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Efficient Monte Carlo methods
for value-at-risk
by Paul Glasserman, Philip Heidelberger and Perwez Shahabuddin

The calculation of value-at-risk (VAR) for large portfolios of complex derivative
securities presents a tradeoff between speed and accuracy. The fastest methods

rely on simplifying assumptions about changes in underlying risk factors and about
how a portfolio’s value responds to these changes in the risk factors. Greater realism
in measuring changes in portfolio value generally comes at the price of much longer
computing times.

The simplest methods – the “variance-covariance” solution popularized by
RiskMetrics, and the delta-gamma approximations described by Britten-Jones and
Schaefer (1999), Rouvinez (1997) and Wilson 1999) – rely on the assumption that a
portfolio’s value changes linearly or quadratically with changes in market risk
factors. These assumptions limit their accuracy. In contrast, Monte Carlo
simulation is applicable with virtually any model of changes in risk factors and any
mechanism for determining a portfolio’s value in each market scenario. But
revaluing a portfolio in each scenario can present a substantial computational
burden, and this motivates research into ways of improving the efficiency of Monte
Carlo methods for VAR.

Because the computational bottleneck in Monte Carlo estimation of VAR lies in
revaluing a portfolio in each market scenario sampled, accelerating Monte Carlo
requires either speeding up each revaluation or sampling fewer scenarios. In this
article, we discuss methods for reducing the number of revaluations required
through strategic sampling of scenarios. In particular, we review methods developed
in Glasserman, Heidelberger, and Shahabuddin 2000ab – henceforth referred to as
GHS2000a and GHS2000b – that combine importance sampling and stratified
sampling to generate changes in risk factors.

This approach uses the delta-gamma approximation to guide the sampling of
market scenarios. Deltas and gammas are routinely calculated for other purposes so
we assume their availability, without additional computational overhead, as inputs
to the calculation of VAR. We develop sampling methods that are, in a precise sense,
close to optimal when the delta-gamma approximation holds exactly. These methods
remain attractive so long as the delta-gamma approximation contains useful
information about changes in portfolio value, even if the approximation is not
accurate enough to replace simulation entirely. Numerical examples indicate that
the methods can often reduce by a factor of 20–100 or more the number of scenarios
required to achieve a specified precision in estimating a loss probability. Because
this means that the number of portfolio revaluations is also reduced by a factor of
20-100 or more, it results in a very large reduction in the computing time required
for Monte Carlo estimation of VAR.

The rest of this article is organized as follows. The next section provides some
background on Monte Carlo for VAR and on the delta-gamma approximation. After
that, we discuss importance sampling and stratified sampling based on the delta-
gamma approximation. We then discuss the application of these methods when



volatility is included among the risk factors and portfolio “vegas” are available along
with deltas and gammas. Numerical examples are included to illustrate the
methods. Throughout this article we assume that changes in risk factors are
normally distributed. In Glasserman, Heidelberger, and Shahabuddin 2000c, we
develop related methods that apply when changes in risk factors are modeled by
heavy-tailed distributions.

Background on Monte Carlo and delta-gamma
Before discussing the new methods developed in GHS2000a and GHS2000b, we
briefly review basic Monte Carlo estimation of VAR and the delta-gamma
approximation. To give a precise formulation of the problem, we let

S = vector of risk factors
∆t = VAR horizon, (e.g., one day or two weeks)

∆S = change in risk factors over ∆t
L = loss in portfolio value resulting from change ∆S over ∆t

The loss L is the difference between the current value of the portfolio and the
portfolio value at the end of the VAR horizon ∆t if the risk factors move from 
S to S + ∆S.

There are two closely related problems associated with the tail of the distribution
of L. The first is the problem of estimating a loss probability P(L > x) given a loss
threshold x. The second is the inverse problem of finding a quantile xp for which 
P(L > xp) = p, given a probability p. The estimation of VAR is an instance of the
second problem, typically with p = 1% or 5%. However, calculating loss probabilities
is a prerequisite to calculating quantiles so we focus primarily on the first problem.
Given values of P(L > x) for several values of x in the vicinity of xp it is then
straightforward to estimate the quantile itself.

Basic Monte Carlo for VAR
The main steps in a basic Monte Carlo approach to estimating loss probabilities are
as follows:

1. Generate N scenarios by sampling changes in risk factors ∆S(1),...,∆S(N) over
horizon ∆t.

2. Revalue portfolio at end of horizon ∆t in scenarios S + ∆S(1),..., S + ∆S(N);
determine losses L(1),...,L(N) by subtracting revaluation in each scenario from
current portfolio value.

