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This paper develops efficient methods for computing portfolio value-at-risk (VAR) when the
underlying risk factors have a heavy-tailed distribution. In modeling heavy tails, we focus on
multivariate t distributions and some extensions thereof. We develop two methods for VAR
calculation that exploit a quadratic approximation to the portfolio loss, such as the delta-gamma
approximation. In the first method, we derive the characteristic function of the quadratic
approximation and then use numerical transform inversion to approximate the portfolio loss
distribution. Because the quadratic approximation may not always yield accurate VAR estimates, we
also develop a low variance Monte Carlo method. This method uses the quadratic approximation to
guide the selection of an effective importance sampling distribution that samples risk factors so that
large losses occur more often. Variance is further reduced by combining the importance sampling with
stratified sampling. Numerical results on a variety of test portfolios indicate that large variance
reductions are typically obtained. Both methods developed in this paper overcome difficulties
associated with VAR calculation with heavy-tailed risk factors. The Monte Carlo method also extends
to the problem of estimating the conditional excess, sometimes known as the conditional VAR.
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1. INTRODUCTION

A central problem in market risk management is estimation of the profit-and-loss

distribution of a portfolio over a specified horizon. Given this distribution, the

calculation of specific risk measures is relatively straightforward. Value-at-risk (VAR),

for example, is a quantile of this distribution. The expected loss and the expected excess

loss beyond some threshold are integrals with respect to this distribution. The difficulty

in estimating these types of risk measures lies primarily in estimating the profit-and-loss

distribution itself, especially the tail of this distribution associated with large losses.
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All methods for estimating or approximating the distribution of changes in portfolio

value rely (at least implicitly) on two types of modeling considerations: assumptions

about the changes in the underlying risk factors to which a portfolio is exposed, and a

mechanism for translating these changes in risk factors to changes in portfolio value.

Examples of relevant risk factors are equity prices, interest rates, exchange rates, and

commodity prices. For portfolios consisting of positions in equities, currencies,

commodities, or government bonds, mapping changes in the risk factors to changes in

portfolio value is straightforward. But for portfolios containing complex derivative

securities this mapping relies on a pricing model.

The simplest and perhaps most widely used approach to modeling changes in

portfolio value is the variance-covariance method popularized by RiskMetrics (1996).

This approach is based on assuming (i) that changes in risk factors are conditionally

multivariate normal over a horizon of, say, one day, two weeks, or a month, and (ii) that

portfolio value changes linearly with changes in the risk factors. (‘‘Conditionally’’ here

means conditional on information available at the start of the horizon; the uncondi-

tional distribution need not be normal.) Under these assumptions, the portfolio profit-

and-loss distribution is conditionally normal; its standard deviation can be calculated

from the covariance matrix of the underlying risk factors and the sensitivities of the

portfolio instruments to these risk factors. The attraction of this approach lies in its

simplicity. But each of the assumptions on which it relies is open to criticism, and

research in the area has tried to address the shortcomings of these assumptions.

One line of work has focused on relaxing the assumption that portfolio value

changes linearly with changes in risk factors while preserving computational

tractability. This includes, in particular, the ‘‘delta-gamma’’ methods developed in

Britten-Jones and Schaefer (1999), Duffie and Pan (2001), Rouvinez (1997), and Wilson

(1999). These methods refine the relation between risk factors and portfolio value to

include quadratic as well as linear terms. Methods that combine interpolation

approximations to portfolio value with Monte Carlo sampling of risk factors are

considered in Jamshidian and Zhu (1997), Picoult (1999), and Shaw (1999). Low

variance Monte Carlo methods based on exact calculation of changes in portfolio value

are proposed in Cardenas et al. (1999), Glasserman, Heidelberger, and Shahabuddin

(2000), and Owen and Tavella (1999).

Another line of work has focused on developing more realistic models of changes in

risk factors. It has long been observed that market returns exhibit systematic deviation

from normality: across virtually all liquid markets, empirical returns show higher peaks

and heavier tails than would be predicted by a normal distribution, especially over

short horizons. Early studies along these lines include Mandelbrot (1963), Fama

(1965), Praetz (1972), and Blattberg and Gonedes (1974). More recent investigations,

some motivated by value-at-risk, include Bouchaud, Sornette, and Potters (1997),

Danielsson and de Vries (1997), Eberlein and Keller (1995), Eberlein, Keller, and

Prause (1998), Embrechts, McNeil, and Straumann (2001), Hosking, Bonti, and Siegel

(2000), Huisman et al. (1998), Koedijk, Huisman, and Pownall (1998), McNeil and

Frey (1999), Heyde (1999). Using different approaches to the problem and different sets

of data, these studies consistently find high kurtosis and heavy tails. Moreover, most

studies find that the tails in financial data are not so heavy as to produce infinite

variance (as would be implied by a nonnormal stable distribution), though higher order

moments (e.g., fifth and higher) may be infinite.

This paper contributes to both lines of investigation by developing methods for

calculating portfolio loss probabilities when the underlying risk factors are heavy
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tailed. Most of the literature documenting heavy tails in market data has focused on the

univariate case—time series for a single risk factor or in some cases a fixed portfolio.

There has been less work on modeling the joint distribution of risk factors with heavy

tails (recent work in this direction includes Embrechts et al. 2002 and Hosking et al.

2000). There has been even less work on combining heavy-tailed joint distributions for

risk factors with a nonlinear relation between risk factors and portfolio value, which is

the focus of this paper.

We model changes in risk factors using a multivariate t distribution and some

generalizations of this distribution. A univariate t distribution is characterized by a

parameter m, its degrees of freedom. The tails of the t density decay at a polynomial rate

of m þ 1, so the parameter m determines the heaviness of the tail and the number of finite

moments. Empirical support for modeling univariate returns with a t distribution or

t-like tails can be found in Blattberg and Gonedes (1974), Danielsson and de Vries

(1997), Hosking et al. (2000), Huisman et al. (1998), Hurst and Platen (1997), Koedijk

et al. (1998), and Praetz (1972). There are many possible multivariate distributions with

t marginals. We follow Anderson (1984), Tong (1990), and others in working with a

particular class of multivariate distributions having t marginals for which the joint

distribution is characterized by a symmetric, positive definite matrix R, along with the

degrees of freedom. The matrix R plays a role similar to that of the covariance matrix

for a multivariate normal; this facilitates modeling with the multivariate t and

interpretation of the model.

