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Pricing financial options often requires Monte Carlo methods. One particular case is that of barrier options, whose payoff may be zero
depending on whether or not an underlying asset crosses a barrier during the life of the option. This paper develops variance reduction
techniques that take advantage of the special structure of barrier options, and are appropriate for general simulation problems with similar
structure. We use a change of measure at each step of the simulation to reduce the variance arising from the possibility of a barrier crossing
at each monitoring date. The paper details the theoretical underpinnings of this method, and evaluates alternative implementations when
exact distributions conditional on one-step survival are available and when not available. When these one-step conditional distributions
are unavailable, we introduce algorithms that combine change of measure and estimation of conditional probabilities simultaneously. The
methods proposed are more generally applicable to terminal reward problems on Markov processes with absorbing states.

1. INTRODUCTION

Barrier options are derivative securities with the defining
characteristic that the payoff may be zero, depending on
whether or not an underlying variable crosses a speci-
fied barrier during the life of the option. There are two
broad types of barrier options: “knock-out” options, which
pay zero when there is a barrier crossing, and “knock-in”
options, which pay zero unless there is a barrier crossing.
A barrier option is cheaper than the equivalent option with-
out a barrier, because it may expire worthless if knocked
out (or not knocked in) in the same situation in which the
standard option would have paid off. Perhaps because of
this property, barrier features are frequently incorporated
into option contracts on many different types of underlying
assets.
To price an option is to evaluate the integral of its

expected discounted payoff under a risk-neutral probability
measure. (See, e.g., Duffie 1996 or Hull 1993 for back-
ground on option pricing.) In the case of barrier options,
this payoff is discontinuous over the space of all paths of
the underlying variables. In sufficiently simple cases, there
are analytical formulas for the price (e.g., Merton 1973,
Kunitomo and Ikeda 1992, Rubinstein and Reiner 1991,
and Sidenius 1998). However, there will not be useful for-
mulas if the specification of the barrier or stochastic pro-
cesses used to model the underlying variables is too com-
plex or high dimensional. Consequently, it is often nec-
essary to price via simulation, which is better suited to
high-dimensional and path-dependent problems than other
numerical methods, and has the added benefit of providing
the estimate’s standard error.

A straightforward simulation proceeds by dividing the
lifetime of the option into several time steps. Each path
begins with the state vector at a specified initial value, and
uses an approximate, discretized version of the dynamics
to propagate this random vector forward at each time step.
A simulation for a knock-out option has the special feature
that if at any time the underlying process should cross the
barrier, the path may be immediately abandoned, because
it is already known that it results in a zero payoff. If a
path “survives” by never crossing the barrier, then its pay-
off is determined at the terminal value of the state vector.
This standard Monte Carlo approach to pricing knock-out
options suffers from a peculiar defect which creates a pos-
sibility for improving the method: Some simulated paths
survive, allowing for a positive payoff, while other paths
fail to survive and have zero payoff. The lower the proba-
bility of survival, the more simulated payoffs are zero. This
can make the average payoff among the surviving paths,
and hence the variance among all paths, quite large relative
to the price.
All the variance due to the possibility of knock-out could

be removed by importance sampling if it were possible to
use the conditional distribution of the state vector given
survival to maturity. However, barrier option simulation
is challenging precisely because it is generally impossible
to sample conditional on final survival. It becomes neces-
sary to simulate an entire discrete path with observations
at each barrier-monitoring point to ascertain whether or
not survival occurs. However, there are other possibilities
for sampling measures, which may result in more efficient
estimators.
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One technique presented here is to use the conditional
distribution given one-step survival, which may be avail-
able, even though the conditional distribution given final
survival is not. By sampling conditional on survival at each
step, it is possible to ensure that all simulated paths sur-
vive and yield information about potentially positive pay-
offs. Then it is necessary to incorporate a likelihood ratio
to make up for the absence of paths which get knocked
out. The result is an unbiased estimator of the option price
with reduced variance. The idea of using a conditional dis-
tribution at each step in a simulation was investigated by
Glynn and Inglehart (1988, §11) in a different context—
estimating the steady-state mean of a real-valued Markov
chain. Glasserman (1993) analyzes a continuous-time ver-
sion of this idea. An example of using one-step condi-
tional distributions in barrier option simulations appears in
Boyle et al. (1997). Independent of our work, Ross and
Shanthikumar (1999) combine two examples from Boyle
et al. (1997) to arrive at an estimator similar to the sim-
plest one considered here; they do not consider the case
of unknown conditional probabilities for which we propose
several alternative estimators. For other simulation methods
applied to pricing path-dependent options, see, e.g., Duan
and Simonato (1998), Glasserman et al. (1999a), Joy et al.
(1996), Lemieux and L’Ecuyer (1998), and Vázquez-Abad
and Dufresne (1998).
We propose and analyze a variety of estimators that can

be divided into two broad categories defined by whether
or not the estimator requires explicit knowledge of the dis-
tribution of the underlying process conditional on one-step
survival. This conditional distribution enters the problem in
two ways—through sampling conditional on survival and
through evaluation of a likelihood ratio. The second role
turns out to be the more fundamental one; for settings in
which the conditional distribution is unknown, we formu-
late methods which implement a change of measure by
estimating the required likelihood ratio.
The techniques we study are most natural for discretely

monitored barrier options, which are knocked out only if
the barrier is crossed on specified monitoring dates. In this
case, there is an obvious way to fix the time steps of the
discretization. However, we show that these methods also
work in the case of continous monitoring, with an arbitrar-
ily chosen discretization. Other extensions addressed in this
paper are knock-in options and rebates, which are paid if
the option is knocked out.
For all of these situations where the central idea of con-

ditioning on survival over one step is feasible, we pro-
pose algorithms and associated estimators in §2. In §3, we
analyze their properties, while deferring any mathematical
details which would detract from the flow of the argument
until Appendix A. Section 4 reports numerical results for
the performance of these algorithms for various knock-out
options, while §5 presents conclusions.

2. ESTIMATORS AND ALGORITHMS

2.1. The Mathematical Problem

We treat the following problem in pricing a knock-out
option. There is a stochastic model of the evolution of
a state vector St� t ∈ �0�T � of underlying financial vari-
ables. We assume that St has the Markov property. The
state vector must be defined so that, if the option has not
been knocked out, the terminal value ST determines the
discounted payoff f �ST 	. For example, in a model with
stochastic interest rates, it will be necessary to include
the accumulated discount factor (which is itself stochas-
tic) as part of the underlying process. For an Asian option
(whose payoff depends on the average level of the under-
lying asset), the state vector must include the running sum,
as well as the current price of the underlying asset. Also,
we deal only with European-style options, which can be
exercised only at maturity. To condense notation, from now
on we will write the state vector at the monitoring dates as
�S1� 
 
 
 � Sm	 (abbreviating the more explicit �St1� 
 
 
 � Stm	),
and assume that the time between consecutive monitoring
dates ti+1− ti is a constant 
t.
Because of the knock-out feature, the state vector Si

takes a value in �d ∪
, where 
 is an absorbing state. If
S crosses the barrier at time i, the option is knocked out,
and for all j � i, Sj = 
. Define Ai to be the indicator
function 1�Si �= 
�; that is, Ai = 1 means that the option
is alive at time ti. The structure of this problem is by no
means limited to barrier options. It applies to any simula-
tion of expected terminal reward with the feature that there
is a known payoff when the state vector exits a specified
region of the state space.
We now give three motivating examples to which we will

return later as well.

