion setting. The key to tractable caplet pricing lies in specifying convenient
dynamics (in the simplest case, driftless geometric Brownian motion) for each
LIBOR rate under its associated forward measure. But when all LIBOR rates are
modeled under a single measure, the change of measure introduces a complicated
drift term that depends on the current term structure. (In simulation, this drift can be
handled using methods in [16] or circumvented using transformations in [11,10].)
In the presence of jumps, Glasserman and Kou [8] obtain tractability by ensuring
that the jumps in each LIBOR rate follow a compound Poisson process under the
forward measure for that rate; this produces pricing formulas of the type in Merton
[19] and Kou [17]. However, when all rates are modeled under a single measure,
the change of measure introduces a change of intensity; the resulting intensities
depend on the current term structure and thus describe processes that are far from
Poisson.

In this paper, we show how the required MPPs may nevertheless be constructed
through state-dependent thinning of a Poisson random measure. To this end, we
first prove a general result showing how to reformulate a model driven by MPPs
as one driven by a Poisson random measure, provided the MPP intensities satisfy
a boundedness condition and Markovian assumption. We record a no-arbitrage re-
sult within the Poisson random measure formulation. We then use the reformulated
model as a basis for numerical solution, adapting the general approach of Mikule-
vicius and Platen [20]. Briefly, the points of the Poisson random measure provide
all potential jump times of the LIBOR rates; these may be generated without dis-
cretization error in advance of the evolution of the LIBOR rates. In between Poisson
jumps, the evolution of the LIBOR rates is described by a pure diffusion and may
thus be approximated to the desired accuracy using existing methods.

Results on the convergence order of numerical schemes for stochastic differen-
tial equations usually impose fairly strong smoothness conditions on the coefficient
functions. The analysis of Mikulevicius and Platen [20] requires several orders of
continuous differentiability (as do, e.g., the results of [18,26]). However, the thin-
ning procedure we use is intrinsically discontinuous: a potential jump is either
accepted or rejected depending on the current state of the LIBOR rates. To address
this, we provide a convergence result that accommodates the thinning procedure but
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imposes somewhat stronger conditions on other problem data. We also investigate
the convergence of various methods numerically.

The rest of the paper is organized as follows. Section 2 reviews LIBOR market
models and their extension with jumps described through marked point processes.
Section 3 shows how to reformulate a general class of MPP-driven models in terms
of a Poisson random measure and presents an associated no-arbitrage condition.
Section 4 presents a subclass of models that lead to tractable formulas for caplets and
discusses choices of state variables and parameter specifications. Section 5 details
the numerical schemes and the jump generation mechanism. The convergence result
is in Sect. 6. Section 7 contains numerical results and Sect. 8 concludes the paper.

2 Background on market models

2.1 Forward LIBOR models

Following Miltersen et al. [22], Brace et al. [4], Musiela and Rutkowski [23],
and Jamshidian [13] we consider models of the term structure based on discretely
compounded forward rates. We start with a discrete tenor structure–a finite set of
dates 0 = T0 < T1 < · · · < TM < TM+1, with Ti+1 − Ti ≡ δ. The fixed accrual
period δ is expressed as a fraction of a year; for instance, δ = 1/2 represents six
months. Each tenor date Tk is the maturity of a zero-coupon bond; Bk(t) denotes
the price of that bond at time t ∈ [0, Tk] and Bk(Tk) ≡ 1. Forward LIBOR rates
L1, . . . , LM may be defined from the bond prices by setting

Lk(t) =
1
δ

(
Bk(t)
Bk+1(t)

− 1
)
, t ∈ [0, Tk], k = 1, . . . ,M. (1)

EachLk(t) is the forward rate for [Tk, Tk+1] as of time t ≤ Tk; we denote byL0(0)
the rate for [0, T1]. Let η(t) = inf{j ≥ 0 : Tj ≥ t} so that η(t) is the index of the
next maturity as of time t.

We mostly work within the spot martingale measure of Jamshidian [13]. This
is the measure associated with taking as numeraire

M(t) =
Bη(t)

B1(0)

η(t)−1∏
j=1

Bj(Tj)
Bj+1(Tj)

.

Writing Dk = Bk/M for the discounted (or deflated) bond prices, we have

Dk(t) =
k−1∏
j=0

1
1 + δLj(t ∧ Tj)

, Lk(t) =
1
δ

(
Dk(t)
Dk+1(t)

− 1
)
. (2)

Absence of arbitrage opportunities by trading in bonds is guaranteed if the dis-
counted bonds Dk(t) are martingales (see Ch. 14 in Musiela and Rutkowski [24]).
This requirement and (2) constrain the dynamics of the forward rates. In the pure
diffusion case, the specification of the volatility determines the drift as in [4] and
[13].
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An interest rate caplet for the period [Tn, Tn+1] with strike K is a derivative
security paying δ(Ln(Tn) −K)+ at time Tn+1. Pricing under the spot martingale
measure leads to the representation Cn(0) = δE[(Ln(Tn) −K)+/M(Tn+1)] for
the time-0 price of the caplet. This expression simplifies if written in terms of the
forward or terminal measure for maturity Tn+1; this is the measure associated with
taking the bond Bn+1 as numeraire. (See, e.g., Ch. 13 of [24] for background.)
Writing ETn+1 for expectation under this measure, we have

Cn(0) = δBn+1(0)ETn+1

[
(Ln(Tn) −K)+

]
. (3)

The nth caplet price is thus determined by the dynamics of Ln under the Tn+1-
forward measure.

2.2 Jump-diffusion models

Björk et al. [2] generalize the no-arbitrage condition of Heath et al. [12] to in-
corporate jumps modeled through marked point processes in addition to the usual
diffusion terms of the HJM framework. Glasserman and Kou [8] build on Björk
et al. [2] to derive no-arbitrage conditions for LIBOR market models with jumps.
We review the model specification in [8]. Our discussion of MPPs is informal; for
mathematical background, see, e.g., [2] and [5].

We describe an MPP through a sequence of pairs of times and marks {(τj , Xj),
j = 1, 2, . . . }, with the interpretation that the mark Xj arrives at τj . The τj take
values in (0,∞) and are strictly increasing. The marks Xj take values in a general
space E∗, which for our purposes may be assumed to be a subset of a Euclidean
space. Let Nt be the number of points in (0, t]: Nt = sup{j ≥ 0 : τj ≤ t}. From
an MPP we construct jump processes by choosing a function h : E∗ → � and
defining

J(t) =
Nt∑
j=1

h(Xj).

The function h transforms the mark Xj into a jump magnitude, and so different
jump processes can be generated from one MPP by different choices of h.