3. Calculate fraction of scenarios in which losses exceed x: N–1 ∑  I(L(i) > x),
where I(L(i) > x) = 1 if L(i) > x and 0 otherwise.

To estimate VAR, the last step can be repeated for multiple values of x; the required
quantiles can then be estimated by, for example, interpolating between the
estimated loss probabilities.
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The first step requires some assumptions about market data. In historical
simulation, the ∆S(i) are the changes observed (or are obtained from the percentage
changes observed) in market data over N past periods of length ∆t. This implicitly
assumes that future changes in risk factors will look like samples from past
changes. Alternatively, a statistical model uses historical data to select a
distribution with estimated parameters to describe future changes. A simple and
widely used assumption is that, conditional on past data, the change ∆S over a short
horizon ∆t is described by a multivariate normal distribution N(0,ΣS). The
conditional covariance matrix ΣS is commonly estimated from past changes (or
returns) using a sample covariance matrix, using an exponentially weighted moving
average, or using a GARCH forecast – see Alexander (1998) or Jorion (1997) for a
discussion of this issue. We will focus primarily on the case of normally distributed
changes in risk factors, but touch on alternative models in our concluding remarks.

Given a covariance matrix ΣS and the assumption of normally distributed changes
in risk factors, it is a simple matter to generate the samples of ∆S required in the
simulation above. We factor the covariance matrix to find a matrix C for which 
CC´ = ΣS (the prime denoting transpose) and then set

∆S = CZ, (1)

where Z is a vector of independent, standard (i.e., mean 0, variance 1) normal
random variables. For example, assuming ΣS is positive definite, Cholesky
factorization produces the unique lower triangular matrix C for which CC´ = ΣS.

The only difficult step in the Monte Carlo algorithm above is the second one –
revaluing the portfolio in each scenario. For a large portfolio of complex derivative
securities, each revaluation may be very time-consuming, with individual
instruments requiring execution of numerical pricing routines or even separate
Monte Carlo pricing estimates. The time required to revalue a portfolio is the
limiting factor in determining the number of scenarios that can be generated.

The delta-gamma approximation
An alternative to full portfolio revaluation is to use an approximation to how
changes in risk factors determine changes in portfolio value. Assuming a linear
relation between risk factors and portfolio value leads to the “variance-covariance”
method associated with RiskMetrics; assuming a quadratic relation leads to the
delta-gamma approximation. In both cases, the approximation makes it possible to
find the loss distribution numerically, without Monte Carlo simulation.

The delta-gamma approximation assumes the availability of (i) the vector δ of first
partial derivatives of portfolio value with respect to the components of the vector S
of risk factors, (ii) the matrix γ of the corresponding second partial derivatives, and
(iii) a scalar θ giving the partial derivative of portfolio value with respect to time.
From these we obtain the Taylor approximation

L ≈ a0 – δ´∆S – ∆S´Γ∆S,

where a0 = –Θ∆t. The derivatives appear with minus signs in this approximation
because the loss L is the negative of the increase in portfolio value.

Through a change of variables and some matrix algebra, we can rewrite this
approximation in the form
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L ≈ a0 + b´Z + Z´Λ Z
≡ a0 + Q, (2)

where Z is a vector of independent standard normal random variables and Λ is a
diagonal matrix,

λ1 0 · · · 0

Λ =
0 λ2 0      

,···
· · ·

···
0 0 · · · λm

with λ1 ≥ λ2 ≥ ···≥ λm the eigenvalues of – Γ∑S. This is accomplished by choosing C
in (1) to satisfy

CC´ = ∑S and –  C´Γ C = Λ. (3)

(Calculation of C will be discussed later.) The vector b in the linear term of (2) is
then given by b´ = –δ´C.

This transformation accomplishes two important simplifications: it replaces the
correlated changes in risk factors ∆S with the uncorrelated elements of Z, and it
diagonalizes the quadratic term in the approximation. The vector ∆S is recovered
from Z through (1), so one may think of the elements of Z as (hypothetical) primitive
underlying risk factors driving the market changes ∆S. Notice that the diagonal
matrix Λ captures information about both the portfolio (through Γ) and the
distribution of risk factors (through ∑S).