Example 1. Black-Scholes Model One example is a
one-dimensional Black-Scholes model. The state vector is
a single stock price, governed by the dynamics

dSt
St

= �dt+�dWt�

where Wt is standard Brownian motion, and � and � are
constants. This has exact discretization

Si+1 = Si exp
((

�− 1
2
�2

)

t+�

√

t Zi

)
� (1)

where Z1� 
 
 
 �Zm−1 are i.i.d. standard normal. The bar-
rier is a price level H < S0, so Ai = 1 if the stock
price has not crossed beneath the barrier H by step i.
A down-and-out call in this model has discounted payoff
Am exp�−rT 	�Sm −K	+, where K is the strike price (i.e.,
the price at which the holder of the call option may buy
the stock), r the constant interest rate, and T = tm the
maturity. A down-and-out binary call’s discounted payoff is
Am exp�−rT 	1�Sm � K�. These examples can be priced in
closed form using the results of Merton (1973), but numer-
ical methods become necessary when the barrier is time-
varying or the parameters � and � are stochastic.
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Example 2. Two-Dimensional Geometric Brownian
Motion In this example, the state vector contains two
stock prices, obeying dynamics

dS
�1	
t

S
�1	
t

= �1dt+�1dW
�1	
t �

dS
�2	
t

S
�2	
t

= �2dt+�2dW
�2	
t �

where Wt = �W
�1	
t �W

�2	
t 	 is two-dimensional Brownian

motion with zero drift and covariance matrix[
1 �
� 1

]



The discretized dynamics are

S
�1	
i+1=S

�1	
i exp

((
�1−

1
2
�2
1

)

t+��1	

√

t Z

�1	
i

)
�

S
�2	
i+1=S

�2	
i exp

((
�2−

1
2
�2
2

)

t+��2	

√

t Z

�2	
i

)
�

(2)

where

Z
�1	
i = Y

�1	
i �

Z
�2	
i = �Y

�1	
i +√1−�2 Y

�2	
i �

and all Y are i.i.d. standard normal. In this setting, the bar-
rier crossing may be determined by one asset and the final
payoff by the other. For example, the discounted payoff
may be

e−rT �S�2	
m −K	+1�min

i�m
S
�1	
i �H�


Heynen and Kat (1994) have provided closed-form solu-
tions for some such options, but not, for instance, where
the barrier is a function of time more complicated than an
exponential.

Example 3. LIBOR Market Model Our final motivat-
ing example is indicative of a more complex class of
models in widespread use for pricing interest rate deriva-
tive securities. In this setting, the underlying state vector
records interest rates rather than asset prices. We describe a
model of London Inter-Bank Offered Rates (LIBOR), a key
benchmark for pricing. For further background, see Musiela
and Rutkowski (1997, §14.3).
Given a set of maturities 0 < t1 < t2 < · · · < tN+1, let

F
�k	
t denote the forward interest rate for the period �tk� tk+1	

as of time t < tk. This is the interest rate for the period
�tk� tk+1	 that can be locked in at time t. In a model with
proportional volatilities, the dynamics of the vector of for-
ward rates take the form

dF
�k	
t = ��k	�Ft�!t	F

�k	
t dt+F

�k	
t "

�k	
t dWt� k = 1� 
 
 
 �N 


Here, Wt is a d-dimensional standard Brownian motion
(d � N ), and "

�k	
t is the kth row of an N × d determin-

istic matrix !t , expressing the instantaneous dependence

of F
�k	
t on the d components of the Brownian motion.

Each ��k	, k = 1� 
 
 
 �N , is a deterministic function of the
vector of rates Ft and the volatilities !t . The specifica-
tion of ��k	 is fully determined by the requirement that
the model be arbitrage-free, as explained by Musiela and
Rutkowski (1997, Equation 14.55). The choice of !t deter-
mines the instantaneous covariance !t!t

′.
Using an Euler discretization of the logarithm of the for-

ward rates, where the time subscript i as usual means ti,
the discretized dynamics are

ln�F �k	
i+1	= ln�F �k	

i 	+
(
�

�k	
i �Fi�!i	−

1
2
�"�k	

i �2
)

t

+ C
�k	
i Zi

√

t� (3)

where Zi is a vector of d independent standard normals and
C

�k	
i is the kth row of an N ×d matrix Ci which satisfies

CiCi
′ =!i!i

′. The choice Ci =!i is always available, but
we will see that flexibility in the choice of Ci can be useful.
Many types of interest rate options with barrier features

are commonly traded. We will consider barrier swaptions
in particular. These are options that are knocked out if some
function of the forward LIBOR rates crosses a barrier, with
a payoff that is essentially a call or a put on a swap which
is an agreement to exchange interest payments at “floating”
(variable) LIBOR rates for payments at a fixed rate $. The
swap rate $ which makes the initial value of the swap zero
is itself a complicated function of the forward LIBOR rates.
As in Musiela and Rutkowski (1997, Equation 16.5),

$= 1−BM


t
∑M

k=m+1Bk

(4)

is the swap rate at time tm for a swap with payment dates
tm+1 to tM . Here, Bi is the price (at time tm) of a bond
paying $1 at time ti and is given by

Bi =
i−1∏
k=m

1

1+
tF
�k	
m

' (5)

i.e., by discounting $1 at the forward LIBOR rates. A swap-
tion on $1 of notional principal has a time tm payoff of(

t

M∑
k=m+1

Bk

)
max�0� $−K�� (6)

where K is the strike rate, and the summation is the time
tm value of a bond paying $1 at times tm+1 to tM . The
key features of this example for our purposes are that the
underlying model dynamics are fairly complex, a typical
payoff is a complicated function of the state vector, and a
barrier may be imposed on a nonlinear function of the state
vector (e.g., the swap rate).
Before analyzing these examples, recall how a stan-

dard simulation proceeds, as described in the introduction.
In any of the examples above, a standard Monte Carlo
algorithm simulates �S1� 
 
 
 � Sm	, where Si is a vector of
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underlying prices (or forward interest rates) at the ith dis-
cretization time. It proceeds in the usual fashion by gener-
ating Si+1 from Si according to the law of the underlying
process, or perhaps an approximate discretization thereof.
Then it uses this path to evaluate the following estima-
tor. The estimated price is the average of Xm over multiple
paths.

Standard Estimator.

Xm


= Amf�Sm	
 (7)

2.2. Known Transition Probabilities

An alternative to the standard estimator generates Si+1 from
Si conditional on Ai+1 = 1, if this one-step conditional dis-
tribution is known. Of course, under this scheme, Am = 1
always, and the average of f �Sm	 may be terribly biased.
For this reason, it is necessary to weight by a likelihood
ratio. (See, e.g., Bratley et al. 1987 for background on
importance sampling.) Define

Li


=
i−1∏
j=0

p�Sj	� (8)

where

p�s	

= P�Sj+1 �= 
 � Sj = s�
 (9)

We adopt the convention that p�Sj	= 0 if Aj = 0, because
there is no chance of surviving to the next step if the bar-
rier has already been crossed. (This formulation is gen-
eral enough to allow the probability of one-step survival to
depend on j because the time index can be incorporated
in the state vector.) So Li is the “likelihood” of surviving
i steps via this path, in a sense to be made precise in §3.
Then the new estimator is:

Exact Estimator with Full Importance Sampling.

X̂m


= Lmf�Sm	
 (10)

Theoretical properties of this and all subsequent estima-
tors are presented in §3. In particular, we show that this
estimator is unbiased and has lower variance than the stan-
dard estimator.

Example 1 continued. In the example of pricing a down-
and-out call under the Black-Scholes model, it is easy to
sample conditional on one-step survival. An algorithm to
sample Si+1 unconditionally implements Equation (1) by

Si+1 = Si exp
((

�− 1
2
�2

)

t+�

√

t,−1�U	

)
� (11)

where U is uniformly distributed and , is the standard
normal cdf. It is easy to evaluate ,−1 numerically, as shown
by Marsaglia et al. (1994).
Sampling conditional on one-step survival uses the same

equation, except that

U = �1−p�Si		+Vp�Si	� (12)

where V is uniformly distributed and

p�Si	=P�Si+1�H �Si	

=,

((
ln
(
Si
H

)
+
(
�− 1

2
�2

)

t

)/(
�
√

t
))


 (13)

The result is that U is uniformly distributed conditional on
being at least as large as necessary to prevent knockout.
That is, given Si and given Si+1 �H , ,−1�U	 has the dis-
tribution of �ln�Si+1	− ln�Si	− ��−�2/2	
t	/��

√

t	. It

is also possible (and perhaps faster) to sample from the tail
of the normal distribution using acceptance-rejection rather
than ,−1; see Fishman (1996). The logarithmic evaluation
in (13) is easily avoided by storing the exponent in (11).
Implementation of (13) does entail the overhead of evalu-
ating a cumulative normal probability; fast approximations
to , are included in many mathematical software libraries.