The term structure models in [8] are driven by r MPPs {(τ (i)
j , X

(i)
j ), i =

1, . . . , r, j = 1, 2, . . . } with no common jumps and a d−dimensional Brownian
motion W (t). The evolution of the rate maturing at Tk takes the form

dL∗
k(t)

L∗
k(t−)

= αk(t, L∗(t−)) dt+ γk(t, L∗(t−)) dW (t)+dJ∗
k (t), k = 1, . . . ,M

for deterministic functions αk : [0,∞) × �M → � and γk : [0,∞) × �M → �d.
We take W (t) to be a column vector, γk(t) a row vector, and we take the Lk to be
right-continuous and denote byLk(t−) the left limit at t−. The variableL∗ denotes
the vector (L∗

1, . . . , L
∗
M ). The jump term is

J∗
k (t) =

r∑
i=1

N(i)(t)∑
j=1

Hik(X(i)
j )
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with N (i)(t) = sup{j ≥ 0 : τ (i)
j ≤ t} and deterministic functions Hik : E∗ →

�, k = 1, . . . ,M, i = 1, . . . , r. Interpret Hik as the response of the kth forward
rate to the ith MPP. Each MPP {(τj , X

(i)
j )} is assumed to admit an intensity process

ν∗
i (dx, t) interpreted as the arrival rate of marks in dx for the i-th MPP, conditional

on the history of the MPPs and the Brownian motionW (t) up to t−. More precisely,
ν∗

i makes the following a martingale in t for all bounded h:

N(i)(t)∑
j=1

h(Xj , τj) −
∫ t

0

∫
E∗
h(x, s)ν∗

i (dx, s) ds.

Each MPP can also be described through a random measure µ∗
i (dx, dt) on the

product of the time axis and the mark space assigning unit mass to each point
(τ (i)

j , X
(i)
j ). This representation makes it possible to write

N(i)(t)∑
j=1

Hik(X(i)
j ) =

∫ t

0

∫
E∗
Hik(x)µ∗

i (dx, ds)

from which the dynamics of the rates are

dL∗
k(t)

L∗
k(t−)

= αk(t, L∗(t−)) dt+ γk(t, L∗(t−)) dW (t) (4)

+
∫

E∗

r∑
i=1

Hik(x)µ∗
i (dx, dt).

Theorem 3.1 in Glasserman and Kou [8] characterizes the class of arbitrage-free
models of the form (5) through a restriction on the form of αk.

Most relevant for practical applications is the case of models driven by MPPs
with a “Markovian” property–namely, that ν∗

i (dx, t) = νi(dx, L∗(t−), t) for some
deterministic νi; i.e., the intensity depends on the history of the process only through
the current stateL∗. The tractable subclass of models identified in [8] have this form.
In these models, each rate-specific jump process J∗

k becomes a compound Poisson
process under the corresponding Tk+1-forward measure. But, when all LIBOR
rates are modeled under a single measure the MPPs must be substantially more
complicated than a compound Poisson process, though conveniently the Markovian
feature is preserved.

3 Modeling jumps with Poisson random measures

Marked point processes provide a general formalism for constructing models with
jumps, but an abstract MPP is difficult to work with computationally. In contrast, a
Poisson random measure is easy to simulate, and the literature provides discretiza-
tion schemes for stochastic differential equations driven by Brownian motion and
Poisson random measures. These considerations motivate our next step in which
we show how to use Poisson random measures to construct a class of MPPs.
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A Poisson random measure p(dx, dt) defines a marked point process with mark
space E, that has a deterministic finite intensity λP (dx, t) such that λP (dx, t) =
λ0(t) f(x) dx, with f(x) a probability density onE. Thus, the arrival times follow
a Poisson process with deterministic intensity λ0(t), and the marks are i.i.d. with
density f . (Think of p(dx, dt) as assigning unit mass to (x, t) if a mark x arrives
at time t.) It will suffice for our purposes to take constant λ0.

We proceed now to identify a class of MPPs that can be generated from a Pois-
son random measure through a state-dependent thinning mechanism. A thinning
function θi randomly accepts or rejects the marks of the Poisson process with prob-
ability proportional to the value of the state-dependent intensity of the MPP at the
moment of the jump. The resulting process of accepted marks has the law of the
required MPP.

We begin with the following model for the rate dynamics:

dLk(t)
Lk(t−)

= αk(t, L(t−)) dt+ γk(t, L(t−)) dW (t) (5)

+
∫

E∗

∫ 1

0

r∑
i=1

Hik(y) θi(y, u, L(t−), t) p(dy × du, dt)

where p(dy × du, dt) denotes a Poisson random measure with mark space E =
E∗ × (0, 1). This Poisson random measure has intensity λP (y, u, t) = λ0f(y),
y ∈ E∗, u ∈ (0, 1). Thus, the marks y ∈ E are distributed as f(y), with total
arrival rate λ0, and u is uniformly distributed in (0,1). The functions αk, γk, and
Hik are as in (5). We assume that the marked point processes µ∗

i in (5) have
the following “Markovian” structure: each intensity ν∗

i (dx, t) can be written as
νi(x, L∗(t−), t) dx for deterministic nonnegative functions νi. We further assume
that the functions νi satisfy

r∑
i=1

νi(y, z1, . . . , zM , t) < λ0f(y) with zk > 0, k = 1, . . . ,M. (6)

This allows us to subordinate the MPPs to a Poisson random measure.
From the νi we define deterministic thinning functions θi; when acting on L(t)

they are

θi(y, u, L(t−), t) =




1,
∑i−1

j=1 νj(y,L(t−),t)
f(y)λ0

≤ u

<
∑i

j=1 νj(y,L(t−),t)
f(y)λ0

0, otherwise,

i = 1, . . . , r. (7)

The interpretation of each thinning function θi is as follows. Associated with each
jump time of the Poisson random measure is a mark (y, u). Because of nonnegativity
of the functions νi and definition (7) there is at most one nonzero θi for each jump
time. Given y and L(t−), the probability of θi being nonzero at a jump time of the
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Poisson process is, from (7), νi(y, L(t−), t)/λ0f(y). Intuitively, the marked point
process defined by

µi(dy, dt) =
∫ 1

0
θi (y, u, L(t−), t) p(dy × du, dt) (8)

has a point in [t, t + ∆) with mark y with probability νi(y, L(t−), t)∆ + o(∆),
given L(t−).

By introducing r thinning functions we are able to generate r MPPs from one
Poisson random measure. Using (8), we may rewrite (6) as

dLk(t)
Lk(t−)

= αk(t, L(t−)) dt+ γk(t, L(t−)) dW (t)

+
∫

E∗

r∑
i=1

Hik(y)µi(dy, dt) (9)

which is formally equivalent to (5). The next result verifies that (5) and (9) describe
the same model. This reduces a model driven by abstract MPPs to one driven by a
Poisson random measure.

Proposition 3.1 If the functions νi associated to the intensities of the marked point
processes µ∗

i satisfy (6) and if the processes νi(y, L1(t−), . . . , LM (t−), t) are left-
continuous for each y ∈ E∗ and i = 1, . . . , r, then the marked point process µi

has intensity νi(y, L1(t−), . . . , LM (t−), t).