With these simplifications it becomes relatively straightforward to find the
characteristic function (Fourier transform) of the delta-gamma approximation –
more precisely, of the quadratic Q in (2). Define

ψ(θ) = ∑   – log(1 – 2θλi)  ; (4)

then E[exp(√–1ωQ)] = exp(ψ(√–1ω)). Transform inversion can now be used to
calculate values of the distribution P(Q < x). In light of (2), the loss distribution can
be approximated using P(L < x) ≈ P(Q < x – a0).

Importance sampling based on the delta-gamma approximation
The main virtue of the delta-gamma approximation is that it can be computed
quickly. However, the accuracy of the approximation may not always be
satisfactory. Monte Carlo simulation is more accurate but much more time-
consuming. Our objective is to use the information contained in the delta-gamma
approximation to accelerate Monte Carlo simulation and thus exploit the best
features of two methods.

The simplest way to use the delta-gamma approximation in a simulation is to
implement it as a control variate In estimating a loss probability P(L > x), this
produces an estimator of the form

∑ I(L(i) > x) – β  ∑ I(Q(i) > x – a0) – P(Q > x – a0)] .
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Here, the L(i) are actual losses calculated in the N simulated scenarios and the Q(i)

are the quadratic approximations (see (2)) computed in the same scenarios. The true
probability P(Q > x – a0) is computed through transform inversion. The term in
square brackets is thus the observed simulation error in the delta-gamma
approximation; this observed error is used to adjust the simulation estimate of the
true portfolio loss. The coefficient β can be chosen to try to minimize the variance of
the combined estimator. Fixing β at 1 should yield most of the benefit of the control
variate and avoids issues that arise in estimating an optimal β.

This method was proposed independently in Cardenas et al. (1999) and
GHS2000a. It can provide reasonable variance reduction in some examples; but as
observed in GHS2000a, its effectiveness diminishes at larger loss thresholds x.
Notice that the control variate method uses the delta-gamma approximation to
adjust the standard estimator “after the fact” – in particular, the scenarios used are
generated in the usual way (i.e., as in our discussion above of basic Monte Carlo). In
contrast, the method we describe next uses the delta-gamma approximation before
any scenarios are generated; it uses the approximation to guide the sampling of
scenarios.

Importance sampling: preliminaries
Through (1), the problem of sampling changes ∆S in market risk factors is
transformed into a problem of sampling the vector Z of underlying normal random
variables. In importance sampling (IS), we change the distribution from which
underlying variables are generated in order to generate more samples from
“important” regions. We will focus on IS methods that change the distribution of Z
from N(0,I) (the standard multivariate normal) to N(µ,∑) (the multivariate normal
with mean vector µ and covariance matrix ∑).

The key identity we need for importance sampling is

P(L > x) = Eµ,∑[l(Z)I(L > x)]. (5)

In subscripting the expression on the right by µ and ∑, we are indicating that the
expectation is taken with Z sampled from N(µ,∑) rather than its original
distribution N(0,I). To correct for this change of distribution, we must weight the
loss indicator I(L > x) by the likelihood ratio

l(Z) =|∑|1/2 e– µ´∑–1µe– [Z´(I–∑–1)Z – 2µ´∑ – 1Z] (6)

which is simply the ratio of the N(0,I) and N(µ,∑) densities evaluated at Z. On both
sides of (5), the loss L is computed from the market changes ∆S which are in turn
calculated from Z through (1). Through (5) we are free to sample Z from any N(µ,∑)
and still obtain an unbiased estimate

l(Z)I(L > x) (7)

of the loss probability.
How should µ and ∑ be chosen to produce an estimator with lower variance (and

thus greater precision)? Since changing µ and ∑ does not change the resulting
expectation, comparing variances is equivalent to comparing second moments. The
second moment of (7) is
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Eµ,∑ [(l(Z)I(L > x))2] = E[l(Z)I(L > x)], (8)

the expectation on the right taken with respect to the original N(0,I) distribution.
protect From this we see that the key to reducing variance is making the likelihood
ratio small when L > x. Equivalently, we would like to choose µ and ∑ to make
scenarios with L > x more likely under N(µ,∑) than under N(0,I).

Using the approximation
Unfortunately, the expression in (6) provides little insight into what choice of µ and
∑ might accomplish this objective. However, we can use the delta-gamma
approximation to get a sense for which scenarios tend to produce large losses and
use this information in the selection of µ and σ.