Example 2 continued. In the setting of Equation (2),
sampling conditional on one-step survival works as
follows:

S
�1	
i+1 = S

�1	
i exp

(
��1	
t+��1	

√

t,−1�U �1		

)
�

S
�2	
i+1 = S

�2	
i exp

(
��2	
t+��2	

√

t ��,−1�U �1		

+√1−�2,−1�U �2			
)
�

where

U�1	 = �1−p�Si		+V �1	p�Si	�

U �2	 = V �2	�

and V �1	� V �2	 are uniformly distributed and independent.
The probability of one-step survival p�Si	 is exactly as in
Equation (13), but with S

�1	
i , ��1	, and ��1	 for Si, �, and � ,

because the barrier condition involves only the first asset
price.

Example 3 continued. Suppose that the barrier is a floor
beneath the current LIBOR rate, i.e., the option is knocked
out at step i+ 1 if F �i+1	

i+1 is beneath the barrier. It is eas-
iest to implement Equation (3) by choosing the matrix Ci

such that F �i+1	
i+1 depends on a single component of the driv-

ing Brownian motion. That is, pick C
�i+1	
i such that it has

the form ���0� 
 
 
 �0�, e.g., through Cholesky factoriza-
tion. (All rows of Ci with index i or less are zero, because
these LIBOR rates refer to maturities already in the past.)
Much as in Example 2, first simulate the current LIBOR
rate conditional on its being above the floor, and then sim-
ulate all forward LIBOR rates conditional on this value of
the current LIBOR rate. For the current LIBOR rate,

ln�F �i+1	
i+1 	= ln�F �i+1	

i 	+
(
�

�i+1	
i �Fi�!i	−

1
2
�"�i+1	

i �2
)

t

+√

tC

�i+1�1	
i ,−1�U

�1	
i 	�
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and the probability of surviving one step is

p�Fi	=,

([
ln�F �i+1	

i /H	+
(
�

�i+1	
i �Fi�!i	

− 1
2
�"�i+1	

i �2
)

t

]/(
�
√

t
))




In general, for k > i,

ln�F �k	
i+1	= ln�F �k	

i 	+
(
�

�k	
i �Fi�!i	−

1
2
�"�k	

i �2
)

t

+√

t

d∑
j=1

C
�k�j	
i ,−1�U

�j	
i 	�

where j indexes the components of the Brownian motion:

U
�1	
i = �1−p�Si		+V

�1	
i p�Si	�

U
�j	
i = V

�j	
i � j = 2� 
 
 
 � d�

and V
�1	
i � 
 
 
 � V

�d	
i are uniformly distributed and indepen-

dent.
Note that in this example, choosing a different square

root of the covariance matrix would have made it difficult
to find the probability of surviving one step. An inherently
difficult case is when the barrier is a floor beneath more
than one forward LIBOR rate simultaneously. The distri-
bution for the minimum among those rates is inconvenient,
regardless of the square root of the covariance matrix, and
it is awkward to find the probability of survival analytically.
If the barrier is a floor beneath the forward swap rate itself,
this is such a complicated function of forward LIBOR rates
that it is effectively impossible to determine the probability
of survival. Similar to Equation (4), the forward swap rate
from time tm to time tM is

$i�m�M	= B
�m	
i −B

�M	
i


t
∑M

k=m+1B
�k	
i


 (14)

(See Musiela and Rutkowski 1997, 14.64.) This example
is featured in the next subsection, which develops methods
for use when transition probabilities are unknown.

2.3. Unknown Transition Probabilities

When the conditional probability of one-step survival p�Si	
is not known, the technique of the previous subsection is
not applicable. However, as long as p�Si	 > 0, it is always
possible to sample conditional on one-step survival by gen-
erating unconditional successors to Si, and keeping the first
one to survive. This still leaves the problem of evaluating
the likelihood ratio when p�Si	 is unknown, a problem of
potentially broader scope. To address it, we estimate p�Si	
in the simulation itself. This is made possible by the obser-
vation that the number of unconditional successors required
to generate a survivor (the waiting time) is geometrically
distributed with unknown parameter p�Si	. Therefore, one

can try to estimate p�Si	 from data observed in the course
of simulation, and use the approach of §2.2 with an esti-
mated, instead of an exact, likelihood.
A problem swiftly emerges in the form of an irritating

conundrum in elementary statistics: Given a single observa-
tion, there is only one unbiased estimator of the parameter
of a geometric distribution, and it is perfectly useless for
our purposes. If Yi is the observed geometric waiting time,
then the only unbiased estimator is the indicator function
which is 1 when Yi = 1 and 0 otherwise (e.g., Cox and
Hinkley 1974, p. 253). That is, if the first unconditional
successor to Si survives, estimate that p�Si	 is 1, but if it
does not survive, estimate that p�Si	 is 0. Of course, plug-
ging this estimator into the formula for Lm results in Am,
because the only values are 0 and 1, reducing the method
to standard simulation.
However, the problem is not intractable, because there is

a good unbiased estimator when more than one observation
is available. An algorithm incorporating it is this:
1. Produce unconditional successors to Si until r of them

survive;
2. Call the total waiting time Yi, which has a negative

binomial distribution;
3. Let Si+1 be any of the r surviving successors;
4. Estimate p�Sj	 by

r−1
Yi−1




Replacing Lm by an estimated likelihood ratio, a new esti-
mator is then:

Negative Binomial Estimator.

f �Sm	
m−1∏
i=0

r−1
Yi−1


 (15)

This estimation algorithm would clearly be less efficient
than standard simulation if there were no chance of knock-
out, because it would produce r > 1 surviving successors at
each step, then throw out r−1 of them. As knock-out gets
more likely, the standard method grows inefficient in that
it does too much of its work in generating successors at
early steps, because most paths terminate early. The stan-
dard method wastes some of the value of early successors
in that early termination of a path means that the random
variates already generated provide no information about
the final payoff or the probability of surviving later steps.
When the probability of knock-out is high enough and the
number of steps m is large enough, the negative binomial
estimator will outperform the standard estimator.
A potential drawback of this negative binomial method

is that there is no upper bound on the amount of time it
might take to sample a surviving successor from the uncon-
ditional distribution. In order to avoid this difficulty, we can
sample a fixed number n of successors from the uncondi-
tional distribution, and record the number Nj which survive,
which is binomially distributed. Then the estimate of p�Sj	
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is Nj/n, but the likelihood ratio need not have the same
form as before. It is now possible for a path not to survive,
if at one step none of the n successors generated survive.
In this sense, the algorithm takes only partial advantage of
importance sampling. This requires a new estimator:

Exact Estimator with Partial Importance Sampling.

Xn
m


= AmL
n
mf �Sm	� (16)

where

Ln
i


=
i−1∏
j=0

p�Sj	

1− �1−p�Sj		
n
� (17)

because �1− �1−p�Sj		
n	 is the probability of finding at

least one surviving successor in n attempts; §3 provides a
theoretical explanation of this point.
However, the p�Sj	 are not known, so Li must be esti-

mated. One natural possibility is:

Binomial Estimator.

Amf�Sm	
m−1∏
j=0

Nj

n

 (18)

The product in (18) is an “empirical” counterpart of the
likelihood ratio; as shown in §3, it results in an unbiased
estimator.
This binomial estimator is a special case of a more gen-

eral class of estimators based on right-censored geometric
random variables. The insight is that for a large maximum
computational budget of n at step i, if p�Si	 is not too
small, it might be inefficient (in terms of variance reduc-
tion for a fixed amount of work) to spend time estimating
p�Si	 extremely precisely rather than to move on, saving
the budget for simulating more paths. For instance, each
step could involve r trials which end after one successor
survives or N = n/r successors fail to survive, whichever
comes first. Then the length of the trial is a right-censored
geometric random variable, and the binomial estimator is
the special case of N = 1 and r = n. Such a censored
geometric estimator is consistent but is not competitive
because it is biased at low values of r or N and does
not improve efficiency for large r and N . For details, see
Staum (2001).
The binomial estimator (18) bears some resemblence

to splitting or “RESTART” estimators considered in,
e.g., Villén-Altamirano and Villén-Altamirano (1994) and
Glasserman et al. (1999b) for estimating rare event proba-
bilities. However, in splitting algorithms all surviving paths
are simulated, whereas in (18), multiple survivors are used
to estimate the one-step survival probability but simulation
continues for just one surviving path.