Proof We need to show that for all measurable A ⊂ E∗ the counting process
Nt(A) =

∫ t

0

∫
A
µi(dy, ds) has intensity νi(A,L(t−), t) =

∫
A
νi(y, L(t−), t) dy

with respect to the history generated by L. Using (8) the counting process can be
written as

Nt(A) =
∫ t

0

∫
A×[0,1]

θi(y, u, L(s−), s)p(dy × du, ds).

The processes νj(y, L(t−), t), j = 1, . . . , r, are predictable because they are left-
continuous; and as the θi(y, u, L(t−), t) are (measurable) deterministic function
of the νj they too are predictable. Moreover, the θi are bounded, so by Theorem
8.T3 and Corollary 8.C4 of Brémaud [5],

Nt(A) −
∫ t

0

∫
A×[0,1]

θi(y, u, L(s−), s)λ0f(y)dy du ds

is a martingale. Rewriting this using (7) we find that

Nt(A) −
∫ t

0

∫
A

νi(y, L(s−), s) dy ds

is a martingale and conclude (Theorem II.T9 of [5]) that Nt(A) admits intensity
νi(A,L(t−), t). 
�
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Having transformed the underlying jump dynamics, we proceed now to doc-
ument arbitrage restrictions on jump-diffusion models driven by a Poisson ran-
dom measure. Our result characterizes the dynamics of forward LIBOR under the
spot martingale measure which make the discounted bonds local martingales. This
is the weak no-arbitrage condition of Musiela and Rutkowski [24]. Our building
blocks are a d−dimensional Brownian motionW (t) and a Poisson random measure
p(dx, dt) with finite intensity λP (dx, t) = λ0(t)f(x)dx. The marks x take values
in a space E.

Theorem 3.1 For each k = 1, . . . ,M let γk : [0,∞) × �M → �d, αk : [0,∞) ×
�M → � and Hk : E× �M × [0,∞) → � be deterministic functions. The model
for the simple forward rates under the spot measure given by

dLk(t)
Lk(t−)

= αk(t, L(t−)) dt+ γk(t, L(t−)) dW (t)

+dJk(t), 0 ≤ t ≤ Tk, k = 1, . . . ,M, (10)

dJk(t) =
∫

E

Hk(x, L(t−), t)p(dx, dt) (11)

makes the discounted bonds local martingales if

αk(t) = γk(t)
k∑

n=η(t)

δγn(t)�Ln(t−)
1 + δLn(t−)

(12)

−
∫

E

Hk(x, L(t−), t)
k∏

n=η(t)

1 + δLn(t−)
1 + δLn(t−)(1 +Hn(x, L(t−), t))

λP (dx, t).

In this case, the dynamics of the discounted bonds are given by

dDn(t)
Dn(t−)

=
∫

E


 n−1∏

j=η(t)

Dj(t−)
Dj(t−) + (Dj(t−) −Dj+1(t−))H∗

j (x,D(t−), t)
− 1




[p(dx, dt) − λP (dx, t)dt] +
n−1∑

k=η(t)

(
Dk+1(t−)
Dk(t−)

− 1
)
γk(t)dW (t)

where H∗
j (x,D(t−), t) = Hj(x, L(D(t−)), t) and

Lk(D(t−)) = (Dk(t−) −Dk+1(t−)) /δDk+1(t−).

Equation (12) is the drift restriction in [8] formulated here in terms of a Poisson
random measure. Theorem 3.1 is proved by differentiating the transformation from
the Lk to theDj using an extension of Ito’s formula accommodating integrals with
respect to the Poisson random measure as well as the Brownian motion. It may also
be possible to derive this result as a consequence of general results in Jamshidian
[14], but the case of a Poisson random measure is sufficiently interesting and simple
to merit separate consideration.
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4 A tractable class of models

We focus now on a subclass of models identified in [8] that lead to explicit formulas
for caplet pricing. From (3) we know that the nth caplet price is completely deter-
mined by the law of Ln under its associated forward measure PTn+1 . Glasserman
and Kou [8] obtain caplet formulas by positing that

dLn(t)
Ln(t−)

= −λ̄n(t)mn dt+ γn(t) dWn+1(t) + d


N̄n(t)∑

j=1

(Y (n)
j − 1)


 (13)

where γn(t) ∈ �d and λ̄n(t) ∈ � are deterministic and bounded, and where, under
PTn+1 , Wn+1(t) is a d−dimensional Brownian motion, N̄n is a Poisson process

with rate λ̄n(t), the Y (n)
j ∈ (0,∞) are independent with density fn having mean

1 +mn, and Wn+1, N̄n, and {Y (n)
1 , Y

(n)
2 , . . . , } are mutually independent.

While a specification of Ln under its forward measure PTn+1 suffices to deter-
mine caplet prices, working with a term structure model more generally requires
specifying the dynamics of all forward rates simultaneously under a single probabil-
ity measure, such as the spot measure. This requires the MPP formulation because
if the jumps in each Ln are Poisson under the PTn+1 (as in (13)), they cannot all
simultaneously be Poisson under a single measure. Once we have specified the
term structure dynamics with marked point processes, we will however be able to
use Proposition 3.1 to construct the MPPs by thinning a Poisson random measure.
To get the dynamics of the Ln under the spot martingale measure, we follow the
construction of Sect. 3.3 of [8].

4.1 Dynamics

We model the evolution ofM rates usingM marked point processes with marks in
(0,∞) and intensities νi, i = 1, . . . ,M, and a d−dimensional Brownian motion
W (t). For each n and t, we introduce a set In(t) to be interpreted as the set of
MPPs to which Ln is sensitive at time t. The function Hni transforms the abstract
marks of the i-th marked point process into jump magnitudes of the n-th rate; with
a view towards (13), we choose these to be

Hni(x) =

{
x− 1, for i ∈ In(t);
0, otherwise.

(14)

As shown in Proposition 3.1 of Glasserman and Kou [8], (13) holds if the intensities
of the MPPs under the spot martingale measure νi(dy, t) = νi(y, t)dy satisfy

∑
i∈In(t)

νi(y, t) =
n∏

j=η(t)

1 + δyLj(t−)
1 + δLj(t−)

λ̄n(t)fn(y). (15)
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A special case, as shown in [8], consists in taking λ̄n constant and fn lognormal
with volatility parameter sn. The nth caplet is then priced by blending the formulas
of Merton [19] and Black [3]:

Cn(t) = δ

∞∑
j=0

exp
(
λ̄n(Tn − t)

) (λ̄n(Tn − t))j

j!

×BC
(
L(j)

n (t), Tn − t,K, v2
j (t), Bn+1(t)

)

with Lj
n(t) = Ln(t) · e−λ̄nmn(Tn−t) · (1 +mn)j , v2

j (t) = (
∫ Tn

t
‖γk(u)‖2du+

js2n)/Tn and the Black formula [3], BC(F, T,K, σ2, b), with forward price F ,
maturity T , strike K, volatility parameter σ, and discount factor b. Taking fn log-
Laplace results in caplets priced by formulas of Kou [17].