Because it is characterized by the matrix R, the multivariate t shares some attractive

properties with the multivariate normal while possessing heavy tails. This is important

in combining a realistic model of risk factors with a nonlinear relation between risk

factors and portfolio value, which is our goal. We use the structure of the

multivaratiate t to develop computationally efficient methods for calculating portfolio

loss probabilities capturing heavy tails and without assuming linearity of the portfolio

value with respect to changes in risk factors. While it may be possible to find other

multivariate distributions that are preferable on purely statistical grounds, the

advantage of such a model may be limited if it cannot be integrated with efficient

methods for calculating portfolio risk measures. The multivariate t balances tractability

with the empirical evidence for heavy tails. Moreover, we will see that some of the

methods developed apply to a broader class of distributions of which the multivariate

t is a particularly interesting special case.

We develop two methods for estimating portfolio loss probabilities in the presence of

heavy-tailed risk factors. The first method uses transform inversion based on a

quadratic approximation to portfolio value. It thus extends the delta-gamma

approximation developed in the multivariate normal setting. But the analysis here

differs from the normal case in several important ways. Because the t distribution has a

polynomial tail, it does not have a moment generating function; and whereas

uncorrelated multivariate normal random variables are necessarily independent, the

same is not true with the multivariate t. This means that the characteristic function for

a quadratic in t’s does not factor into a product of one-dimensional characteristic

functions (as it does in the normal case). Indeed, we never explicitly find the

characteristic function of a quadratic in t’s, which may be intractable. Instead, we use

an indirect transform analysis through which we are able to compute the distribution of

interest.

This method is fast, but a quadratic approximation to portfolio value is not always

sufficiently accurate to produce reliable VAR estimates. We therefore also develop an
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efficient Monte Carlo procedure. This method builds on the first; it uses the transform

analysis to design highly efficient sampling procedures that are particularly well suited

to estimating the tail of the loss distribution. The method combines importance

sampling and stratified sampling in the spirit of Glasserman, Heidelberger, and

Shahabuddin (1999a, 1999b, 2000). But the methods in these studies assumed a

multivariate normal distribution and, as is often the case in importance sampling, they

applied an exponential change of measure. An exponential change of measure is

inapplicable to a t distribution, again because of the nonexistence of a moment

generating function. (Indeed, the successful application of importance sampling in

heavy-tailed settings is a notoriously difficult problem; see, e.g., Asmussen and

Binswanger 1997 Asmussen, Binswanger, and Højgaard 2002 and Juneja and

Shahabuddin 1999.) We circumvent this problem by an indirect approach to

importance sampling and stratified sampling. Through careful sampling of market

risk factors, we are able to substantially reduce the variance in Monte Carlo estimates

of loss probabilities and thus to reduce the number of samples needed to estimate a loss

probability to a specified precision. Both a theoretical analysis of the method and

numerical examples indicate the potential for enormous gains in computational speed

as a result of this approach. This therefore makes it computationally feasible to

combine the realism of heavy-tailed distributions and the robustness of Monte Carlo

simulation in estimating portfolio loss probabilities.

The rest of this paper is organized as follows. Section 2 describes the multivariate t
distribution and an extension of it that allows different marginals to have different

degrees of freedom. Section 3 develops the transform analysis for the quadratic (delta-

gamma) approximation to portfolio losses. Section 4 builds on the quadratic

approximation to develop an importance sampling procedure for efficient Monte

Carlo simulation. Section 5 provides an analysis of the importance sampling estimator

and discusses adaptations of the importance sampling procedure for estimating the

conditional excess. Section 6 extends the Monte Carlo method through stratification of

the quadratic approximation. Section 7 presents numerical examples.

2. MULTIVARIATE HEAVY TAILS

The univariate t distribution with m degrees of freedom (abbreviated tm) has density

f ðxÞ ¼
C 1

2
ðm þ 1Þ

� �
ffiffiffi
p

p
C 1

2 m
� � 1þ x2

m

� ��ðmþ1Þ=2

; �1 < x <1;

with Cð�Þ denoting the gamma function. This distribution is symmetric about 0. It has

polynomial tails and the weight of the tails is controlled by the parameter m: if X has the

tm distribution then

PðX > xÞ 	 constant
 x�m; as x ! 1:

In contrast, if Z has a standard normal distribution then

PðZ > xÞ 	 constant
 e�x2=2

x
; as x ! 1;

so the tails are qualitatively different, especially for small values of m. If X 	 tm, then E½X r
is finite for 0 < r < m and infinite for r � m.We aremainly interested in values of m roughly

in the range of 3 to 7 since this seems to be the level of heaviness typical of market data.
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As m ! 1, the tm distribution converges to the standard normal. Figure 2.1 compares the

t3 distribution with a normal distribution scaled to have the same variance. As the figure

illustrates, the t3 has a higher peak and its tails decay much more slowly.

For m > 2, the tm distribution has variance m=ðm � 2Þ. One can scale a tm random

variable X by a constant to change its variance and translate it by a constant to change

its mean. A linear transformation of tm random variable is sometimes said to have a

Pearson Type VII distribution (Johnson, Kotz, and Balakrishnan 1994, p. 21).

Following Anderson (1994), Tong (1990), and others, we refer to

f m;RðxÞ ¼
C 1

2
ðmþ mÞ

� �
ðmpÞm=2C 1

2
m

� �
jRj1=2

1 þ 1

m
x0R�1x

� ��1
2ðmþmÞ

; x 2 Rm:ð2:1Þ

as a multivariate tm density. Here, R is a symmetric, positive definite matrix and jRj is
the determinant of R. If m > 2, then mR=ðm � 2Þ is the covariance matrix of f m;R. Tong’s

definition requires that the diagonal entries of R be 1 (making R the distribution’s

correlation matrix if m > 2); in the more general case of (2.1), the marginals are actually

scalar multiples of univariate tm random variables. Anderson’s (1984) definition allows

a general R and also a nonzero mean vector. This makes each marginal a linear

transformation of a tm random variable (and thus a Pearson Type VII random

variable). As is customary in estimating risk measures over short horizons, we will

assume a mean of zero and thus use (2.1).