We can write (2) more explicitly as

L ≈ a0 + ∑
i

biZi + ∑
i
λiZi2

and now ask, what values of Z will tend to make the (approximate) loss expression
large? Inspection of this formula suggests that large losses result from

■ large positive values of Zi for those i with bi > 0;
■ large negative values of Zi for those i with bi < 0;
■ large values of Zi2 for those i with λi > 0.

This describes the regions that should be given greater probability under the IS
distribution than under the original distribution. It suggests that we should

■ increase the mean of Zi for those i with bi > 0;
■ decrease the mean of Zi for those i with bi < 0;
■ increase the variance of Zi for those i with λi > 0;

and perhaps

■ decrease the variance of Zi for those i with λi < 0.

We accomplish this in two steps. We first reduce the choice of µ and ∑ to the choice
of a scalar parameter θ, and then specify the value of this parameter. For any θ > 0
(and θ < 1/(2λ1) if λ1 > 0)

∑(θ) = (I – 2θλ)–1, µ(θ) = θ∑(µθ) b. (9)

With these parameters, Zi becomes normal with mean and variance

µi(θ) =
θ bi

,     σ2i (θ) = 1  
(10)

1 – 2θλi 1 – 2θλi 
,

and the Zi remain independent of each other. Note that with this type of IS, the
sampling distribution of Zi is as suggested; for example, if λi > 0, then the variance
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of Zi is increased, resulting in more samples with large values of Zi2. The key
observation is that with this change of distribution the likelihood ratio (6) collapses
to

l(Z) = e–θ Q +ψ(θ). (11)

Here, ψ is precisely the function introduced in (4) and may be interpreted as a
normalization constant. The remarkable feature of this expression is that the
likelihood ratio – which in general could depend on the entire vector Z, as in (6) –
now has the scalar Q as its only stochastic element. The estimator associated with
this IS distribution is

e –θQ + ψ(θ) I(L > x),

where the Z used to compute L and Q is now generated using (10). It must be
stressed that this estimator is unbiased (in light of (5)) for the exact loss probability
P(L > x), even though it involves the delta-gamma approximation.

Recall from the discussion surrounding (8) that an effective importance sampling
distribution makes the likelihood ratio small in those scenarios for which L > x.
Based on (2), we can expect that when L > x we will often have Q > x – a0; in
particular, Q will typically be large when L is and in this case the likelihood ratio
(11) will indeed tend to be small when L > x.

It remains to specify the parameter θ. A consequence of the specification in (9) is
that

ψ(θ) = Eµ(θ),∑(θ)[Q]. (12)

(In statistical terminology, (9) defines an exponential family of distributions with
cumulant generating function ψ; (12) is a special case of a standard property of
exponential families.) We may paraphrase (12) as stating that the derivative of ψ at
θ gives the expected delta-gamma approximate loss when Z is drawn from N(µ(θ),
∑(θ)). Since our objective is to estimate P(L > x) ≈ P(Q > x – a0), we choose θ to be θx,
the solution to

ψ(θx) = Eµ(θx),∑ (θx)[Q] = x – a0.

If we sample Z from N(µ(θx), ∑(θx)), scenarios in which L > x, which were previously
rare, should now be “typical,” since the expected value of the approximate loss a0 + Q
is now x.

This choice of parameter θ is shown in GHS2000b to minimize an upper bound on
the second moment of the estimator, providing further support for the approach. In
addition, both experimental and theoretical results in GHS2000b indicate that the
effectiveness of the IS procedure is not very sensitive to the choice of θ.
Consequently, we may use a single IS distribution N(µ(θ), ∑(θ)) to estimate the loss
probability P(L > x) for multiple levels of x.

The procedure
We now summarize the importance sampling procedure. We assume the availability
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of the portfolio delta vector (δ) and gamma matrix (Γ), which would also be required
for the delta-gamma approximation.

1. Compute C satisfying (3):
(a) Find any matrix A satisfying AA´ = ∑S (e.g., the Cholesky factor).
(b) Find V, an orthogonal matrix (VV´ = I) whose columns are eigenvectors of 

– A´Γ A and Λ, a diagonal matrix of associated eigenvalues (so – A´Γ A =
VΛV´).