2.4. Extension: Continuous Monitoring

This framework can also apply to continuously monitored
barrier options. In this case, the dates t1� 
 
 
 � tm are merely

for purposes of discretization, and at step i, the option is
knocked out not only if Sti = Si is on the wrong side of
the barrier, but if St crossed the barrier at any time t in
the interval �ti−1� ti�. In general, the knock-out condition
can be expressed as an inequality b�S	 < H , where b is a
function of the underlying asset price. Then augment the
state vector Si to be �Si�Mi	, where Mi


=mint∈�ti−1�ti�
b�St	.

If the joint distribution of S and M is known, then the
discretized simulation can effectively monitor the barrier
continuously. This is also possible if b is a vector-valued
function, and the minimum is taken coordinatewise. Ref-
erences for simulation of barrier options with continuous
monitoring are Andersen and Brotherton-Ratcliffe (1996),
Baldi et al. (1999), and Beaglehole et al. (1997). Asmussen
et al. (1995) considered the related problem of simulating
the maximum of Brownian motion.
If the conditional distribution of Mi+1 given Si is not

known, then the only choice is to use the methods of
the previous subsection where transition probabilities are
unknown, and the state vector is now defined to be the
pair �Si�Mi	. However, if this conditional distribution is
known, it would be desirable to implement conditioning
on one-step survival exactly, by simulating Mi+1 given Si
and the event Ai+1 = 1, then simulating Si+1 given Si and
Mi+1. Unfortunately, this is often not practical. The diffi-
culty arises in the latter step; often the distribution of Si+1

conditional on Si and Mi+1 is unknown. For instance, even
the case of one-dimensional Brownian motion with nonzero
drift is complicated, because it matters at what time the
minimum was achieved.
Instead, take advantage once more of the trick of simulat-

ing conditional on survival by repeated unconditional sam-
pling. To do this, it is only necessary to know the marginal
distributions of Si+1 and Mi+1, and the distribution of Mi+1

conditional on Si and Si+1. Repeat the following process
until it succeeds in producing Si+1.
1. Generate Si+1 conditional on Si and b�Si+1	 > H .
2. Generate Mi+1 conditional on Si and Si+1.
3. If Mi+1 >H , accept this value of Si+1.
4. Compute p�Si	 from the marginal distribution of

Mi+1.
In Example 1, for one-dimensional Brownian motion

with drift �, implement step 1 exactly as specified by Equa-
tions (11) and (12) for sampling conditional on survival
in the discrete case. Step 2 reduces to sampling the min-
imum of a Brownian bridge, for which the original drift
has become irrelevant. From Karatzas and Shreve (1991,
4.3.40), we get

P�Mi+1 � x � Si� Si+1�

= exp
(

2
�2
t

ln
(
x

Si

)
ln
(
Si+1

x

))

 (19)
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To generate Mi+1, invert this cdf, and evaluate at a uni-
formly distributed random variable U :

Mi+1=exp

(
1
2

(
ln�SiSi+1	

−
√(

ln
(

Si
Si+1

))2

−2�2
t ln�U	

))

 (20)

This is similar to a result of Asmussen et al. (1995, §4.5).
Also, the marginal distribution of Mi+1 (conditional on Si,
but not on Si+1) is inverse Gaussian, as in Corollary B.3.4
of Musiela and Rutkowski (1997). Evaluating it at H ,

p�Si	= P�Mi+1 >H � Si�

=,

(
ln� Si

H
	−�
t

�
√

t

)
− exp

(
2� ln� Si

H
	

�2

)

×,

(
− ln� Si

H
	−�
t

�
√

t

)

 (21)

The procedure functions similarly for Examples 2 and 3,
because a single dimension of the underlying Brownian
motion determines the barrier crossing. In these cases, use
the above method to simulate this single component, then
sample the rest of the state vector conditional on it.

2.5. Extension: Rebates

Knock-out options are sometimes written so that the buyer
receives a rebate if the option is knocked out. Depending on
the contract specification, this rebate can be payable either
at maturity or at the time of knock-out. The techniques
developed in this paper are well suited to handling rebates
payable at knock-out, but treatment of the topic is limited
to this subsection in order to lighten the burden of notation
elsewhere.
The only further assumption necessary is that the present

value of the rebate payable if knock-out occurs at time ti
be a function of the state vector at time ti−1. For rebates
paid at knock-out, this assumption is not very restrictive.
The present value of the rebate is the product of the nom-
inal value (the amount paid) and a discount factor. The
nominal value of the rebate is generally constant, and at
step i− 1 both the discount factor up to time ti−1 and
the interest rate ri−1 for the interval �ti−1� ti� are known.
The discrete dynamics of the discount factor D are Di =
Di−1 exp�−ri−1
t	, so Di is known at ti−1.
Write the present value of the rebate earned at time ti as

g�Si−1	. Then the standard estimator, the realized value of
the option on a simulated path, is

Xm = Amf�Sm	+
m∑
i=1

�Ai−1−Ai	g�Si−1	
 (22)

The expression Ai−1−Ai is an indicator function which is
one when the option is knocked out at step i. This formula

also holds if g�Si−1	 is the expected present value of the
rebate at step i. The exact estimator with full importance
sampling defined in Equation (10) is now

X̂m = Lmf�Sm	+
m∑
i=1

Li−1�1−p�Si−1		g�Si−1	
 (23)

Rebates payable at maturity do not in general fit this
framework because the discounting involves interest rates
conditional on knock-out. (If discounting is not stochas-
tic or is independent of the rest of the process, this is not
an objection.) To handle a knock-out option with rebate
payable at maturity, decompose it into the sum of an ordi-
nary knock-out option and a binary knock-in option which
knocks in and pays the rebate at maturity precisely when
the other knocks out. The next subsection treats knock-in
options.

2.6. Extension: Knock-In Options

Dealing with knock-in options is not so simple, but is pos-
sible if there is a known expression fi�Si	 for the present
value of a barrierless option, received at time ti when the
state vector is Si, whose payoff will be f �Sm	 at time tm.
This is the case for sufficiently simple knock-in options,
and in particular for valuing rebates payable at matu-
rity as discussed in the previous subsection. In that case,
fi�Si	 = rDiBi�tm	, where r is the nominal rebate amount
and Bi�tm	 the price at time ti of $1 paid at time tm.

We continue to use Ai to mean the indicator function
which is one if the barrier has not been crossed by time
ti, which in this situation means that the option has not
yet been knocked in. As before, p�Si	 is the probability
of not crossing the barrier over this step. Then, a different
standard-type estimator taking advantage of the principle
that a knocked-in barrier option is effectively transformed
into a barrierless option is

Xm =
m∑
i=1

�Ai−1−Ai	fi�Si	
 (24)

To take advantage of full importance sampling, it is nec-
essary to complicate the sampling scheme. At each step
there must be two successors to Si. Simulating conditional
on no knock-in produces Si+1, while simulating conditional
on knock-in produces S∗

i+1. The S∗
i+1 are not part of the

path, but are used to estimate the value of the option should
it be knocked in at step i+ 1, since in this case it is not
realistic to expect that this value should be known at time
i. The estimator is:

X̂m =
m∑
i=1

Li−1�1−p�Si−1		fi�S
∗
i 	
 (25)

3. PROPERTIES OF THE ESTIMATORS

This section will explore statistical properties, such as bias,
variance, and consistency of the estimators which the pre-
vious section discussed. We defer proofs to an appendix.
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Precise statements of some of the properties of the esti-
mators will require a discussion of probability measures as
they relate to various simulation algorithms.
Let P be the measure under which the underlying state

vector process �S1� 
 
 
 � Sm	 has its usual joint distribution
on a universe called 7. In a standard Monte Carlo simu-
lation, the simulated price vectors obey the law of P. Let
�i be the subset of 7 on which the previously defined
indicator function Ai equals 1, i.e., where the option is
“alive” at time i, and let �i be the sigma-algebra generated
by �S1� 
 
 
 � Si	. Then P̂ is defined on �m relative to �m

through the conditional distributions

P̂�Si+1 ∈Q � Si� 
= P�Si+1 ∈Q � Si�Ai+1 = 1�� (26)

where S0 = s0 is fixed.
Simulating under P̂ means sampling the next state vec-

tor conditional on survival at the next step. Of course, this
implies that Am = 1 with probability 1 under P̂; i.e., all
paths simulated under P̂ survive until the end. Our first
result shows that it is possible to compensate with a likeli-
hood ratio. Let Ê denote expectation with respect to P̂.