The density in (2.1) depends on the argument x only through the quadratic form

x0R�1x; it is therefore elliptically contoured, meaning that the sets on which f is constant

are hyperellipsoids. Within the elliptically contoured family this density belongs to the

class of scale mixtures of normals and thus has a representation as the distribution of the

product of a multivariate normal random vector and a univariate random variable

independent of the normal (cf. Fang, Kotz, and Ng 1987). In the case of (2.1), this

representation can be expressed as follows: if ðX 1; . . . ;XmÞ has density f m;R, then

ðX 1; . . . ;XmÞ ¼ d
ðn1; . . . ; nmÞffiffiffiffiffiffiffiffi

Y =m
p ;ð2:2Þ

where ¼d denotes equality in distribution, n ¼ ðn1; . . . ; nmÞ has distribution Nð0;RÞ, Y
has distribution v2

m (chi-square with m degrees of freedom), and n and Y are
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FIGURE 2.1. Comparison of t3 and normal distribution. The normal distribution has

been scaled to have variance 3, like the t3 distribution.
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independent. This representation is central to our analysis and indeed several of our

results hold if Y is replaced with some other positive random variable having an

exponential tail. See Chapter 3 of Fang et al. for specific examples of multivariate

distributions of the form in (2.2).

From (2.2) we see that modeling changes in risk factors with a multivariate t is

similar to assuming a stochastic level of market volatility: given Y , the variance of X i is

mRii=Y . It is also clear from (2.2) that X i and X j are not independent even if they are

uncorrelated—that is, even if Rij ¼ 0. In (2.2), risk factors with little or no correlation

may occasionally make large moves together (because of a small outcome of Y ), a

phenomenon sometimes observed in extreme market conditions (see, e.g., Longin and

Solnik 1998).

A possible shortcoming of (2.1) and (2.2) is that they require allX i to share a parameter

m and thus have equally heavy tails. To extend the model to allow multiple degrees of

freedom, we use a copula. (For background on copulas see Nelsen 1999; for applications

in risk management see Embrechts et al. 2002 and Li 2000.) LetGm denote the cumulative

distribution function for the univariate tm density. Let ðX 1; . . . ;XmÞ have the density in

(2.1), assuming for the moment that R has all diagonal entries equal to 1. Define

ð~XX1; . . . ; ~XXmÞ ¼ ðG�1
m1
ðGmðX 1ÞÞ; . . . ;G�1

mm ðGmðXmÞÞÞ:ð2:3Þ

Each X i has distribution tm so each GmðX iÞ is uniformly distributed on the unit interval

and each G�1
mi ðGmðX iÞ has distribution tmi ; thus, this transformation produces a

multivariate distribution whose marginals are t distributions with varying degrees of

freedom. This mechanism (as well as the algorithms and proofs in this paper) easily

extends to the case where each X i and ~XXi is a scalar multiple of a t random variable, but

for the sake of simplicity we restrict overselves to the unscaled t whenever we use this

copula mechanism.

A limiting special case of this approach takes m ¼ 1 in (2.1) and (2.3). This gives

ðX 1; . . . ;XmÞ a normal distribution and thus generates ð~XX1; . . . ; ~XXmÞ through a ‘‘normal

copula.’’ In practice, we are most interested in values of mi in a relatively narrow range

(e.g., 3 to 7); graphical inspection of the joint distributions produced suggests that

using (2.3) with m close to the values mi of interest is preferable to using a normal copula.

For example, Figure 2.2 compares contours of bivariate distributions with

ðm1; m2Þ ¼ ð7; 3Þ generated using m ¼ 5 (left) and m ¼ 1 (right). In both cases the

correlation in the copula (the correlation between the underlying X 1 and X 2) is 0.4.

We briefly describe how we envisage the use of (2.3) in modeling market risk factors;

see Hosking et al. (2000) for a more thorough discussion and empirical results along

these lines. (Hosking et al. use m ¼ 1 and call the resulting joint distribution

metagaussian; the same approach can be used with a finite m.) Let S denote an m-vector

of risk factors (market prices and rates or volatility factors) and let DS denote the

change in S over an interval of length Dt. Think of Dt as the horizon over which VAR is

to be calculated and thus typically either one day or two weeks. We model each

DSi, i ¼ 1; . . . ;m, as a scalar multiple of a tmi random variable; assuming mi > 2, we can

write

DSi ¼ ~rri

ffiffiffiffiffiffiffiffiffiffiffiffi
mi � 2

mi

s
~XXi; ~XXi 	 tmi :ð2:4Þ

This makes ~rr2
i the variance of DSi. The parameter mi could be estimated using, for

example, the methods in Hosking et al. or Johnson, Kotz, and Balakrishnan (1995,
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Sec. 28.6). (Alternatively, one might fit a scaled t distribution to the return DSi=Si.

Since we are ultimately interested in the distribution of DSi conditional on the current

Si, the effect of this is to change the definition of ~rri in (2.4).)

Once we have chosen marginal distributions as in (2.4), we can define the

transformed variables X i ¼ G�1
m ðGmið~XXiÞÞ, i ¼ 1; . . . ;m, for some choice of m. Applying

this transformation to historical data, we can then estimate the correlation matrix of

X ¼ ðX 1; . . . ;XmÞ. Letting R denote this correlation matrix and positing that X has the

density in (2.1) completes the specification of the model: applying (2.3) to X and then

(2.4) to the ~XXi we recover the DSi. We denote the combined transformation by

DS ¼ KðX Þ with

DSi ¼ KiðX iÞ; KiðxÞ ¼ ~rri

ffiffiffiffiffiffiffiffiffiffiffiffi
mi � 2

mi

s
G�1

mi ðGmðxÞÞ:ð2:5Þ

This produces a joint distribution for DS that accommodates tails of different heaviness

for different marginals and captures some of the dependence among risk factors

observed in historical data. Note that R is not the correlation matrix of DS because

(2.3) does not in general preserve correlations. As a monotone transformation, KðX Þ
does however preserve rank correlations. For an extensive discussion of dependence

properties and the use of copula models in risk management applications, see

Embrechts et al. (2002).