(c) Set C = AV and b = –δ’C.
2. Set θ = θx, the solution to (13).
3. Set ∑(θ) = (I – 2θλ)–1 and µ(θ) = θ∑(θ)b.
4. Simulate:

(a) Generate Z(1),..., Z(N) independently from N(µ(θ), ∑(θ)).
(b) Set ∆S(i) = CZ(i), i = 1,...,N.
(c) Calculate portfolio losses L(i) resulting from scenarios ∆S(i), i = 1,...,N.
(d) Calculate Q(i) for each Z(i), i = 1,..., N, as in (2).
(e) Return estimate

∑ e–θ Q(i) + ψ(θ)I(L(i) > x). (14)

An important feature of this method is that it can be wrapped around an existing
implementation of Monte Carlo. The core of the algorithm – the calculation of
portfolio losses in each scenario – is exactly the same here as in the basic Monte
Carlo method presented earlier in this article. After some preprocessing steps 1–3,
the importance sampling algorithm differs only in how it generates scenarios and in
how it weights scenarios in (14). As with the basic Monte Carlo method, (14) could
easily be calculated for multiple values of the loss threshold x, all based on a single
value of θ. If we plan to estimate loss probabilities at large thresholds x1 < x2 < ... <
xk, we would probably fix θ at θx1.

A theoretical analysis of this IS method is reported in GHS2000b. We show there
that the method is provably effective, in the sense of substantially reducing
variance, as either the loss threshold or the number of risk factors increase. These
results are established under the hypothesis that the relation L = a0 + Q holds
exactly rather than merely as an approximation. We interpret these results as
evidence that the method should remain effective whenever a0 + Q provides a
reasonable approximation to L, even if it is not sufficiently accurate to replace
simulation altogether. The importance of reducing variance in the simulation
estimate is that it reduces the number of scenarios required to achieve a desired
precision. This can result in substantial reductions in computing times, because
revaluing a portfolio in each scenario is the most time-consuming step in estimating
loss probabilities through Monte Carlo.

Stratified sampling
Inspection of (14) suggests that to further reduce variance we should reduce
variability in the sampling of the quadratic approximation Q. Indeed, if we had 
L = a0 + Q, then eliminating the variance due to Q would eliminate all the variance
in (14). If a0 + Q only approximates L, reducing the variability from Q should
nevertheless result in further overall variance reduction.
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We implement this idea through stratified sampling of Q. This mechanism is best
explained through reference to Figure 1. The figure shows a hypothetical density for
Q. (It is in fact the chi-square density with five degrees of freedom and thus a special
case of the density of Q in (2).) More precisely, this should be interpreted as the
density of Q under the importance sampling distribution, which is to say with Z
drawn from N(µ(θ), ∑(θ)). The Q(i) used in the algorithm above are independent
samples from the density of Q under the IS distribution.

In stratified sampling, rather than drawing the Q(i) randomly and independently
we ensure that fixed fractions of the samples fall within specified ranges. For
example, the vertical lines in Figure 1 define eight equiprobable bins or strata: the
area under the curve between each consecutive pair of lines is 1/8. If we generate
samples Q(i) independently, we cannot expect that exactly 1/8th of the samples will
fall in each of the strata; because the sampling mechanism is random, some strata
will end up with too many samples, some with too few. In contrast, using stratified
sampling we ensure that exactly 1/8th of the generated samples do indeed fall in
each of the strata. In practice, we typically use 40 equiprobable strata and ensure
that 1/40th of the samples fall within each stratum. With 40 strata, much of the
variance in the estimated loss probability due to sampling variability in Q is
eliminated.

The first step in implementing this method is to define the strata. In order to
define k equiprobable strata, we need to find points y1,..., yk–1 such that

Pθ( ≤ yi) = i/k, i = 1,..., k – 1.

We have subscripted the probability by θ to emphasize that this should hold under
the IS distribution. Under the IS distribution, Q remains a quadratic function in
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normal random variables, so the transform analysis outlined in our discussion of the
delta-gamma approximation (after (4)) is still applicable. Using this method we can
solve for the required yi. The intervals (yi, yi + 1), i = 0,..., k – 1, (y0 ≡ – ∞, yk ≡ ∞) then
form k equiprobable bins. As discussed in GHS2000b, one could just as easily define
strata with any other fixed set of probabilities, but here we focus on the case of equal
probabilities for simplicity.

Having defined the strata, it remains to define a sampling mechanism under
which an equal fraction of the Q(i) generated fall in each stratum. For this we use a
simple if somewhat crude approach. Suppose we want to generate n samples from
each stratum for a total sample size of nk. We generate a large number of
independent samples Z from N(µ(θ), ∑(θ)); for each Z generated we evaluate Q and
check which stratum it falls in; if we have not already generated n samples for that
stratum, we keep the Z generated, otherwise we discard it. We repeat this procedure
until we have the required number of samples for each stratum.