Lemma 1. Li, defined in (8), is the likelihood ratio relating
the measures P̂ and the restriction of P to �i as follows:

Ê�LiY �= E�AiY � (27)

for any �i-measurable function Y such that the expectation
E�AiY � exists and is finite.

This is useful because we can define the expected pay-
off at step i in the simulation, which is an �i-measurable
function:

Xi


= E�Xm � �i��

X̂i


= Ê�X̂m � �i�


These are not observable during the simulation, except
when i = m, which corresponds to the final estimator.
(Recall that Xm and X̂m are estimators defined in (7) and
(10), respectively.) Throughout this section, we also require
the nonrestrictive technical condition

E�X2
m� <� (28)

in order to allow the use of Lemma 1 and ensure that vari-
ances exist.

Lemma 2. The Condition (28) implies Ê�X̂2
m� < � and

∀ i �m� �E�AiXi��<�.
Under this assumption, a direct consequence of Lemma

1 is

Theorem 1. The estimator X̂m defined in Equation (10) is
unbiased. That is,

Ê�X̂m�= Ê�Lmf �Sm	�= E�Amf �Sm	�= E�Xm��

which equals the price of the option.

Note that while X̂m is defined as an “exact estimator with
full importance sampling,” we are not in the usual setting of
importance sampling, because in nondegenerate examples,
it is not the probability measure P but only its restriction
to �m which is absolutely continuous with respect to P̂.
(A similar lack of absolute continuity arises in other appli-
cations of importance sampling; see, e.g., Asmussen 1987,
§14.7, and Glynn and Iglehart 1989.)
A simple extension of Theorem 1 is:

Theorem 2. The estimator for knock-out options with
rebates in (23) is unbiased.

Ê
[
Lmf�Sm	+

m∑
i=1

Li−1�1−p�Si−1		g�Si−1	

]

= E
[
Amf�Sm	+

m∑
i=1

�Ai−1−Ai	g�Si−1	

]



This result relies on linearity of expectation and Ê�Li�1−
p�Si		Yi�=E��Ai−Ai+1	Yi�, which is much like Lemma 1.
The following lemma is useful for analyzing the reduc-

tion in variance which X̂m provides, which may be
expressed as a sum of expected one-step conditional vari-
ances.

Lemma 3. The variance of Xm can be expressed as

Var�Xm�=
m∑
i=1

E�Var�Xi � �i−1��
 (29)

We are interested in algorithms which improve upon
the one-step conditional variance in the standard estimator,
Var�Xi � �i−1�, which can be expressed as follows.

Lemma 4. For the standard estimator, the one-step condi-
tional variance is

Var�Xi � �i−1�= p�Si−1	Var�Xi � �i−1�Ai = 1�

+p�Si−1	�1−p�Si−1		

× �E�Xi � �i−1�Ai = 1�	2� (30)

and its expectation is

E�Var�Xi � �i−1��= E�X2
i �−E�X2

i−1�
 (31)

Finding the expected one-step conditional variance leads
to the following theorem, which summarizes the vari-
ance reduction results. In the theorem and throughout, V̂ar
denotes variance with respect to P̂.

Theorem 3. The estimator X̂m has reduced variance

V̂ar�X̂m�=E�LmX
2
m�−X2

0 �E�X
2
m�−X2

0 =Var�Xm�
 (32)

The inequality is strict if E�Am� < 1 and E�f �Sm	� > 0, i.e.,
if there is any chance of knock-out and positive payoff.
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The variance reduction relies on the comparison of
E�LmX

2
m� and E�X

2
m�. The greater the probability of knock-

out, the smaller Lm tends to be, so the greater the reduction
in variance.
To analyze estimation schemes with a maximum compu-

tational budget of n forward simulations at each step, define
the measure Pn, which governs the process where the path
survives a step when at least one of n potential successors
survives. Both P and P̂ are special cases, when n= 1 and
n=�, respectively. The interpretation of Pn is that it takes
partial advantage of importance sampling, where P̂ takes
full advantage of it and P takes none. Pn is defined on 7
relative to �m by

Pn�Si+1 = 
 � Si� 
= �1−p�Si		
n� (33)

Pn�Si+1 ∈Q � Si� 
= �1− �1−p�Si		
n	

×P�Si+1 ∈Q � Si�Ai+1 = 1�

for Q ⊆ �i+1� (34)

where S0 = s0 is fixed, because �1− �1− p�Si		
n	 is the

P-probability that at least one of n successors of Si sur-
vives.

Theorem 4. The estimator Xn
m of Equation (16) is unbi-

ased, i.e., En�Xn
m�= E�Xm�.

This follows from En�AiYiL
n
i �= E�AiYi�, in the spirit of

Lemma 1.

Theorem 5. The estimator Xn
m achieves an intermediate

reduction in variance: Varn�Xn
m�= E�Ln

mX
2
m�−X2

0 , hence

V̂ar�X̂m�� Varn�Xn
m�� Var�Xm�� (35)

where the inequalities are strict for 1<n<� if E�Am� < 1
and E�f �Sm	� > 0, i.e., if there is any chance of knock-out
and positive payoff.

Also interesting is the behavior of estimators when p�Si	
are not known. It is highly desirable that these estimators
be consistent as the number of sample paths goes to infin-
ity, in order that barrier options may be priced to arbitrary
accuracy by increasing the number of paths. Because the
simulated price is an average of the values of an estimator
realized on each path, it would be best if this estimator were
unbiased. This is true of both the negative binomial esti-
mator (15) under P̂ and the binomial estimator (18) under
Pn. Both involve products of factors which are individu-
ally conditionally unbiased for what they seek to estimate,
namely p�Si	, and whose errors are uncorrelated.

Theorem 6. The negative binomial estimator is unbiased.

Ê
[
f �Sm	

m−1∏
i=0

r−1
Yi−1

]
= Ê�X̂m�


Theorem 7. The binomial estimator is unbiased.

En

[
f �Sm	

m−1∏
i=0

Ni

n

]
= En�Xn

m�


The proofs are based on conditional independence of Yi
and Si+1 in conjunction with the unbiasedness of the indi-
vidual estimates of p�Si	; see the appendix.

It is difficult to produce variance comparisons for estima-
tors where the one-step survival probabilities are unknown.
Instead, we rely on numerical comparisons.

4. NUMERICAL RESULTS

Section 3 contained theorems formalizing the idea that con-
ditioning on one-step survival produces a reduction in vari-
ance, compared to standard Monte Carlo simulation. This
suggests that at least the exact estimator X̂m defined in
(10) should be superior to the standard estimator Xm of
(7). On the other hand, X̂m requires a greater average num-
ber of transitions simulated per path than does Xm. This is
because an efficient implementation of the standard simu-
lation scheme will cease work on a path as soon as knock-
out occurs, whereas an algorithm which conditions on sur-
viving each step necessarily simulates every path for m
steps. Algorithms which generate a maximum of n poten-
tial successors at each step have an intermediate number
of expected transitions simulated. It is necessary to test the
performance of the various estimators numerically. As the
following results show, the effectiveness of the new meth-
ods depends on the specific problem to a great extent.
We examine the performance of the proposed estimators

relative to the standard technique for specific benchmark
options. For each of the three examples used in §2, we ana-
lyze one option with a moderate knock-out probability and
one with a high knock-out probability. We do not consider
options with low knock-out probability because our meth-
ods do not produce substantial variance reduction for them,
as noted after the statement of Theorem 3.

Example 1a. The underlying process is a single stock
price which, under the risk-neutral measure, obeys geomet-
ric Brownian motion with annual drift �= 5% and volatil-
ity � = 60%. The stock’s initial price S0 = 100, and there
are barriers at Hl = 95 and Hu = 105, so that the option
is knocked out if it crosses either of these. The option has
K = S0 and its maturity T = 0
25, with three monitoring
dates.

Example 1b. The option’s specification is the same, except
that the lower barrier Hl = 100.

Example 2a. The state vector contains a stock price and
an index level which obey geometric Brownian motion.
They both have annual drift � = 5%, and while the index
has volatility �1 = 40%, the stock has volatility �2 = 60%.
Their correlation is �= 0
5. The initial value of the index
is S

�1	
0 = 1,000, and the stock’s initial price is S

�2	
0 = 100.