3. QUADRATIC APPROXIMATION AND TRANSFORM ANALYSIS

This section develops a method for calculating the distribution of the change in

portfolio value over a fixed horizon assuming that the changes in underlying risk

factors over the horizon are described by a multivariate t distribution and that the

change in portfolio value is a quadratic function of the changes in the risk factors. As in

the previous section, let S denote an m vector of risk factors to which a portfolio is

exposed and let DS denote the change in S from the current time 0 to the end of the

horizon Dt. Fix a portfolio and let V ðt; SÞ denote its value at time t and risk factors S.
The delta-gamma approximation to the change in portfolio value is
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FIGURE 2.2. Comparison of contours of bivariate t distributions with ðm1; m2Þ ¼ ð7; 3Þ
generated using a t copula with m ¼ 5 (left) and a normal copula (m ¼ 1, right), both

with a correlation of 0.4.
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V ðDt; S þ DSÞ � V ð0;DSÞ � @V
@t

Dt þ d0DS þ 1

2
DS0CDS;

with

di ¼
@V
@Si

; Cij ¼
@2

@Si@Sj
; i; j ¼ 1; . . . ;m;

and all derivatives evaluated at the initial point ð0; SÞ.
An important feature of this approximation is that most of the required first- and

second-order sensitivites (the deltas, gammas, and time decay) are regularly calculated

by financial firms as part of their trading operations. It is therefore reasonable to

assume that these sensitivities are available ‘‘for free’’ in calculating VAR and related

portfolio risk measures. Although this is an important practical consideration, from a

mathematical perspective there is no need to restrict attention to this particular

approximation—we will simply assume the availability of some quadratic approxima-

tion. Also, we find it convenient to work with the loss L ¼ V ð0;DSÞ � V ðDt; S þ DSÞ,
rather than the increase in value approximated above. Thus, we work with an

approximation of the form

L � a0 þ a0DS þ DS0ADS � a0 þ Q;ð3:1Þ

with a0 a scalar, a an m vector and A an m
 m symmetric matrix. The delta-gamma

approximation has a ¼ �d and A ¼ � 1
2 C. Our interest centers on calculating loss

probabilities PðL > xÞ assuming equality in (3.1), and on the closely related problem of

calculating VAR—that is, of finding a quantile xp for which PðL > xpÞ ¼ p with, for

example, p ¼ :01.
We model the changes in risk factors DS using a multivariate t distribution f m;R as in

(2.1) for some symmetric, positive definite matrix R and a degrees-of-freedom

parameter m. (We consider the more general model in (2.5) at the end of this section.)

From the ratio representation (2.2) we know that DS has the distribution of n=
ffiffiffiffiffiffiffiffi
Y =m

p
with n 	 Nð0;RÞ. If C is any matrix for which CC0 ¼ R, then n has the distribution of

CZ with Z 	 Nð0; IÞ. Thus, DS has the distribution of CX with X ¼ Z=
ffiffiffiffiffiffiffiffi
Y =m

p
(i.e., with

X having density f m;I ). It follows that

Q ¼d ða0CÞX þ X 0ðC0ACÞX ;

with X having uncorrelated components. We verify in the proof of Theorem 3.1 below

that among all C for which CC0 ¼ R it is possible to choose one for which C0AC is

diagonal. Letting K denote this diagonal matrix, k1; . . . ; km its diagonal entries, and

b ¼ a0C we conclude that

Q ¼d b0X þ X 0KX ¼
Xm
j¼1

ðbjX j þ kjX 2
j Þ:ð3:2Þ

At this point we encounter major differences between the normal and t settings. In

the normal case (m ¼ 1) the X j are independent because they are uncorrelated. The

characteristic function of the sum in (3.2) thus factors as the product of the

characteristic functions of the summands. Moreover, each ðbjX j þ kjX 2
j Þ is a linear

transformation of a noncentral chi-square random variable and thus has a convenient

moment generating function and characteristic function (see p. 447 of Johnson et al.

1995). An explicit expression for the characteristic function of Q follows; this can be
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inverted numerically to compute probabilities PðQ > xÞ which can in turn be used to

approximate the loss distribution through (3.1). A similar analysis applies if X is a finite

mixture of normals.

These simplifying features do not extend to the multivariate t. Though uncorrelated,

the X j in (3.2) are no longer independent so the characteristic function does not factor

as a product over j. Even if it did, the one-dimensional transforms would be difficult to

work with: because they are heavy tailed, X j and X 2
j do not have moment generating

functions; each X 2
j has an F distribution, for which the characteristic function is a

doubly infinite series (see Johnson et al. 1995, eqn. 27.2). It therefore seems fair to

describe the characteristic function of Q in (3.2) as intractable.

Through an indirect approach, we are nevertheless able to calculate the distribution

PðQ � xÞ. Recall the representation X ¼ Z=
ffiffiffiffiffiffiffiffi
Y =m

p
, define

Qx ¼ ðY =mÞðQ� xÞ;ð3:3Þ

and observe that PðQ � xÞ ¼ PðQx � 0Þ � F xð0Þ. To compute PðQ � xÞ we may

therefore find the characteristic function of Qx and invert it to find PðQx � 0Þ. Note

that Qx is not heavy-tailed and so, unlike Q, its moment generating function exists and

consequently its characteristic function is more tractable. The necessary steps, starting

from (3.1), are provided by the following result. We formulate a more general result by

letting Y in the representation DS ¼ Z=
ffiffiffiffiffiffiffiffi
Y =m

p
be fairly arbitrary (but positive). Define

the moment generating function

/Y ðhÞ ¼ E ehY
	 


and suppose /Y ðhÞ <1 for 0 < h < �hhY . We specialize to the multivariate t by taking

Y 	 v2
m .

Theorem 3.1. Let k1 � k2 � � � � � km be the eigenvalues of RA and let K be the

diagonal matrix with these eigenvalues on the diagonal. There is a matrix C satisfying
CC0 ¼ R and C0AC ¼ K. Let b ¼ a0C. Then PðQ � xÞ ¼ F xð0Þ, where the distribution F x

has moment generating function (mgf)

/xðhÞ ¼ /Y ðaðhÞÞ
Ym
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2hkj

pð3:4Þ

with

aðhÞ ¼ � hx
m
þ 1

2m

Xm
j¼1

h2b2
j

1� 2hkj
;ð3:5Þ

provided k1h < 1=2 and aðhÞ < �hhY . In the case of the multivariate tm,

/xðhÞ ¼ 1 þ 2hx
m

�
Xm
j¼1

h2b2=m
1 � 2hkj

 !�m=2Ym
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2hkj

p :ð3:6Þ

The characteristic function of Qx is given by E½expðixQxÞ ¼ /xðixÞ with i ¼
ffiffiffiffiffiffiffi
�1

p
.