Let Q(ij) denote the jth sample from stratum i and let Z(ij) denote the draw from
N(µ(θ), ∑(θ)) that produced this sample. From Z(ij) we get ∆S(ij) = CZ(ij) as before and
compute the corresponding portfolio loss L(ij). The resulting estimator is

∑ ∑ e– θ Q(ij) + ψ(θ) I(L(ij) > x).

A bit more generally, if we define strata with probabilities p1,..., pk and allocate ni

samples to stratum i, i = 1,..., k, the estimator is

∑ ∑ e–θ Q(ij) + ψ (θ) I(L(ij )> x).

This does not require that the allocations ni be proportional to the stratum
probabilities pi. Various strategies for choosing the allocations {ni} are investigated
in Glasserman et al. (1999). A very simple form of stratified sampling based on the
delta-gamma approximation – using just two strata, proportional allocation, and no
importance sampling – was proposed independently in Cardenas et al. (1999).

Numerical illustration
Extensive numerical experiments using control variates and a variety of importance
sampling and stratified sampling methods have been reported in Glasserman et al.
(1999, 2000ab).

Here we reproduce one table of results from GHS2000b for illustration.
The results in Table 1 apply to test portfolios defined in GHS2000b, which should

be consulted for detailed descriptions. Briefly, each of portfolios (a.1)–(a.14) consists
of 150–1,000 standard calls and puts distributed over 10 underlying assets; (a.15)
has 20 options on each of 100 underlying assets. The options in (a.1)–(a.3) have
expirations of 0.5 years; those in (a.4)–(a.6) have expirations of 0.1 years and thus
comparatively larger gammas. Portfolios (a.7)–(a.10) are delta hedged. The
underlying assets in (a.11)–(a.15) are correlated whereas those in (a.1)–(a.10) are
not. All results are based on a VAR horizon ∆t of 10 days.

The second column of Table 1 specifies the loss threshold x as xstd standard
deviations of Q above the mean of a0 + Q. The associated portfolio loss probabilities
(all close to 1 percent) are indicated in the third column.
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The last two columns of the table are estimates of the ratio of variances in the
estimated loss probabilities using standard Monte Carlo and using importance
sampling (IS) or importance sampling with stratification (ISS-Q). (The ISS-Q
results use 40 equiprobable strata.) These variance ratios indicate how many times
more scenarios would have to be generated using standard Monte Carlo to achieve
the same precision obtained with the indicated variance reduction technique. Since
the bulk of the computational effort in using Monte Carlo with complex portfolios
lies in revaluing the portfolio in each scenario, these variance ratios are estimates
of the computational speed-up obtained through variance reduction. The results
clearly indicate the potential for enormous speed-ups using the methods reviewed
here.

Further results and details of the experiments can be found in GHS2000b. The
only test portfolios for which we have found results substantially inferior to those in
Table 1 are portfolios of digital and barrier options combined to achieve a net delta
of 0. Given the nature of these portfolios, it is perhaps unsurprising that a Taylor
approximation turns out to be not very informative.

Table 1: Variance reduction estimates for test portfolios
Variance ratios

Portfolio xstd P(L > x) IS ISS-Q
(a.1) 2.5 1.0% 30 270
(a.2) 1.95 1.0% 43 260
(a.3) 2.3 1.0% 37 327
(a.4) 2.6 1.1% 22 70
(a.5) 1.69 1.0% 43 65
(a.6) 2.3 0.9% 34 132
(a.7) 2.8 1.1% 17 31
(a.8) 1.8 1.1% 52 124
(a.9) 2.8 1.1% 16 28
(a.10) 2.0 1.1% 19 34
(a.11) 3.2 1.1% 18 124
(a.12) 1.02 1.0% 28 48
(a.13) 2.5 1.1% 15 65
(a.14) 1.65 1.1% 14 45
(a.15) 2.65 1.0% 18 28

Including volatility as a risk factor
Thus far, we have interpreted S as a vector of market prices and rates. However, S
could also include risk factors associated with levels of volatility rather than prices
or rates. The methodology above continues to apply.