The barriers on the index are at Hl = 950 and Hu = 1,050,
and the strike for the stock price is K = 100. The option
still has maturity T = 0
25 and three monitoring dates.

Example 2b. This example is like the previous, but the
maturity of the option is T = 3 years, with quarterly
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monitoring. The index has volatility �1 = 15% and the bar-
riers are Hl = 900 and Hu = 1,050. The stock has volatility
�2 = 25%, and correlation �=−0
5 with the index.

Example 3a. This example uses the LIBOR market model
based on bonds with maturities 0.5 years apart, and this
equals the simulation time step 
t. All forward rates are
initially 5%. The driving Brownian motion has dimension
d = 1, and each "�k	 is a constant 0.3. The contract is a “2
into 2” payer swaption with strike K = 5%. That is, in two
years the owner has the option to enter into a swap to pay
5% interest and receive the floating rate for two years. The
owner will exercise the option if the swap rate for years 2
to 4 (i.e., Steps 4 to 8) at maturity $4�4�8	 is above K—see
Equation (4). At T = 2 years, the payoff is the maximum
of zero, and the present value of receiving interest at rate
$4�4�8	—5% for two years—see Equation (6). There are
barriers of Hl = 5% and Hu = 7% on the current LIBOR
rate.

Example 3b. The setting is similar, but the swaption is
now 4 into 2. The maturity is T = 4, and again we con-
sider a payoff based on a two-year swap rate which is now
$8�8�12	. The barriers are Hl = 5% and Hu = 6%, but they
only take effect in the second two years of the option’s life;
that is, there is only monitoring at steps 4 through 8.
We compare the performance of the estimators based on

the product of the average number of transitions simulated
per path (N) and the variance per path (V). This figure of
merit appropriately penalizes the new estimators for sim-
ulating every path to maturity while the standard method
abandons a path as soon as a barrier is crossed. For the esti-
mators of §2.3 (i.e., with unknown transition probabilities),
N counts all candidate transitions generated at every step,
not just the number of survivors. The computational effort
per transition is the same in these methods as in the stan-
dard estimator, and the total computational effort in both
cases is essentially proportional to the number of such tran-
sitions. Thus, comparing the performance of the estimators
of §2.3 with the standard estimator based on N*V is essen-
tially equivalent to comparing them based on the product
of average computer time per path and variance per path.
For the “exact” estimator of §2.2, a comparison based

on N*V does not reflect the difference in time required to
generate a conditional transition and an unconditional tran-
sition. Ordinarily, generating a conditional transition will
take longer, but not much longer. An exact comparison
turns out to be extremely sensitive to the precise imple-
mentation of the method (e.g., how one generates normal
random variables and how one computes normal probabil-
ities). In contrast, the product N*V should be nearly inde-
pendent of the implementation.
The overhead involved in generating conditional transi-

tions is illustrated by the comparison of (11) and (13). By
simulating lnSi, and exponentiating only to get Sm (to com-
pute the terminal payoff), we can accelerate the basic sim-
ulation (11) and avoid the evaluation of the logarithm in
(13) after a one-time computation of lnH . The overhead in

Table 1.

Example Binary Standard

1a 1
5% 1
9%
2a 4
5% 6
1%
3a 0
4% 3
9%

(11) primarily consists of generating a conditional normal
rather than an unconditional normal, and of one evaluation
of ,. For this example, we find that generating a condi-
tional transition takes approximately 50% longer than an
unconditional survivor. We view this as close to a worst
case precisely because the basic model is so simple. For
more complicated models, the time per transition in a stan-
dard simulation is greater; the additional effort to generate
a conditional transition should be similar to that for (13) in
absolute terms, and thus smaller as a percent of the time to
generate an unconditional transition.
Tables 1–4 report numerical results for the examples

listed above. In each case, we report the product N*V
by normalizing the corresponding product for the standard
method to be 100%.
In Table 1, we present the performance of the “P̂ Esti-

mator” of Equation (10) relative to the standard estimator
of Equation (7) for the typical options. For each benchmark
option, we report results for two versions: the standard ver-
sion and a binary version, in which the payoff is 1 when
the payoff of the standard version is positive, and 0 other-
wise. The binary payoffs have less variance conditional on
final survival. The methods proposed in this paper reduce
only the variance associated with knock-out, and have no
effect on variance conditional on final survival. However,
it should be possible to combine them with other methods
which do reduce that part of the variance.
Next, we test values of the estimator parameter r (the

number of trials per step) in order to give guidelines
for choosing the parameter in practice. Table 2 gives the
results for Examples 1a, 2a, and 3a, while Table 3 contains
the results for the higher knock-out probability options of
Examples 1b, 2b, and 3b. We focus on binary options, for
which the methods are most effective.
Increasing r improves the accuracy of the likelihood ratio

estimation, but this accuracy comes at the price of increased

Table 2.

Method r Example 1a Example 2a Example 3a

Binomial 2 52% 72% 83%
3 46% 70% 82%
4 43% 72% 81%
6 43% 80% 79%
8 46% 88% 77%

Negative 2 173% 205% 162%
Binomial 3 104% 152% 118%

4 85% 142% 102%
6 82% 152% 89%
8 90% 173% 84%
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Table 3.

Method r Example 1b Example 2b Example 3b

Binomial 2 37% 35% 27%
3 24% 32% 15%
4 19% 29% 12%
6 15% 24% 11%
8 14% 22% 10%

Negative 2 11% 0.29%
Binomial 3 3.7% 0.14%

4 2.2% 0.08% n. a.
6 1.6% 0.06%
8 1.3% 0.06%

computational effort. The marginal benefit of large r is
decreasing in r ; that is, the more effort has been expended
on estimating the likelihood ratio accurately, the less value
there is to expending further effort on this task. This is
reflected in several examples in which increasing r too
much eventually increases the computational expense.
Table 3 highlights one of the shortcomings of the nega-

tive binomial estimator. It is impractical to use it for Exam-
ple 3b, in which the barrier only takes effect after two
years. If the forward rate is too far outside the barrier, there
is a very low probability that an unconditional successor
will survive the step in which the barrier first takes effect.
This makes the expected waiting time unreasonably long.
This difficulty of “painting oneself into a corner” illus-

trates a potential shortcoming of our methodology. What
one would really wish to do to reduce variance is to condi-
tion on final survival. As this is seldom possible, condition-
ing on one-step survival can be an effective substitute, but
is not precisely the same. In general, the barrier at time i
has no effect on simulation of steps j < i−1, so for certain
problems, the state vector Si can have a very large probabil-
ity of being in a region in which there is minuscule chance
of surviving step i. This situation weakens the effectiveness
of all of the methods, but especially the negative binomial.
Table 4 examines the characteristics of a barrier option

which make conditioning on one-step survival an effective
technique. We modify Example 1 so that it is a down-and-
out call, for which there is only a lower barrier.

Example 1c. The stock’s initial price is S0 = 100, and it
has drift �= 0 and volatility � = 30%. The option’s matu-
rity is T = 0
25. There is a single barrier at H = 94
30, and
monthly monitoring (m= 3). The strike is K = H , so that
the binary option pays 1 unless it is knocked out.

Table 4.

� T H m Binary Standard

30.0% 0
25 $94
30 3 12% 58%
73.7% 0
25 $94
30 3 9% 48%
30.0% 1
5 $94
30 3 9% 48%
30.0% 0
25 $98
62 3 8% 42%
30.0% 0
25 $94
30 63 126% 155%

This means that the price of the binary option equals the
probability of final survival, because there is no discount-
ing. The price of the option is 50 cents. Then we construct
four new scenarios in each of which one parameter differs:
• The volatility � = 73
7%.
• The maturity T = 1
5 years, but there are still only

three monitoring dates.
• The barrier H = 98
62.
• The monitoring is daily, so m= 63.