Proof. The existence of the required matrix C is the same here as in the normal case

(Glasserman et al. 2000); we include the proof because it is constructive and thus useful

in implementation. Let B be any matrix for which BB0 ¼ R (e.g., the Cholesky factor
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of R). As a symmetric matrix, B0AB has real eigenvalues; these eigenvalues are the same

as those of BB0A ¼ RA, namely k1; . . . ; km. Moreover, B0AB ¼ UKU 0 where U is an

orthogonal matrix whose columns are eigenvectors of B0AB. It follows that

U 0B0ABU ¼ K and ðBUÞðBUÞ0 ¼ BB0 ¼ R, so setting C ¼ BU produces the required

matrix.

Given C, we can assume Q has the diagonalized form in (3.2) with X having density

f m;I . To calculate the mgf of Qx, we first condition on Y :

E½expðhQxÞjY  ¼ E½expðhðY =mÞðQ� xÞÞjY ð3:7Þ

¼ E exp h
Xm
j¼1

ðbj
ffiffiffiffiffiffiffiffi
Y =m

p
Zj þ Z2

j jÞ � xY =m

" # !
jY

" #

¼ e�xhY =m
Ym
j¼1

E exp hðbj
ffiffiffiffiffiffiffiffi
Y =m

p
Zj þ kjZ2

j Þ
� �

jY
h i

;

because the uncorrelated standard normal random variables Zj are in fact independent.

As in equation (29.6) of Johnson et al. (1995) we have, for Zj 	 Nð0; 1Þ,

E½expðuðZj þ aÞ2Þ ¼ ð1� 2uÞ�1=2 exp
a2u

1� 2u

� �
; u < 1=2;

this is the mgf of a noncentral v2
1 random variable. Each factor in (3.7) for which kj 6¼ 0

can be evaluated using this identity by writing

bj
ffiffiffiffiffiffiffiffi
Y =m

p
Zj þ kjZ2

j ¼ kj Zj þ
bj

ffiffiffiffiffiffiffiffi
Y =m

p
2kj

 !2

�
b2
j ðY =mÞ
4k2

j

;

If kj ¼ 0, use E½expðuZjÞ ¼ expðu2=2Þ. The product in (3.7) thus evaluates to

e�xhY =m exp
1

2

Xm
j¼1

h2b2
j Y =m

1 � 2hkj

 !Ym
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2hkj

p
which is

eaðhÞY
Ym
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2hkj

p :ð3:8Þ

Taking the expectation over Y yields (3.4). If Y 	 v2
m , then

/Y ðhÞ ¼ ð1 � 2hÞ�m=2; h < 1=2;

so the expectation of (3.8) becomes

ð1 � 2aðhÞÞ�m=2
Ym
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2hkj

p ;

which is (3.6).

Finally, from Lukacs (1970, p.11) we may conclude that if the moment generating

function is finite in a neighborhood of the origin, then the characteristic function is

equal to mgf evaluated at purely imaginary arguments. h

In the specific case of the delta-gamma approximation, the matrix A in (3.1) is � 1
2 C

and the parameters k1; . . . ; km are the eigenvalues of � 1
2 RC. The constant a0 is
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�Dtð@V =@tÞ. The delta-gamma approximation to a loss probability is PðL > xÞ �
PðQ > x� a0Þ. We evaluate this approximation using PðQ > x� a0Þ ¼ 1�
PðQx�a0

� 0Þ ¼ 1 � F x�a0
ð0Þ. Values of F x�a0

can be found through the inversion integral

F x�a0
ðtÞ � F x�a0

ðt � yÞ ¼ 1

p
Re

Z 1

0

/x�a0
ðiuÞ eiuy � 1

iu

� �
e�iut

� �
du; i ¼

ffiffiffiffiffiffiffi
�1

p
ð3:9Þ

which is obtained from the standard inversion formula (see, e.g., (3.11) on p. 511 of

Feller 1971). This integral can be evaluated numerically; see Abate and Whitt (1992) for

a discussion of numerical issues involved in transform inversion. In implementing this

method we choose a large value of y for which F x�a0
ðt � yÞ can be assumed to be

approximately zero. As the mean and variance of Qx�a0
can be easily computed,

Chebychev’s Inequality may be used to find a value of y for which F x�a0
ðt � yÞ is

appropriately small.

It should be noted that this transform inversion procedure is not quite as

computationally efficient as the corresponding approach based on normally distributed

risk factors. In the normal case one can evaluate the transform of Q explicitly; a single

Fast Fourier Transform inversion then computes N points on the distribution of Q
based on an N-term approximation to the inversion integral in OðN logNÞ time. In our

setting, each value x at which the distribution of Q is to be evaluated relies on a separate

inversion integral so computing M points of the distribution, each based on an N -term

approximation to the corresponding integral, requires OðMNÞ time. Nevertheless, the

total computing time of this approach remains modest and the additional effort makes

possible the inclusion of realistically heavy tails.

The transform analysis provided by Theorem 3.1 can accommodate different degrees

of heaviness in the tails of different risk factors. The result extends to this case through

the copula mechanism in (2.3) and the chain rule for differentiation. Suppose we model

the changes in risk factors DS as KðX 1; . . . ;XmÞ using (3.5) with ðX 1; . . . ;XmÞ having

density f m;R (with the diagonal elements of R being 1). Then

@V
@X i

¼ di
dKi

dX i
;

@2V
@X i@X j

¼ Cij
dKi

dX i

dKj

dX j
; i 6¼ j;

@2V
@X 2

i

¼ Cii
dKi

dX i

� �2

þ di
d2Ki

dX 2
i

;

with all derivatives of K evaluated at 0. In this way, the delta-gamma approximation

generalizes to a quadratic approximation

L � a0 þ ~aa0X þ X 0~AAXð3:10Þ

in ðX 1; . . . ;XmÞ, the parameters ~aa and ~AA now depending on the derivatives of K as well

as the usual portfolio deltas and gammas. The derivatives of K do not depend on the

portfolio and are therefore easily computed.