We develop this idea through a simple formulation of the problem. Our intent is
to illustrate how volatility can be incorporated rather than to propose a specific
model. We interpret some of the components of S as asset prices and some as
implied volatilities for those assets. For simplicity, we do not incorporate a
volatility skew or smile: we assume all options in a portfolio on the same underlying
asset have the same implied volatility. In contrast to the previous setting, we now
allow the level of implied volatility to change over the VAR horizon. We assume
that correlations among prices, among implied volatilities, and between prices and



implied volatilities are unchanged over the VAR horizon. We impose this
assumption solely for notational simplicity.

Partition the vector S as (S
~

, σ~) with σ~i the implied volatility of S
~

i. We assume that
the changes (∆S

~
, ∆σ~) over the VAR horizon are conditionally normally distributed,

given the current history of prices and implied volatilities, with a conditional mean
of 0 and a known conditional covariance matrix. We assume the availability of a
vector of “vegas” υ, with υi the partial derivative of a portfolio’s value with respect to
σ~i. We continue to assume the availability of the usual ∆ and Γ with respect to the
prices S

~
. It seems less likely that second derivatives involving σ~i would be available

as these are not routinely computed for other purposes. We therefore assume these
are unavailable and arbitrarily set their values at 0. The quadratic approximation
thus takes the form

L ≈ a0 – (δ´ υ´) – (∆S
~

´ ∆σ~´) .

From here on, the analysis proceeds exactly as before.
We tested this method on portfolio (a.1) (0.5 year at-the-money options), (a.4) (0.1

year at-the-money options), and (a.7) (a delta-hedged version of (a.4)). All
underlying assets have an initial volatility of 0.30. We also tested the method on a
new portfolio that is both delta and gamma hedge. On each of 10 underlying assets
with a spot price of 100, the portfolio is short 4.5 calls struck at 110, long 4 calls
struck at 105, long 2 puts struck at 95, and short 2.1 puts struck at 90, with all
options expiring in 0.5 years. This combination results in deltas and gammas very
close to 0.

With each portfolio we consider two levels of the volatility of volatility: 20 percent
(“High”) and 10 percent (“Low”). We also consider two possible cases for the
correlation structure: uncorrelated, and correlated with

Corr[∆S
~

i, ∆S
~

j] = 0.20, Corr[∆S
~

i, ∆σ~i] = –0.25, Corr[∆S
~

i, ∆σ~j] = 0, Corr[∆σ~i, ∆σ~j] = 0.6.

The interpretation of this case is as follows. All assets are affected by a common
“market level” factor inducing a positive correlation in price changes; each asset has
a negative correlation with its own implied volatility (so volatility goes up when
prices drop); and all implied volatilities are affected by a common “volatility level”
factor inducing a positive correlation in volatility changes.

The results are summarized in Table 2. The variance ratios for portfolios (a.1),
(a.4), and (a.7) are similar to what we found in the case of constant volatility. We see
less variance reduction for the portfolio that is both delta and gamma hedged. For
this portfolio the IS and ISS-Q methods rely entirely on vega information as we do
not assume the availability of second derivatives involving volatilities. The delta-
gamma-vega approximation is therefore less informative in this case than in the
others.
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Table 2: Variance reduction estimates with volatility as a risk factor
Variance ratios

Portfolio xstd P(L > x) IS ISS-Q
(a.1) Uncorrelated, High 2.5 1.0% 30 244

Uncorrelated, Low 1.0% 30 291
Correlated, High 2.6 1.1% 28 281
Correlated, Low 1.2% 26 285

(a.4) Uncorrelated, High 2.6 1.1% 23 65
Uncorrelated, Low 1.1% 23 74
Correlated, High 3.0 1.1% 19 84
Correlated, Low 1.1% 19 96

(a.7) Uncorrelated, High 2.8 1.1% 17 28
Uncorrelated, Low 1.1% 17 29
Correlated, High 3.2 1.0% 12 20
Correlated, Low 1.1% 11 18

δ−Γ hedged Uncorrelated, High 3.3 1.0% 9 8
Uncorrelated, Low 0.9% 10 13
Correlated, High 2.7 1.1% 14 21
Correlated, Low 1.2% 11 19

Conclusion
The methods reviewed in this article attempt to combine the best features of two approaches to
calculating VAR: the speed of the delta-gamma approximation and the accuracy of Monte Carlo
simulation. We use the delta-gamma approximation not as a substitute for simulation but rather
as an aid. By using the delta-gamma approximation to guide the sampling of scenarios –
through a combination of importance sampling and stratified sampling – we can greatly reduce
the number of scenarios needed in a simulation to achieve a specified precision.