All of these changes produce the same new, lower price of
33.9 cents.
All else being equal, a lower probability of final sur-

vival is associated with a greater benefit to these meth-
ods, because there is more variance due to survival to be
eliminated. However, different factors affect the results in
slightly different ways. For instance, the scenario with the
tighter barrier produces superior results for the standard
call. Tightening the barrier produces the greatest improve-
ment in variance reduction because it neither increases the
variance conditional on survival nor causes wild sample
paths with highly variable likelihoods.
Most significantly, we see that with this knock-out prob-

ability and a large number of steps, the exact method can
underperform the standard method. With the total knock-
out probability held constant, increasing the number of
steps weakens the performance of the exact method for
two reasons. For one, the ratio of the expected number of
steps simulated by the standard and exact methods is 1
when m = 1 and decreases to some limit as m increases.
Also, from Theorem 3, the variance of the exact estimator
is Ê�L2

m�f �Sm		
2�−X2

0 , which increases with the variance
of Lm. When m= 1, the likelihood ratio Lm is constant and
has zero variance, and its variance grows with m. This is
another illustration that successive one-step survival is not
the same as final survival; the more steps there are, the less
conditioning on one-step survival resembles conditioning
on final survival.
Table 5 illustrates this point using Example 1d with a

binary payoff. The rows labeled N and N*V contain, as
usual, the ratio of the estimate for the exact P̂ estimator
divided by that for the standard estimator. The option price
approaches a limit which is the price with continuous mon-
itoring. Likewise, the ratio of N approaches a limit which
is T divided by the expected time until knock-out or matu-
rity with continuous monitoring. For m= 1, the exact esti-
mator has zero variance for this binary option. Despite the
increasing probability of knock-out as m increases, the effi-
ciency of the exact method decreases.

Example 1d. This is the same as Example 1c, except that
there are two barriers, Hl = 94
40 and Hu = 105
60. The
frequency of monitoring m varies.

5. CONCLUSIONS

Conditioning on one-step survival at each step of a barrier
option simulation is a natural extension of importance sam-
pling which takes advantage of the particular structure of
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Table 5.

m 1 3 6 12 24 36 48 60

Price 0
290 0
101 0
042 0
018 0
007 0
005 0
004 0
003
N 100% 176% 248% 321% 402% 441% 461% 487%
N*V 0% 0
1% 0
5% 1
3% 3
2% 5
5% 7
0% 9
2%

barrier options. We have proposed an estimator (10), which
implements this technique when the state vector’s distribu-
tion conditional on one-step survival is explicitly known.
The estimator is unbiased and has less variance than a
standard estimator, but also requires more computational
effort on average. For typical barrier options, it produces
a substantial improvement in efficiency, as measured by
the product of work and variance. When the probability of
knock-out is high, this estimator can be far more efficient
than a standard Monte Carlo estimate.
It is possible to implement the same concept even when

the one-step conditional distribution is unknown. Using a
properly estimated likelihood ratio results in consistent esti-
mators. Standard Monte Carlo simulation is seen to be a
special case of this type of algorithm, where each step’s
contribution to the likelihood ratio is estimated by a single
Bernoulli trial. The computational expense of using more
simulations per step to estimate the likelihood ratio is jus-
tified by a sufficient reduction in variance only when the
probability of knock-out is high. Consequently, the struc-
ture of the estimated likelihood ratio can have a significant
effect on the estimator’s performance, making it potentially
difficult to choose a suitable estimator before having ana-
lyzed the problem already.
Nonetheless, it is possible to give some guidelines about

when conditioning on one-step survival will be most effec-
tive. In general, the probability of knock-out is high when
the underlying asset is “close” to the barrier, relative to
its volatility and the maturity of the option. A fixed bar-
rier is effectively closer when volatility is high or maturity
is long. However, large volatilities and maturities are asso-
ciated with higher payoff variance, which can reduce the
effectiveness of the method.
An important point is that conditioning on survival

reduces only the variance associated with knock-out, not
the variance of the payoff, which remains conditional on
final survival. When the former type of variance is small
compared with the latter, this variance reduction method
will not prove very effective if applied alone. If there is
significant variance conditional on final survival, condition-
ing on one-step survival may be used in conjuction with
other variance reduction methods such as control variates
or antithetic variates.
Another situation in which conditioning on survival is

effective is when knock-out is disproportionately likely to
occur late in the simulation. In this case, standard Monte
Carlo simulation will waste a lot of time in computing paths
that get knocked out, making it attractive to simulate under
a scheme where paths have a higher probability of surviv-
ing each step. This situation can arise if a combination of

the drift of the process or time dependence of the barrier or
volatility make the barrier initially distant from the under-
lying asset, but very likely to be close after the elapse of
some time.
For typical barrier options, conditioning on one-step sur-

vival is an effective variance reduction technique when the
one-step conditional distribution is known. If it is unknown,
the lower the probability of final survival, the more compu-
tational effort should be spent at each step in estimating the
contribution to the likelihood ratio. However, algorithms
which expend too much effort in this direction may under-
perform standard Monte Carlo simulation.

APPENDIX A. ANALYSIS OF THE ESTIMATORS

Although Lemma 1 is in some respects standard (see, e.g.,
Glynn and Iglehart 1989 for related results), we detail the
proof because the fact that P and P̂ do not have common
support requires some care.

Proof of Lemma 1. Let ; be a path up to time i: �S1 =
s1� 
 
 
 � Si = si	, and let <i be the set of all such paths. The
space <i is the Cartesian product

∏i
j=17j , where each 7j ,

the outcome space for Sj , is a copy of �d ∪ �
�, for some
d. The subsets of <i may be naturally identified with the
elements of �i by mapping each point �s1� 
 
 
 � si	 ∈ <i to
the set ��S1� 
 
 
 � Sm	 � S1 = s1� 
 
 
 � Si = si� ⊆7. Then we
may stretch notation by treating P and P̂ as measures on <i,
and using �j to refer to the projection of �j ⊂7 onto 7j .
With this machinery, the proof of the lemma is as follows:

E�AiY �=
∫
<i

AiY dP�;	

=
∫
71

···
∫
7i

AiY dP�Si �Si−1=si−1	···dP�S1 �S0=s0	

=
∫
�1

···
∫
�i

Y dP�Si �Si−1=si−1	···dP�S1 �S0=s0	

=
∫
�1

···
∫
�i

YLi

i−1∏
j=0

1
p�Sj	

dP�Si �Si−1=si−1	

···dP�S1 �S0=s0	

=
∫
�1

···
∫
�i

YLi

dP�Si �Si−1=si−1	

p�Si−1	
··· dP�S1 �S0=s0	

p�S0	

=
∫
�1

···
∫
�i

YLidP�Si �Si−1=si−1�Ai=1	

···dP�S1 �S0=s0�A1=1	

=
∫
�1

···
∫
�i

YLidP̂�Si �Si−1=si−1	···dP̂�S1 �S0=s0	
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=
∫
<i

AiYLidP̂�;	

=
∫
<i

YLidP̂�;	= Ê�LiY �


Thus, Li is the Radon-Nikodym derivative of the restric-
tion of P to �m (which is a measure, but not a proba-
bility measure) with respect to P̂ relative to �i. See, e.g.,
Billingsley (1995, pp. 422–423). As mentioned previously,
P is not absolutely continuous with respect to P̂ because
P�Am = 0� > 0 while P̂�Am = 0�= 0. �

Proof of Lemma 2. By assumption (28), E�AmX
2
m� exists

and is finite, since AmX
2
m = X2

m because Xm = Amf�Sm	
as defined in (7). As X2

m is �m-measurable, Lemma 1
applies, so

�> E�AmX
2
m�= Ê�LmX

2
m�� Ê�L2

mX
2
m�= Ê�X̂2

m��

since Lm � 1. Consequently, Ê�X̂2
m� is finite. For the second

part,

�E�AiXi�� =
∣∣∣ ∫ AiXidP

∣∣∣
�

∫
Ai�Xi�dP

� P��Xi�� 1�+
∫
�Xi �>1

Ai�Xi�dP

� P��Xi�� 1�+
∫
�Xi �>1

AiX
2
i dP

� 1+E�X2
i �� 1+E�X2

m� <��

where E�X2
i � � E�X2

m� is justified by Jensen’s inequality.
�

Proof of Theorem 2. In light of Theorem 1 and linearity
of expectation, the conclusion would follow directly if it
were proven that