Figure 3.1 shows the accuracy of the delta-gamma approximation for one of the

portfolios considered in Section 7, portfolio (a.3) (0.1 yr ATM) consisting of European

puts and calls. The exact loss distribution was estimated to a high degree of precision

using Monte Carlo simulation. Although the absolute errors (delta-gamma approx-

imation minus exact) are all within 0.01, the relative errors are large (up to 90%) and

this translates into a large error in the VAR. This illustrates the need for high-accuracy

Monte Carlo techniques.
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4. IMPORTANCE SAMPLING

The quadratic approximation of the previous section is fast but may not be sufficiently

accurate for all applications. In contrast, Monte Carlo simulation does not require any

approximation to the relation between changes in risk factors and changes in portfolio

value, but it is much more time consuming. The rest of this paper develops methods for

accelerating Monte Carlo by exploiting the delta-gamma approximation; these

methods thus combine some of the best features of the two approaches.

A generic Monte Carlo simulation to estimate a loss probability PðL > xÞ consists of

the following main steps. Samples of risk-factor changes DS are drawn from a

distribution; for each sample, the portfolio is revalued to compute V ðDt; S þ DSÞ and

the loss L ¼ V ð0; SÞ � V ðDt; S þ DSÞ; the fraction of samples resulting in a loss greater

than x is used to estimate PðL > xÞ. For large portfolios of complex derivative

securities, the bottleneck in this procedure is portfolio revaluation. The objective of

using a variance reduction technique is to reduce the number of samples (and thus the

number of revaluations) needed to achieve a desired precision. We use importance

sampling based on the delta-gamma (or other quadratic) approximation to reduce

variance, particularly at large loss thresholds x.

4.1. Exponential Change of Measure

We begin by reviewing an importance sampling method developed in Glasserman

et al. (2000) in the case of normally distributed risk factors. Suppose that Q has been

diagonalized as in (3.1) but with the X j replaced (for the moment) with independent

standard normals Zj. As in Theorem 3.1, let k1 be the largest of the eigenvalues kj;
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FIGURE 3.1. Comparison of the delta-gamma approximate and exact loss distributions

for (a.3), the 0.1 yr ATM portfolio. The exact loss distribution was estimated by Monte

Carlo simulation to a high degree of precision.
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suppose now that k1 > 0 (otherwise, Q is bounded above). In Glasserman et al. (2000)

we introduced an exponential change of measure by setting, for 0 < h < 1=ð2k1Þ,

dP h ¼ ehQ�wðhÞdP ;ð4:1Þ

with P the original measure under which Z 	 Nð0; IÞ and wðhÞ ¼ logE½expðhQÞ.
Moreover, we showed that under P h the components of Z remain independent but with

Zj 	 N
hbi

1 � 2hki
;

1

1� 2hki

� �
:

It is thus a simple matter to sample Z under P h and then to sample DS by setting

DS ¼ CZ.

By (4.1), the likelihood ratio is given by e�hQþwðhÞ, so the key identity for importance

sampling in the normal setting is

PðL > xÞ ¼ Eh e�hQþwðhÞIðL > xÞ
h i

;

with Ið�Þ denoting the indicator of the event in parentheses. We may thus generate

samples under P h and estimate PðL > xÞ using the expression inside the expectation on

the right. This estimator is unbiased and its second moment is

Eh e�2hQþ2wðhÞIðL > xÞ
h i

¼ E e�hQþwðhÞIðL > xÞ
h i

:

If L � a0 þ Q, then we can expect e�hQ to be small when L > x, resulting in a reduced

second moment, especially for large x. In Glasserman et al. (2000) we showed that if

L ¼ a0 þ Q holds exactly, then this estimator (with suitable h) is asymptotically optimal

in the sense that its second moment decreases exponentially (as x ! 1) at twice the

rate of exponential decrease of PðL > xÞ itself. This is the best possible rate for the

second moment of any unbiased estimator. Asymptotic optimality holds with, for

example, h ¼ hx�a0
, where hx�a0

solves

d
dh

wðhÞ ¼ x� a0:

This choice makes Eh½Q ¼ x� a0 and thus makes losses L close to x typical rather than

rare. As shown in Glasserman et al. (2000), the method is not very sensitive to the exact

choice of h.
An attempt to apply similar ideas with a multivariate t seems doomed by the failure

of (4.1) to generalize to the heavy-tailed setting. In any model in which the X i (and

hence also Q) are heavy tailed, one cannot define an exponential change of measure

based on Q because E½expðhQÞ is infinite for any h > 0. Most successful applications of

importance sampling are based on an exponential change of measure; and the

extension of light-tailed methods to heavy-tailed models can often give disastrous

results, as demonstrated in Asmussen et al. (2000).

As in the transform analysis of Section 3, we circumvent this difficulty by working

with Qx in (3.3) rather than Q itself. We use the notation of Theorem 3.1. Let

wx ¼ log/x and wY ¼ log/Y . Recall that k1 ¼ maxj kj.

Theorem 4.1. If hk1 < 1=2 and aðhÞ < �hhY , then

dP h ¼ exp hQx � wxðhÞð ÞdP
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defines a probability measure and

PðL > yÞ ¼ Eh e�hQxþwxðhÞIðL > yÞ
h i

¼ Eh e�hðY =mÞðQ�xÞþwxðhÞIðL > yÞ
h i

:ð4:2Þ

Under P h, X has the distribution of Z=
ffiffiffiffiffiffiffiffi
Y =m

p
where

P hðY � uÞ ¼ E eaðhÞY�wY ðaðhÞÞIðY � uÞ
h i

;ð4:3Þ

and conditional on Y , the components of Z are independent with

Zj 	 NðljðhÞ; r2
j ðhÞÞ; ljðhÞ ¼

hbj
ffiffiffiffiffiffiffiffi
Y =m

p
1� 2hkj

; r2
j ðhÞ ¼

1

1 � 2hkj
:ð4:4Þ

In the specific case that the distribution of X under P is multivariate tm (i.e., the

P -distribution of Y is v2
m), the distribution of Y under P h is Gammaðm=2; 2=ð1 � 2aðhÞÞÞ,

the gamma distribution with shape parameter m=2 and scale parameter 2=ð1� 2aðhÞÞ.