We consider a slight variation of the special case above to obtain a stationary
parameterization. Each forward rate evolves under its own forward measure as in
(13), with fn(t) = fn+1−η(t), so that the distribution of jump sizes depends on
the number of tenor dates to maturity, and λ̄n(t) = λ̄n+1−η(t). Coefficients remain
constant between tenor dates. We take fn to be lognormal with

∫ ∞
0 yfn(y)dy =

1 +mn. We complete the stationary specification by taking In(t) to be dependent
on time to maturity,

In(t) = (n+ 1 − η(t), n+ 2 − η(t), . . . ,M). (16)

With this choice, the rate that will mature next, Lη(t), is sensitive to all M marked
point processes, and if some rate Lk jumps then all rates maturing earlier than
Tk also jump. If we further require that γn(t) depend on n and t only through
n + 1 − η(t), then a consequence of this stationary specification is that all rates
follow, under their respective forward measures and for a fixed distance to their
own maturities, the same stochastic differential equation.

This specification is meaningful only if the intensities νi(y, t) defined by (15)
are all nonnegative and this imposes parameter restrictions. Applying the stationary
parameterization to (15), we get

νi(y, t) =
i+η(t)−1∏

j=η(t)

1 + δyLj(t−)
1 + δLj(t−)

[λ̄ifi(y)

−λ̄i+1fi+1(y)(
1 + δyLi+η(t)(t−)
1 + δLi+η(t)(t−)

)]. (17)

In the lognormal case with fn having the density of exp(N(an, s
2
n)), for the νi(y, t)

to be nonnegative it suffices to have

log
(
sn+1

sn

)
− 1

2
z2

(
1
s2n

− 1
s2n+1

)
+ z

(
an

s2n
− an+1

s2n+1

)

−1
2

(
a2

n

s2n
− a2

n+1

s2n+1

)
> log

(
λ̄n+1

λ̄n

)
+ max(0, z). (18)
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We return now to the specification of the model under the spot martingale
measure. The jump component is defined by (14), (16), and (17). Imposing these
on Theorem 3.1 of Glasserman and Kou [8], the dynamics of the rates under the
spot martingale measure become

dLk(t)
Lk(t−)

= [−λ̄k+1−η(t)mk+1−η(t)

+
k∑

j=η

δγk(t)γj(t)�Lj(t−)
1 + δLj(t−)

]dt+ γk(t) dW (t)

+d[
M∑

i=k+1−η

N(i)(t)∑
j=1

(Y (i)
j − 1)] (19)

with N (i) the counting process for the ith MPP, which has intensity νi as in (17).
Using Proposition 3.1, we can construct this model from a Brownian motion

and Poisson random measure. Lognormal densities fn are of particular interest, but
the following holds more generally:

Proposition 4.1 Let p(dy × du, dt) be a Poisson random measure on (0,∞) ×
(0, 1) × [0,∞) with intensity λ0f(y). Let f1 have finite first moment m1 + 1. The
model defined by (14), (16), (17) and (19) can be written as

dLk(t)
Lk(t−)

= [−λ̄k+1−η(t)mk+1−η(t)

+
k∑

j=η(t)

δγk(t)γj(t)�Lj(t−)
1 + δLj(t−)

]dt+ γk(t)dW (t)

+
∫ ∞

0

∫ 1

0
(y − 1)

M∑
i=k+1−η(t)

θi(y, u, L(t−), t)p(dy × du, dt)(20)

where

θi (y, u, L(t−), t) =




1,
∑i−1

j=1 νj(y, L1, . . . , LM , t) ≤ u f(y)λ0

<
∑i

j=1 νj(y, L1, . . . , LM , t);
0, otherwise

(21)

with νi as in (17), λ0 = λ̄1(2 +m1) and f(y) = f1(y)+yf1(y)
2+m1

Proof We need to check that (6) holds with r = M and with λ0 and f(y) as given
in the statement of the proposition. From (17), we get

M∑
i=1

νi(y, z1, . . . , zM , t) =
1 + δyz1
1 + δz1

λ̄1f1(y).
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with f1(y) having finite first moment, yf1(y) is proportional to another density
f∗(y), the normalization factor being

∫ ∞
0 yf1(y)dy = 1+m1. (If f1 is lognormal,

f∗ is too.) Now,

1 + δyz1
1 + δz1

λ̄1f1(y) = λ̄1

(
f1(y)

1 + δz1
+
δz1(1 +m1)f∗(y)

1 + δz1

)

< λ̄1(f1(y) + (1 +m1)f∗(y)) = λ0f(y),

the inequality following from the fact that z1 > 0. 
�
This is the class of models we use to develop, test, and analyze numerical proce-
dures. A convenient feature of these models is the availability of easily computed
caplet prices for comparison. It should become clear that similar methods apply
more generally to intensities satisfying (6).

4.2 Thinning

Through (21), Proposition 4.1 gives an explicit specification of the thinning pro-
cedure and identifies a Poisson intensity large enough to dominate the sum of the
intensities of the MPPs in the original model. But the notation in (21) obscures the
simplicity of the procedure so we supplement it with a more intuitive description.

For the construction in Proposition 4.1, we begin by generating points of a
Poisson process with arrival rate λ0; these are the potential jump times of the
forward LIBOR rates. At each Poisson point, we generate a mark from the density
f in the proposition. Writing

f(y) =
(

1
2 +m1

)
f1(y) +

(
1 +m1

2 +m1

)
1

1 +m1
yf1(y)

makes it evident that f(y) is a mixture of two densities: with probability 1/(2+m1)
we generate the mark from f1(y) and with probability (1 + m1)/(2 + m1) we
generate it from yf1(y)/(1 +m1), both of which are lognormal densities.

The next step is to decide which forward rates (if any) will jump. In (21) we
determine which MPP jumps and then (20) translates this into jumps in forward
rates. The implementation proceeds as follows. Using (17) and the realized mark
y, we compute the partial sums Si =

∑i
j=1 νj , i = 1, . . . ,M . Next, we sample u

uniformly from (0, 1). If SM < uf(y)λ0, all rates remain unchanged. If Si−1 <
uf(y)λ0 < Si then the ith MPP is identified as having a point at the current time
and, from (16), all rates maturing earlier than Tη+i jump. The actual jump sizes are
given by (20) which for a jumping rate reduces to

Lk(t) = Lk(t−) + Lk(t−)(y − 1) = Lk(t−) y.

Forward rates maturing at Tη+i and later remain unchanged. Because of (16), this
construction is equivalent to having the rate closest to maturityLη accept the Poisson
jump at t with probability

∑
i∈Iη

νi(y, t)/λ0f(y) =
1 + yδLη

1 + δLη

λ̄1f1(y)
λ0f(y)

;
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and then, conditional on Lη+j jumping, having Lη+j+1 jump with probability

∑
i∈Iη+j+1

νi(y, t)

/ ∑
i∈Iη+j

νi(y, t) =
1 + yδLη+j+1

1 + δLη+j+1

λ̄j+2fj+2(y)
λ̄j+1fj+1(y)

. (22)

This sequential thinning gives each LIBOR rate the correct arrival rate of jumps and
the presence of the densities fi in the acceptance probabilities gives each LIBOR
rate the correct distribution of jump magnitudes conditional on a jump.