Ê�Li�1−p�Si		Yi�= E��Ai−Ai+1	Yi�

where Yi is an �i-measurable random variable. First
observe that

Ê�Li�1−p�Si		Yi�= E�Ai�1−p�Si		Yi�

by Lemma 1, since �1−p�Si		Yi is �i-measurable. Next,
noting that on �Ai = 1� we have p�Si	 = E�Ai+1 � �i�, we
get

E�Aip�Si	Yi�= E�AiE�Ai+1 � �i�Yi�

= E�E�Ai+1Yi � �i��= E�Ai+1Yi�


Therefore,

E�Ai�1−p�Si		Yi�= E�AiYi�−E�Aip�Si	Yi�

= E�AiYi�−E�Ai+1Yi�

= E��Ai−Ai+1	Yi�

as desired, proving the result. �

Proof of Lemma 3. First,

Var�Xm�= Var
[ m∑
i=1

�Xi−Xi−1	

]



Next, show that (for i �= j) Xi −Xi−1 and Xj −Xj−1 are
uncorrelated, although not necessarily independent. This is
so because Xi = E�Xi+1 � �i�, so if Y is �i−1-measurable,

E�Y �Xi−Xi−1	�= E�YXi�−E�YE�Xi � �i−1	�

= 0= E�Xi−Xi−1�E�Y �


Take j < i, then Xj−Xj−1 is �i-measurable, so substituting
for Y �Xi −Xi−1, and Xj −Xj−1 are uncorrelated. Conse-
quently,

Var�Xm�=
m∑
i=1

Var�Xi−Xi−1�


By a standard decomposition of variance,

Var�Xi−Xi−1�= E�Var�Xi � �i−1��

+ Var�E�Xi−Xi−1 � �i−1��


Observe from its definition that Xi is a martingale (see, e.g.,
Karlin and Taylor 1975, p. 246). It follows that the second
term in this variance decomposition is zero. Therefore,

Var�Xm�=
m∑
i=1

E�Var�Xi � �i−1��
 �

Proof of Lemma 4. First write, using the standard vari-
ance decomposition again,

Var�Xi � �i−1�= E�Var�Xi � �i−1�Ai� � �i−1�

+ Var�E�Xi � �i−1�Ai� � �i−1�


The conditional expectation and variance of Xi given Ai = 0
are both zero. Therefore, given �i−1,

E�Xi � �i−1�Ai�= AiE�Xi � �i−1�Ai = 1��

and the distribution of Ai conditioned on �i−1 is Bernoulli
with parameter p�Si−1	. Consequently,

Var�E�Xi � �i−1�Ai� � �i−1�

= p�Si−1	�1−p�Si−1		�E�Xi � �i−1�Ai = 1�	2


Likewise, given �i−1,

Var�Xi � �i−1�Ai�= AiVar�Xi � �i−1�Ai = 1�

and

E�Var�Xi � �i−1�Ai� � �i−1�

= p�Si−1	Var�Xi � �i−1�Ai = 1�
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The expectation of the one-step conditional variance is,
since Xi is a martingale,

E�Var�Xi � �i−1��= E�E�X2
i � �i−1�− �E�Xi � �i−1�	

2�

= E�E�X2
i � �i−1��−E�X2

i−1�

= E�X2
i �−E�X2

i−1�
 �

Proof of Theorem 3. Variance reduction follows from
a bound on the likelihood ratio, a property frequently
exploited in analyzing importance sampling methods:

V̂ar�X̂m�= Ê�X̂2
m�− �Ê�X̂m�	

2

= Ê�L2
mX

2
m�−X2

0

= E�LmX
2
m�−X2

0

� E�X2
m�−X2

0

= Var�Xm��

where the inequality follows because Lm � 1, and Lm < 1
if there is any chance of knock-out. X0 = E�Xm� = Ê�X̂m�
is the nonrandom (but unknown) price, the unconditional
expectation of these unbiased estimators (see Theorem 1).
Similarly, the expected one-step conditional variance is:

Ê�V̂ar�X̂i � �i−1��= Ê�Ê��X̂i−E�X̂i � �i−1�	
2 � �i−1��

= Ê�Ê��X̂i− X̂i−1	
2 � �i−1��

= Ê�Ê�X̂2
i �−2X̂i−1Ê�X̂i � �i−1�+ X̂2

i−1�

= Ê�X̂2
i �− Ê�X̂2

i−1�

= Ê�L2
i X

2
i �− Ê�L2

i−1X
2
i−1�

= E�LiX
2
i �−E�Li−1X

2
i−1��

where the second equality holds because Xi is a
martingale. �

Proof of Theorems 4 and 5. Theorem 4 is an immediate
consequence of the more general result

En�AiYL
n
i �= E�AiY ��

where Y is �i-measurable. This result is very similar to
Lemma 1, and the proof is exactly parallel. Here the crucial
observation is

∫
�j

•
(
1− �1−p�Sj−1		

n

p�Sj−1	

)
dP�Sj � Sj−1 = sj−1	

=
∫
�j

•dPn�Sj � Sj−1 = sj−1	�

because Pn�Aj = 1 � Sj−1� = 1 − �1 − p�Sj−1		
n, while

P�Aj = 1 � Sj−1� = p�Sj−1	. The proof of Theorem 5 is
exactly the same as that of Theorem 3, with the measure
Pn substituted for P̂. �

Proof of Theorem 6. The proof is by induction on m. The
crucial observation is that the waiting time Yi and the suc-
cessor Si+1 are independent given �i. Then for m= 1� f �S1	
and Y0 are independent, so

Ê
[
f �S1	

r−1
Y0−1

]
= Ê�f �S1	�Ê

[
r−1
Y0−1

]
= Ê�f �S1	�p�S0	= Ê�f �S1	L1�

as desired. Recall that where Yi has negative bino-
mial distribution with parameters �r�p�Si		, the estimator
�r−1	/�Yi−1	 is unbiased. Next assume that the property
holds for some m, and prove it holds for m+1:

Ê
[
f �Sm+1	

m∏
i=0

r−1
Yi−1

]

= Ê
[m−1∏

i=0

r−1
Yi−1

f �Sm+1	
r−1
Ym−1

]

= Ê
[
Ê
[m−1∏

i=0

r−1
Yi−1

f �Sm+1	
r−1
Ym−1

� �m

]]

= Ê
[m−1∏

i=0

r−1
Yi−1

Ê�f �Sm+1	 � �m�Ê
[
r−1
Ym−1

� �m

]]
= Ê�LmÊ�f �Sm+1	 � �m�p�Sm	�

= Ê�Ê�Lm+1f �Sm+1	 � �m��

= Ê�Lm+1f �Sm+1	�


The fourth equality follows from the inductive assump-
tion, because Ê�f �Sm+1	 � �m�Ê�

r−1
Ym−1 � �m� is just an �m-

measurable random variable. �

Proof of Theorem 7. The proof is very similar to that of
Theorem 6, proceeding by induction on m. For m= 1,

En

[
f �S1	

N0

n

]
= En�f �S1		E

n

[
N0

n

]
= En�f �S1	�p�S0	= En�f �S1	L1��

because Ni/n is unbiased for p�Si	. The inductive step is
justified by:

En

[
f �Sm+1	

m∏
i=0

Ni

n

]
= En

[
En

[m−1∏
i=0

Ni

n
f �Sm+1	

Nm

n
� �m

]]

= En

[m−1∏
i=0

Ni

n
En�f �Sm+1	 � �m	

×En

[
Nm

n
� �m

]]



Next, note that

En

[
Nm

n
� �m

]
= En

[
Am+1

Nm

n
� �m

]
= En

[
Am+1E

n

[
Nm

n
� �m�Am+1 = 1

]
� �m

]
= En

[
Am+1

p�Sm	

1− �1−p�Sm		
n
� �m

]
�
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because

Am+1 = 0 ⇐⇒ Nm = 0�

Pn�Am+1 = 1 � �m�= 1− �1−p�Sm		
n�

En

[
Nm

n
� �m�Am+1 = 0

]
= 0


Returning to the main argument,

En

[
f �Sm+1	

m∏
i=0

Ni

n

]
= En

[
AmL

n
mE

n

[
f �Sm+1	Am+1

p�Sm	

1− �1−p�Sm		
n
� �m

]]
= En�En�Am+1f �Sm+1	L

n
m+1 � �m��

= En�Am+1f �Sm+1	L
n
m+1�
 �
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