Proof. The first assertion follows from the fact that wxðhÞ is finite under the

conditions imposed on h, and (4.2) then follows from the fact that the likelihood ratio

dP=dP h is expð�hQx þ wxðhÞÞ.
Fix constants h and a satisfying hk1 < 1=2 and a < �hhY . The probability measure P a;0

obtained by exponentially twisting Y by a is defined by the likelihood ratio

dP a;0

dP
¼ eaY�wY ðaÞ:

Let hðzÞ denote the standard normal density expð�z2=2Þ=
ffiffiffiffiffiffi
2p

p
; the density of the

Nðl; r2Þ distribution is hð½z� l=rÞ=r. The probability measure P a;h obtained by

exponentially twisting Y by a and, conditional on Y , letting the Zj be independent with

the distributions in (4.4) is defined by the likelihood ratio

dP a;h

dP
¼ eaY�wY ðaÞ 


Ym
j¼1

hð½Zj � ljðhÞ=rjðhÞÞ=rjðhÞ
hjðZjÞ

:ð4:5Þ

The jth factor in the product in (4.5) evaluates to

hð½Zj � ljðhÞ=rjðhÞÞ=rjðhÞ
hjðZjÞ

¼ 1

rjðhÞ
exp

1

2
Z2
j 1 � 1

r2
j ðhÞ

 !
þ Zj

ljðhÞ
r2
j ðhÞ

� 1

2
ljðhÞ2

 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2hkj

p
exp hkjZ2

j þ Zjhbj
ffiffiffiffiffiffiffiffi
Y =m

p
�

h2
j b

2
j Y =m

2ð1� 2hkjÞ

 !
:

The likelihood ratio (4.5) is thus

eaY�wY ðaÞ 

Ym
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2hkj

p
exp h

Xm
j¼1

kjZ2
j þ Zjbj

ffiffiffiffiffiffiffiffi
Y =m

p� � !

 exp � 1

2

Xm
j¼1

h2b2
j Y =m

1 � 2hkj

 !
;

which we can write as

eaYþhðY =mÞQ
Ym
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2hkj

p
e�wY ðaÞ

 !
exp �Y

1

2

Xm
j¼1

h2b2
j=m

1� 2hkj

 !
:
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If we choose

a ¼ aðhÞ � � hx
m
þ 1

2

Xm
j¼1

h2b2
j=m

1 � 2hkj
;

the likelihood ratio simplifies to

e�hxðY =mÞþhðY =mÞQ
Ym
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2hkj

p
e�wY ðaðhÞÞ

 !
¼ ehQx�wxðhÞ;

in light of the definition of Qx in (3.3), the definition of wx as log/x, and the expression

for /x in (3.4). Since this coincides with the likelihood ratio dP h=dP , we conclude that

the P h-distribution of ðY ; Z1; . . . ; ZmÞ is as claimed.

Consider now the multivariate tm case. To find the density of Y under P h, we multiply

the v2
m density by the likelihood ratio to get

eay�wY ðaÞ y
ðm�2Þ=2e�y=2

2m=2Cðm=2Þ
¼ 2

1� 2a

� ��m=2 yðm�2Þ=2

Cðm=2Þ exp
�y

2=ð1� 2aÞ

� �
;

using expð�wY ðaÞÞ ¼ ð1 � 2aÞm=2. This is the gamma density with shape parameter m=2
and scale parameter 2=ð1� 2aÞ.

4.2. Importance Sampling Algorithm

Embedded in the proof of Theorem 4.1 are the essential steps of a simulation

procedure that uses the quadratic approximation to guide the sampling of risk factors.

We now make this explicit, detailing the steps involved in estimating a loss probability

PðL > yÞ. We assume for now that a value of h > 0 consistent with the conditions of

Theorem 4.1 has been selected. Later we address the question of how h should be chosen.

Algorithm 4.1. Importance Sampling Estimate of Loss Probability

For each of n independent replications:

1. Generate Y from the distribution in (4.3). (In the multivariate t	 model, this

means generating Y from the gamma distribution in the theorem.)

2. Given Y , generate independent normals Z1; . . . ; Zm with parameters as in (4.4).

3. Set X ¼ Z=
ffiffiffiffiffiffiffiffiffi
Y =	

p
.

4. Set �S ¼ CX and calculate the resulting portfolio loss L and the quadratic

approximation Q. Set Qx ¼ ðY =	ÞðQ� xÞ.
5. Multiply the loss indicator by the likelihood ratio to get

e�hQxþwxðhÞIðL > yÞð4:6Þ

Average (4.6) over the n independent replications.

Applying this algorithm with the copula model (2.5) requires changing only the first

part of step 4: to sample the change in risk factors, set DS ¼ Kð~CCZ=
ffiffiffiffiffiffiffiffi
Y =m

p
Þ, where ~CC

satisfies ~CC~CC0 ¼ R and ~CC0~AA~CC is diagonal, with ~AA as in (3.10). (Recall that in the setting of

(2.5)R is assumed tohavediagonal entries equal to 1 and represents the correlationmatrix

of the copula variables ðX 1; . . . ;XmÞ and not of DS.) The matrix ~CC can be constructed by

following the steps in the proof of Theorem 3.1. Also, Q ¼
P

j bjX j þ
P

j k
2
j X

2
j with

ðb1; . . . ; bmÞ ¼ ~aa~CC and k1; . . . ; km the diagonal elements of ~CC0~AA~CC.
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Notice that in Algorithm 4.1 we have not applied an exponential change of measure

to the heavy-tailed random variables X i. Instead, we have applied an exponential

change of measure to Y and then, conditional on Y , applied an exponential change of

measure to Z.

To develop some intuition for this procedure, consider again the diagonalized

quadratic approximation in (3.2) and the representation X ¼ Z=
ffiffiffiffiffiffiffiffi
Y =m

p
of the trans-

formed (and uncorrelated) risk factors X . An objective of any importance sampling

procedure for estimating PðL > yÞ is to make the event fL > yg more likely under the

importance sampling measure than under the original measure. Achieving this is made

difficult by the fact that the actual loss function may be quite complicated and may be

known only implicitly through the procedures used to value individual components of a

portfolio. As a substitute we use an approximation to L (in particular, the quadratic

approximationQ) anddesign the changeofmeasure tomake large values ofQmore likely.

Consider the change of measure in Theorem 4.1 and Algorithm 4.1 from this

perspective. The parameter aðhÞ will typically be negative because h is positive and

typically small (so h2 � h). In exponentially twisting Y by a < 0, we are giving greater

probability to smaller values of Y and thus increasing the overall variability of the risk

factors, since Y appears in the denominator of X . Given Y , the mean ljðhÞ in (4.4) is

positive if bj > 0 and negative if bj < 0. This has the effect of increasing the probability

of positive values of Zj if bj > 0 and negative values of Zj if bj < 0; in both cases, the

combined effect is to increase the probability of large values of bjZj and thus of Q.