Choosing a larger dominating intensityλ0 would have no effect on the law of the
process but would be computationally inefficient because it would result in a higher
frequency of rejected jumps. With this in mind, we describe a slight modification
of the procedure that results in fewer rejections.

The total intensity of jumps in Lη at time t is

∫ ∞

0

∑
i∈Iη

νi(y, t)dy =
∫ ∞

0

1 + yδLη

1 + δLη
λ̄1f1(y)dy

= λ̄1

(
1

1 + δLη
+
δLη(1 +m1)

1 + δLη

)
(23)

≤ λ̄1(1 +m+
1 ), m+

1 = max(0,m1),

which is typically smaller than λ0; we therefore generate Poisson arrivals at the
rate λ̄1(1 + m+

1 ). At each point of this Poisson process the rate Lη jumps with
probability

1 + δLη(1 +m1)
(1 + δLη)(1 +m+

1 )
with mark from

(1 + yδLη)f1(y)
1 + δLη(1 +m1)

,

which is again a mixture of two lognormal densities but now with state-dependent
weights. As before, rates maturing later than Tη jump with conditional probabilites
(22). The advantage of this method lies in its use of the current level of Lη in
generating potential marks, which allows a smaller dominating Poisson rate and a
greater frequency of acceptance.

In this construction, the fact that yf(y) is (up to a normalization constant) a
lognormal density whenever f is a lognormal density turns out to be convenient. In
Kou’s [17] model, f would be an asymmetric log-Laplace density and yf(y) would
again belong to the same family (after normalization). Indeed, if f is the density
of Y and log Y belongs to an exponential family then (after normalization) yf(y)
belongs to the same exponential family.

In our numerical procedures we combine the thinning construction of the jumps
with discretization methods for the diffusion terms. In addition to direct simulation
of the forward rates we will investigate methods based on other choices of variables.
The dynamics of Vk = log(Lk) are easily derived from those of Lk. The dynamics
of the discounted bonds, when the rates evolve as in (20), are given by Theorem
3.1. Minor algebra involving (17) and (2) leads to the following simpler form for
the discounted bond dynamics:
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dDn(t)
Dn(t−)

=
n−1∑

k=η(t)

(
Dk+1(t−)
Dk(t−)

− 1)[−λ̄k+1−η(t)mk+1−η(t)dt+ γk(t)dW ]

+
∫ ∞

0

∫ 1

0




n∏

j=η

Dj(t−)

Dj(t−) + (Dj(t−) − Dj+1(t−))
∑M

i=j+1−η(t)(y − 1)θi(y, u, L(D), t)
− 1





p(dy × du, dt). (24)

The functions θi are as in (21), where Lk(D) = 1
δ

(
Dk

Dk+1
− 1

)
.

4.3 Parameter specification

We are interested in testing numerical procedures in plausible scenarios so we turn
our attention to the identification of interesting sets of parameters {sn, an, λ̄n}
satisfying (18). First, notice that (18) implies sn+1 < sn for the quadratic term
coefficient to be positive. Next we recall that

∫ ∞
0 x fn(x) dx = exp(an + 1

2s
2
n) ,

is the expected (multiplicative) jump size under a forward measure. To produce a
downward sloping skew in implied volatility (typical of market data) we take an

negative. We also impose the condition that the probability of a 20% jump (upwards
or downwards) on any forward rate, conditional on a jump in the rate, is less than
0.2 . This is a somewhat arbitrary but reasonable cutoff in the physical measure and
should be reasonable in the martingale measures. These considerations lead us to
the following choice of parameters, which are consistent with (18):

A : {sn+1 = 0.9sn, s1 = 0.1, an = −0.1, λ̄n+1 = 0.9λ̄n, λ̄1 = 0.5} (25)

B : {sn+1 = 0.9sn, s1 = 0.1, an = −0.1, λ̄n+1 = 0.9λ̄n, λ̄1 = 5.0}. (26)

This is by no means intended as an exhaustive exploration of permissible parame-
ters, but simply a particular specification for computational and testing purposes.

Among the reasons that motivate the inclusion of jumps in modeling interest
rates is the ability to fit a volatility skew. To illustrate, we computed prices and
(Black) implied volatilities of caplets maturing at T = 2 years, with all initial rates
at 6%, γ = 5%, and parameter set B. As the strike increases from 3% to 9%, the
implied volatility decreases from 0.30 to 0.24.

5 Discretization schemes and implementation

5.1 General treatment

The models (20) and (24) are sets of coupled nonlinear stochastic differential equa-
tions. There is no way of generating exact sample paths for these models, nor do
there generally exist formulas for expectations of functions of the paths as required
for option pricing. Thus, we turn our efforts to the solution of discretized versions
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of (20) and (24). We introduce first a general formulation to explain how we han-
dle the combination of jumps and diffusion. Consider the M -dimensional process
X(t), t ∈ [0, T ] that follows

dX(t) = ã(X(t)) dt+ b(X(t)) dW (t) +
∫

E

c(X(t), z)p(dz, dt) (27)

where p(dz, dt) is a Poisson random measure on E × [0, T ] with intensity λ0 h(z)
and vector marks z distributed as h(z). For simplicity, we take W to be a scalar
Brownian motion, though the schemes can be easily generalized to the multifac-
tor case. The deterministic functions ã, b, and c are M -dimensional vectors with
components ãj , bj , and cj . An explicit time-dependence in the coefficients of (27)
could be accommodated by including time as a component of the vector X(t).

We construct approximate solutions to models of the form (27) at a discrete set
of times {τi}. This set is the superposition of the random jump times of a Pois-
son process on [0, TM ] and a deterministic grid that includes all maturity dates
T1, . . . , TM . The random Poisson jump times can be computed without any knowl-
edge of the realized path of (27); this is the main advantage of formulating the MPP
construction through thinning of a Poisson random measure.

Mikulevicius and Platen [20] (see also [18,25,26]) introduced explicit schemes
that generate approximate solutions Y (τi) of (27) on the grid points τi. We briefly
review the schemes before applying them to financial models. A scheme {Y (τi)}
is said to have weak order of convergence ξ if for all sufficiently small ε

|E(g(X(TM ))) − E(g(Y (TM )))| ≤ constant · εξ

with ε the maximum step size in the deterministic grid and g ranging over a class
of functions, such as those with 2(ξ + 1) polynomially bounded derivatives (see
p.327 of Kloeden and Platen [16]). Among the simplest schemes is a stochastic
Taylor approximation of order one, also called an Euler scheme. The vector Y (τi)
is iteratively computed from the initial condition Y (0) using

Y (τ−
i+1) = Y (τi) + f0(Y (τi))(τi+1 − τi) + f1(Y (τi))(Wτi+1 −Wτi), (28)

Y (τi+1) = Y (τ−
i+1) +

∫
E

c(Y (τ−
i+1), z)p(dz, τi+1) (29)

f0(Y (τi)) = ã(Y (τi)) and f1(Y (τi)) = b(Y (τi)). (30)

At each grid point, (29) computes the magnitude of a jump exactly, conditional on
Y (τi+1−), if τi+1 is indeed a point of the Poisson random measure (rather than
one of the deterministic grid points). Otherwise, the jump term is zero.