For simplicity, in this article we have restricted attention to methods based on modeling
changes in market risk factors over the VAR horizon using a normal distribution. But empirical
studies consistently find that market returns exhibit greater kurtosis and heavier tails than can be
captured with a normal distribution. In Glasserman, Heidelberger, and Shahabuddin 2000c, we
extend the methods discussed here to certain heavy-tailed distributions, including multivariate t
distributions. This setting poses interesting new theoretical questions as well as having practical
relevance. Numerical results indicate that our methods are generally at least as effective in the
heavy-tailed setting as in the normal case.

Summary
The calculation of value-at-risk for large portfolios presents a tradeoff between speed and accuracy, with
the fastest methods relying on rough approximations and the most realistic approach – Monte Carlo
simulation – often too slow to be practical. This article describes methods that use the best features of
both approaches. The methods build on the delta-gamma approximation, but they use the approximation
not as a substitute for simulation but rather as an aid to it. Paul Glasserman, Philip Heidelberger and
Perwez Shahabuddin use the delta-gamma approximation to guide the sampling of market scenarios
through a combination of importance sampling and stratified sampling. This can greatly reduce the
number of scenarios required in a simulation to achieve a desired precision. The authors also describe
an extension of the method in which “vega” terms are included in the approximation to capture changes
in the level of volatility.



Suggested further reading
Alexander, C. (1998) “Volatility and correlation: methods, models, and applications” in Risk Management and

Analysis, Vol. 1 pp. 125–172, C. Alexander, ed., Wiley, Chichester, England.
Britten-Jones, M. and Schaefer, S.M. (1999) “Non-linear value-at-risk,” European Finance Review, 2, 

pp. 161–187.
Cardenas, J, Fruchard, E., Picron, J.-F., Reyes, C., Walters, K. and Yang, W. (1999) “Monte Carlo within a day,” Risk,

12:2, pp. 55–59.
Glasserman, P., Heidelberger, P. and Shahabuddin, P. (1999) “Stratification issues in estimating value-at-risk” in

Proceedings of the 1999 Winter Simulation Conference, pp. 351–358, IEEE Computer Society Press, Piscataway,
New Jersey.

Glasserman, P., Heidelberger, P. and Shahabuddin, P. (2000a) “Importance sampling and stratification for value-at-
risk” in Computational Finance 1999 (Proceedings of the Sixth International Conference on Computational
Finance), Y.S. Abu-Mostafa, B. LeBaron, A.W. Lo and A.S. Weigend, eds, pp. 7–24, MIT Press, Cambridge, Mass.

Glasserman, P., Heidelberger, P. and Shahabuddin, P. (2000b) “Variance reduction techniques for estimating value-
at-risk,” Management Science.

Glasserman, P., Heidelberger, P. and Shahabuddin, P. (2000c) “Portfolio value-at-risk with heavy-tailed risk factors,”
IBM Research Report RC 21817, Yorktown Heights, New York. Available at
www.research.ibm.com/people/b/berger/papers.html.

Jorion, P. (1997) Value at Risk, McGraw-Hill, New York.
Rouvinez, C. (1997) “Going Greek with VAR,” Risk, 10:2, pp. 57–65.
Wilson, T. (1999) “Value at risk” in Risk Management and Analysis, Vol. 1 pp. 61–124, C. Alexander, ed., Wiley,

Chichester, England.

Orthogonal GARCH
by Professor Carol Alexander

The univariate generalized autoregressive conditional heteroscedasticity
(GARCH) models that were introduced by Engle (1982) and Bollerslev (1986)

have been very successful for short term volatility forecasting in financial markets.
The mathematical foundation of GARCH models compares favourably with some of
the alternatives used by financial practitioners, and this mathematical coherency
makes GARCH models easy to adapt to new financial applications.

There is also evidence that GARCH models generate more realistic long-term
forecasts than exponentially weighted moving averages. This is because the GARCH
volatility and correlation term structure forecasts will converge to the long-term
average level, which may be imposed on the model, whereas the exponentially
weighted moving average model forecasts average volatility to be the same for all
risk horizons (see Alexander, 1998). As for short-term volatility forecasts, statistical
results are mixed – for example, see Andersen and Bollerslev (1998) Alexander and
Leigh (1997), Brailsford and Faff (1996), Cumby, Figlewski and Hasbrouck (1993),
Dimson and Marsh (1990), Figlewski (1997), Frennberg and Hansson (1996), and
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