The Euler (or higher order) scheme can also be applied to log(X(t)), i.e.,
with Y (τi) defined as the exponential of a discrete solution of log(X(t)). This is
potentially helpful if the coefficients ã, b, and c are approximately proportional to
X(t). If ã, b, and c are linear functions ofX(t), this choice of discretization variable
gives the exact solution of the model (27) while (28)-(29) does not.

Next we present the generalization of the Milstein [21] scheme proposed by
Mikulevicius and Platen [20], a stochastic Taylor approximation of order two. As
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in the first-order scheme, jump magnitudes are computed exactly conditional on
the state of the system at τ−

i+1 and the diffusion is approximated, though more
accurately now. The scheme for the continuous part of the path is,

Y (τ−
i+1) = Y (τi) + f0(Y (τi))(τi+1 − τi)

+f1(Y (τi))Zi + f00(Y (τi))
1
2
(τi+1 − τi)2 + f10(Y (τi))Ui

+f01(Y (τi))(Zi(τi+1 − τi) − Ui) + f11(Y (τi))
1
2
(Z2

i − (τi+1 − τi)) (31)

where Ui =
∫ τi+1

τi

∫ s2

τi
dWs1ds2 ∼ N(0, 1

3 (τi+1 − τi)) and Zi =
∫ τi+1

τi
dWs ∼

N(0, (τi+1 − τi)) with EUiZi = (τi+1 − τi)2 are sampled without error from
normal distributions. The updating of the rates at a jump time is as in (29). The
M -dimensional functions {f0, f1, f00, f10, f01, f11} arise in the truncation of the
stochastic (Ito calculus) Taylor expansion. The first order coefficients {f0, f1} are
as in (30). Writing ∂j for a partial derivative with respect to Xj , the others are

f00(Y ) =
M∑

j=1

ãj(Y )∂j ã(Y ) +
1
2

M∑
j=1

M∑
k=1

bj(Y )bk(Y )∂jkã(Y ),

f11(Y ) =
M∑

j=1

bj(Y )∂jb(Y ),

f10(Y ) =
M∑

j=1

bj(Y )∂j ã(Y ),

f01(Y ) =
M∑

j=1

ãj(Y )∂jb(Y ) +
1
2

M∑
j=1

M∑
k=1

bj(Y )bk(Y )∂jkb(Y ). (32)

5.2 Discretization of tractable models

We apply these schemes to the forward rates (20), the logarithms of the forward
rates, and the discounted bonds (24). For brevity, in this section we detail only the
schemes based on the logarithm of the forward rates, which, as it will be clear in
Sect. 7, is the choice of variable that minimizes discretization bias. The derivation of
schemes based on rates and bonds is straightforward, based on the general treatment
in Sect. 5.1 and the corresponding continuous time dynamics for each choice of
variable-rates, log rates, or discounted bonds.

We discuss the jump step explicitly only for the Euler scheme because its cal-
culation does not entail discretization. Furthermore, the choice of variables affects
only the approximation of the continuous part of the model; jumps are processed
exactly regardless of the choice of variables.

To lighten notation we write η for η(t) and to simplify the setting we assume that
the γk are constant. We discretize the logarithms of the forward rates, applying the
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Euler scheme and generalized Milstein scheme to the log rates and then recovering
the rates by exponentiating. Set

âk(τi) = −λ̄k+1−ηmk+1−η − 1
2
γ2

k + Ck(τi).

The first order scheme for the logarithms of rates leads to

L̂k(τ−
i+1) = L̂k(τi)exp{âk(τi)(τi+1 − τi) + γk(Wτi+1 −Wτi

)},
L̂k(τi+1) = L̂k(τ−

i+1) (33)
1 +

∫ ∞

0

∫ 1

0
(y − 1)

M∑
i=k+1−η

θj(y, u, L̂(τ−
i+1), τ

−
i+1)) p(dy × du, τi+1)


 .

The generation of y and calculation of the thinning functions θj is exactly as de-
scribed in Sect. 4.2. In particular, y is drawn from a mixture of two lognormal
densities and we then identify, using (21) and a uniformly distributed u, which
thinning function θi equals 1 (if any). Then the integral in (33) evaluates to y− 1 if
i ∈ {k + 1 − η, . . . ,M} and 0 otherwise. The actual jump increment in each rate
is the value of this integral times the rate just before the jump. In the case of bonds,
the jump magnitude is not just proportional to y − 1 but a more complex function
because many forward rates contribute to the price of a single bond.

Applying the second order scheme to the logarithms of the rates we get, for the
continuous part,

L̂k(τ−
i+1) = L̂k(τi)exp{ak(τi)(τi+1 − τi) + γk(Wτi+1 −Wτi)

+
k∑

j=η

δγ2
j γkL̂j(τi)

(1 + δL̂j(τi))2
Ui

+
k∑

j=η

δγjγkL̂j(τi)
(1 + δL̂j(τi))2

[aj(τi) +
1
2
γ2

j

1 − δL̂j(τi)
1 + δL̂j(τi)

]
1
2
(τi+1 − τi)2},

and the updating at a jump time is as in (33). The implementation is simplified by
the fact that the coefficients for L̂k involve sums of the form

∑k
η . Therefore, each

of the sums needed to update L̂k has just one more term than the corresponding
sum needed to update L̂k−1. So, at each step, the rates are updated in increasing
order of maturity. The updating of the diffusion and drift can be implemented in
less than ten lines of code in all schemes. Similar discretization methods should be
applicable to the swap rate models in [8]. However, we do not consider that case
explicitly here.

6 Convergence

We turn now to the issue of convergence of the discretization schemes, working
within the general framework of a process X(t), t ∈ [0, T ] as in (27). Recall that
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p(dz, dt) in (27) is a Poisson random measure onE× [0, T ] with intensity λ0 h(z)
and vector marks z distributed as h(z). Define

a(y) = ã(y) +
∫

E

c(y, z)h(z)λ0 dz

so the dynamics can be written as

dX(t) = a(X(t)) dt+ b(X(t)) dW +
∫

E

c(X(t), z) q(dz, dt)

where q(dz, dt) = p(dz, dt) − h(z)λ0 dz is a Poisson martingale measure on
E× [0, T ]. In the applications we are considering, z ∈ [0,∞)×(0, 1). We consider
the problem of calculating E[g(X(T ))] for some real-valued g which we call the
payoff function.

As mentioned in Sect. 5, Mikulevicius and Platen [20] introduced a hierarchy
of schemes which, under regularity conditions on a, b, c and the payoff function
g, are shown to have arbitrarily high order of weak convergence. In particular, the
Euler scheme converges weakly with order one and the Milstein scheme with order
two. But the continuous-time models we are considering violate their hypotheses
in an important way: the thinning procedure at the heart of our construction makes
the function c discontinuous, whereas the analysis in Mikulevicius and Platen [20]
requires that this function be several times continuously differentiable. We therefore
present an alternative convergence result that allows for discontinuous c, though it
imposes stronger requirements on g.

LetBξ(C) be the class of 2(ξ+1)-times continuously differentiable real-valued
functions for which the function itself and its partial derivatives up to order 2(ξ+1)
are uniformly bounded by a constant C. We will need to assume that the payoff g
is in some Bξ(G). Boundedness generally applies to the payoff of a put or floor,
though not to a call or cap. The smoothness required is restrictive, but cannot be
easily avoided; indeed, the results of Mikulevicius and Platen [20] and nearly all of
the literature on the numerical solution of stochastic differential equations requires
stronger smoothness conditions than one would like for option pricing. These types
of results still provide useful information concerning the level of accuracy one can
expect with alternative methods, and these theoretical guides can and should be
supplemented with numerical experiments.

For bounded ψ : �M → � let

φ(x) =
∫

E

ψ(x+ c(x, z))h(z) dz, (34)

and let φ̄(x) =
∫

E
(x+ c(x, z))h(z) dz.

Theorem 6.1 Fix ξ ∈ {1, 2}. Let the payoff function g : �M → � be in Bξ(G)
for some G and let {X(t), t ∈ [0, T ]} be as in (27). We assume:

(i) φ̄(x) is 2(ξ + 1)-times continuously differentiable with uniformly bounded
derivatives;

(ii) there is a constant K such that if ψ ∈ Bξ(Ψ) for some Ψ then φ(x) ∈
Bξ(KΨ) in (34);
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(iii) a and b are 2(ξ+1)-times continuously differentiable with uniformly bounded
derivatives;

(iv) there is a constantK2 such that any function f ∈ Sξ satisfies |f(y)| ≤ K2(1+
‖y‖), with S1 = {f0, f1} as in (30) and S2 = {f0, f1, f00, f10, f01, f11} as
in (32).

Then the approximation (29) has weak convergence order one and the approxima-
tion (31) has weak convergence order two.

Hypotheses (i) and (ii) replace the assumption in Theorem 3.3 of Mikulevicius
and Platen [20] that c is 2(ξ + 1)−times continuously differentiable with bounded
derivatives. The result follows from the proof of Theorem 3.3 of Mikulevicius and
Platen [20] once we establish that two key properties used in their proof hold in our
setting as well: the existence of a stochastic Taylor formula and smoothness of the
solution of a backward Kolmogorov equation. Details of the proof of Theorem 6.1
are in [9]. The proof holds, in fact, for the entire hierarchy of schemes proposed in
Mikulevicius and Platen [20], which have arbitrarily high orders of convergence.
Schemes of order higher than two are constructed using the functions f in Sξ which
are defined in a recursive way in [20]. We have written explicitly the first and second
order schemes only. Higher order schemes can be somewhat cumbersome to write
out explicitly and to implement.

The conditions of Theorem 6.1 are satisfied for both first and second order
schemes applied to the dynamics of the log rates. (The verification entails straight-
forward but lengthy calculations of derivatives and bounds and is therefore omitted.)
More precisely, the conditions are satisfied within each accrual period [Ti, Ti+1].
Discontinuities in the coefficients at the dates Ti are inherent to the model because
of the presence of sums and products whose range begins at η(t) and the fact that η
increases by one at each tenor date. While it may be possible to choose parameters
to interpolate smoothly at the Ti, in practice these types of models are typically
calibrated to market data with piecewise constant coefficients. It therefore seems
preferable to think of the model as governed by a separate stochastic differential
equation over each accrual period, with the terminal value over [Ti−1, Ti] deter-
mining the initial condition over [Ti, Ti+1]. This issue is by no means the result of
introducing jumps—the same issue arises in pure diffusion market models. In the
next section we supplement the theoretical properties of discretization schemes with
numerical experiments and these indicate that working with log rates has practical
as well as theoretical advantages.

7 Numerical results

We present numerical results generated with the discretization schemes introduced
in Sect. 5. These experiments have two purposes. First, we quantify the magnitude
of the biases in computed prices arising from time-discretization. Second, we assess
the computing demands of alternative schemes. The two issues are related and are
heavily dependent on the complexity of the underlying continuous-time model. The
schemes we study and their abbreviations are as follows:
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Variable rate rate log rate log rate bond log bond
Order 1 2 1 2 1 1
Name r1 r2 lr1 lr2 b1 lb1

In addition, it is often possible to achieve a higher convergence order from a
first order scheme by using Richardson extrapolation as in Sect. 15.3 of Kloeden
and Platen [16], Talay and Tubaro [28], and Protter and Talay [26]. Suppose g(L̂h

T )
and g(L̂h/N

T ) are calculated using time steps h and h/N for some integer N . If the
leading term in their biases are proportional to the time step it can be eliminated by
combining them in the extrapolated estimate

Êxpt =
N

N − 1
g(L̂h/N

T ) − 1
N − 1

g(L̂h
T ).

This can achieve weak convergence order two, as shown in Talay and Tubaro [28]
and Protter and Talay [26].

7.1 Biases

In our first experiment we calculate discounted bond prices by simulation under
the spot martingale measure. In the absence of arbitrage, discounted bond prices
must be martingales, therefore

E [Dk+1(Tk+1)] = E


 k∏

j=0

1
1 + δLj(Tj)


 =

k∏
j=0

1
1 + δLj(0)

, k = 1, . . . ,M.

(35)
The rightmost expression can be calculated from the initial term structure and either
of the expectations on the left can be estimated by simulation. As a check on the
accuracy of various schemes, we estimate the relative bias in bond prices – i.e., the
bias in estimating (35) divided by the exact expression on the right. Schemes based
on discretizing the bond dynamics use the leftmost expectation in (35); schemes
based on the rates use the expression in the middle.

In the experiments we take all Lj(0) = 0.06, accrual period δ = 0.5 and
diffusion volatilities γj = 5%. We choose a bond expiring at time T11 = 5.5 years,
which requires simulation of rates L1(t), . . . , L10(t). The jump parameters are as
in (26). We vary the time step in the deterministic grid, but the effective time step
is random because the grid includes all jump times. Thus, the nominal time step
and the Poisson jump intensity determine the actual time steps.

Figure 1 shows estimated relative biases for various schemes and nominal
time steps. The presence of biases means that the discretized model is not strictly
arbitrage-free. As demonstrated in [11], this can be avoided through a change of
discretization variables in the pure diffusion setting; but in the presence of jumps
the dynamics include intensity terms that cannot be discretized exactly, so some
bias in bond prices seems unavoidable. Nevertheless, Fig. 1 indicates that this bias
can be made very small with even a rather coarse time grid by using a second-order
scheme for rates or a first-order scheme for log rates.
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Fig. 1. Bond price biases, T = 5.5
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Fig. 2. Caplet price biases, T = 2 years, jumps parameters set A

We present next estimated relative biases in caplet prices computed under the
spot martingale measure. In order to study biases of the schemes, unbiased caplet
prices are simultaneously obtained by Monte Carlo simulation under the forward
measure associated with each caplet. Under the Tk forward measure, within each
accrual period the drift and diffusion coefficients of Lk are linear functions of Lk

(see (13)). Thus, even a first-order scheme for log rates solves this equation exactly
and gives an unbiased estimator of the price. In practice, simulation would not be
needed for computing caplet prices, but we use the available unbiased prices to test
the quality of the methods.

Figures 2 and 3 show estimated relative biases for caplets maturing in 2 years
and parameter sets A and B in (25)-(26). These jump specifications differ by a
factor of ten in the arrival rate of the jumps, and the biases in Fig. 3 are roughly
ten times those in Fig. 2. Using either a second-order scheme for the rates or any
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Fig. 3. Caplet price biases, T = 2 years, jumps parameters set B
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Fig. 4. Caplet price biases, T = 10 years, jumps parameters set A

scheme for the log rates removes most of the bias at even the coarsest time step;
there do not appear to be appreciable differences among the other methods.

Figures 4 and 5 show biases for caplets maturing in 10 years. By comparing
these with the previous figures we find that the relative bias does not significantly
increase with maturity. Furthermore, closer comparison of Figs. 3 and 5 reveals a
small decrease in the relative bias for the r2 scheme. This is somewhat surprising
but, interestingly, similar behavior appears in the experiments of Andersen and
Andreasen [1]. As in the 2 year caplets, the biases are an order of magnitude
smaller for jump parameters A than for jump parameters B.

In all cases, the smallest biases are achieved by the schemes discretizing the
log rates. This is due to the fact that, even under the spot martingale measure, the
nonlinear term in the drift is one or two orders of magnitude smaller than the linear
term in the drift and diffusion term. This fact is optimally exploited by the lr1 and
lr2 schemes, which give the exact solution in the linear coefficients case. In contrast,
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Fig. 5. Caplet price biases, T = 10 years, jumps parameters set B

schemes using bonds as computing variables are highly nonlinear, as can be seen
from the continuous-time dynamics (24).

7.2 Root mean square error and efficiency

While bias is an important measure of the quality of a scheme, its effect may
become evident only in very long computations. For many practical applications,
where the computing budget is limited, the dominant effect is the estimation error
due to sampling variability. In order to address this issue, we compare the root
mean square error of caplet prices computed under various schemes with a fixed
computing time. The root mean square error RMS is (bias2 + SE2)

1
2 , with SE the

standard error, estimated as the sample standard deviation divided by the square
root of the number of paths. We find empirically that, for a given pricing problem
(number of maturities, jump and diffusion parameters), the standard deviation is
nearly independent of the scheme and time step. However, with a fixed computing
budget the SE still varies across schemes and time steps because the number of
paths that can be completed depends on the time required per path. Thus, faster
schemes and larger time steps are potentially attractive if biases are much smaller
than standard errors. For a theoretical analysis of this tradeoff, see Duffie and Glynn
[7].

Table 1 shows estimated relative RMS errors for the pricing of 2-year caplets
in 1 second of computing time on a 350MHz Pentium II PC. With parameter set A,
several schemes achieve roughly the same RMS, 2%, in one second of computing
time. Schemes lr1, r1, and r2 with time step 0.5 are the most competitive, despite
their large time step. For parameter set B, we know that biases are roughly ten times
larger than for parameter set A. This has an impact on the RMS errors, as in this
case the best schemes are r2 and lr1 which have small biases. The errors range from
5% to 15% so the choice of scheme is important.
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Table 1. Relative RMS errors in caplet pricing. T = 2 years, 1 second computing time

Jump parameters set A Jump parameters set B
Scheme Time step Paths Rel. RMS Scheme Time step Paths Rel. RMS
r1 0.1 10972 0.023 r1 0.1 3773 0.071
r1 0.5 20338 0.020 r1 0.5 4347 0.155
r2 0.5 14345 0.021 r2 0.5 3285 0.054
lr1 0.5 15288 0.020 lr1 0.5 3557 0.052
lr2 0.5 11678 0.023 lr2 0.5 2793 0.059
b1 0.1 6986 0.030 b1 0.1 2590 0.076
b1 0.5 15274 0.023 b1 0.5 3102 0.137
lb1 0.1 5500 0.034 lb1 0.1 2262 0.082
lb1 0.5 13386 0.024 lb1 0.5 2816 0.153

Table 2. Relative RMS errors in caplet pricing. T = 10 years, 1 minute computing time

Jump parameters set A Jump parameters set B
Scheme Time step Paths Rel. RMS Scheme Time step Paths Rel. RMS
r1 0.1 69718 0.012 r1 0.1 22189 0.072
r1 0.5 155440 0.015 r1 0.5 27272 0.165
r2 0.5 107385 0.009 r2 0.5 19672 0.026
lr1 0.5 76433 0.011 lr1 0.5 17065 0.025
lb1 0.1 22758 0.019 lb1 0.1 8207 0.077
lb1 0.5 59820 0.018 lb1 0.5 10016 0.162

Next we consider longer computations. Table 2 shows estimated relative RMS
error for a 10-year caplet and 1 minute of computing time. This is arbitrary; cir-
cumstances may demand faster or allow more accurate pricing. By combining the
information in the tables (essentially the number of paths per unit time) and the bi-
ases of the previous section, it is possible to estimate RMS errors for other budgets.
Errors for parameter set A are roughly 1% for all schemes, though r2 and lr1 are
slightly better than the rest. Errors for parameter set B again reflect the importance
of bias. The best schemes are r2 and lr1, which have RMS around 2%, significantly
smaller than the others.

8 Conclusions

We have developed, analyzed, and tested computational procedures for the nu-
merical solution of LIBOR market models with jumps. To carry this out, we have
first reformulated a term structure model driven by marked point processes with
state-dependent intensities into one driven by a Poisson random measure. This fa-
cilitates the development of discretization schemes because the Poisson random
measure can be simulated without discretization error. Jumps in LIBOR rates are
thinned from the Poisson random measure using state-dependent thinning proba-
bilities. Because of discontinuities inherent to the thinning process, this procedure
falls outside the scope of existing convergence results; we provide a measure of
theoretical support for our method through a result establishing first and second
order convergence of schemes that accommodates thinning but imposes stronger
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conditions on other problem data. The results of numerical experiments indicate
that the most computationally attractive methods are a second-order scheme for
rates and a first-order scheme for log rates.
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