Similarly, rjðhÞ > 1 if kj > 0 and by increasing the standard deviation of Zj we make

large values of kjZ2
j more likely.

This discussion should help motivate the importance sampling approach of Theorem

4.1 and Algorithm 4.1, but it must be stressed that the validity of the algorithm (as

provided by (4.2)) is not based on assuming that the quadratic approximation holds

exactly. In fact, the procedure aboveproducesunbiased estimates even if thebj andkj bear
no relation to the true portfolio. Of course, the effectiveness of the procedure in reducing

variance will in part be determined by the accuracy of the quadratic approximation.

We close this section by addressing the choice of parameter h. In fact we also have

flexibility in choosing the value x used to define Qx. The choice of x is driven by the

approximation PðL > yÞ � PðQ > xÞ; in light of (3.1), it is natural to take x ¼ y � a0.

Ideally, we would like to choose h to minimize the second moment

Eh e�2hQxþ2wxðhÞIðL > xþ a0Þ
h i

¼ E e�hQxþwxðhÞIðL > xþ a0Þ
h i

:ð4:7Þ

Since this is ordinarily intractable, we apply the quadratic approximation and choose a

value of h that would be attractive with L replaced by a0 þ Q. After this substitution,

noting that Qx > 0 when Q > x, we can bound the second moment using

E e�hQxþwxðhÞIðQ > xÞ
h i

� ewxðhÞ:

The function wx is convex and wxðhÞ ! 1 as h " 1=ð2k1Þ (assuming k1 > 0) and as h
decreases to a point at which aðhÞ ¼ �hhY . Hence, this upper bound is minimized by the

point hx solving

d
dh

wxðhÞ ¼ 0:ð4:8Þ

The root of this equation is easily found numerically.
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The value hx determined by (4.8) has a second interpretation that makes it appealing.

The function wx is the cumulant generating function (the logarithm of the moment

generating function) of the random variable Qx. A standard property of exponential

families implies that at any h for which wxðhÞ <1, we have Eh½Qx ¼ dwxðhÞ=dh. By

choosing hx as the root of (4.8) we are choosing Ehx ½Qx ¼ 0. This may be viewed as

centering the distribution of Qx near 0, which is equivalent to centering Q near x. Thus,

by sampling under P hx we are making values of Q near x typical, whereas they may have

been rare under the original probability measure.

Equation (4.8) provides a convenient and effective means of choosing h. In our

numerical experiments we find that the performance of the importance sampling

method is not very sensitive to the exact choice of h and a single parameter can safely

be used for estimating PðL > yÞ at multiple values of y. These observations are

consistent with the theoretical properties established in the next section.

5. ANALYSIS OF THE ESTIMATOR

In this section we provide theoretical support for the effectiveness of the importance

sampling method of the previous section. We do this by analyzing the second moment

of the estimator at large loss thresholds (and thus small loss probabilities). We carry

out this analysis under the hypothesis that the quadratic approximation (3.1) holds

exactly and interpret the results as ensuring the effectiveness of the method whenever

the quadratic approximation is sufficiently informative. The results of this section are

specific to the multivariate tm distribution though similar results should hold under

appropriate conditions on the distribution of Y .

5.1. Bounded Relative Error and Asymptotic Optimality

Consider any unbiased estimator p̂p of the probability PðQ > xÞ and letm2ðp̂pÞ denote its

secondmoment. The variance of the estimator ism2ðp̂pÞ � ðPðQ > xÞÞ2. Since the variance

must be nonnegative, the second moment can never be smaller than ðPðQ > xÞÞ2. As

in Shahabuddin (1994), we say that an estimator has bounded relative error if

lim sup
x!1

m2ðp̂pÞ
ðPðQ > xÞÞ2

<1:ð5:1Þ

In Lemma 5.1 we provide conditions under which PðQ > xÞ is of the order of x�m=2.

When this holds, we must also have

m2ðp̂pÞ � constant
 x�m:

In this case, bounded relative error becomes equivalent to the requirement that there be

a constant c such that

m2ðp̂pÞ � cx�m; for all sufficiently large x:ð5:2Þ

The bounded relative error property ensures that the number of replications required

to achieve a fixed relative accuracy (confidence interval halfwidth of the estimator

divided by the quantity that is being estimated) remains bounded as x ! 1, unlike

standard simulation where this can be shown to tend to infinity. This property is

stronger than the standard notion of asymptotic optimality used in much of the rare
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event simulation literature (see, e.g., the discussion in Glasserman et al. 1999a) where

the number of replications may also tend to infinity but at a much slower rate than in

standard simulation. It is also worth noting that (5.1) and (5.2) apply to the degenerate

(and best possible) estimator p̂p � PðQ > xÞ, which corresponds to knowing the quantity

being estimated. The second moment of this estimator is simply ðPðQ > xÞÞ2, and from

Lemma 5.1, below, we know that this decays at rate x�m. Conditions (5.1) and (5.2) may

thus be interpreted as stating that an estimator with bounded relative error is, up to a

constant factor, as good as knowing the answer, at large values of x.
As indicated by this discussion, the first step in analyzing the relative error of our

estimator is analyzing the tail of Q in (3.1). As explained in the discussion leading to

(3.2) we may assume that the X i are uncorrelated, with density fm;I . We begin by noting

that the quadratic form Q is bounded above by a constant if ki < 0 for all i; that is,

PðQ > xÞ ¼ 0 for large enough x in this case. To avoid such trivial cases, we assume

k1 > 0 (recall that k1 is the largest of the ki’s).

Lemma 5.1. If k1 > 0, there are positive constants c1; c2 such that for all sufficiently
large x

PðQ > xÞ � c1x�m=2ð5:3Þ

and if kj > 0, j ¼ 1; . . . ;m,

PðQ > xÞ � c2x�m=2:ð5:4Þ

Proof. Recall from the definition of Qx in (3.3) that PðQ > xÞ ¼ PðQx > 0Þ. For any

h > 0 at which wxðhÞ <1 we have

PðQx > 0Þ � E ehQxIðQx > 0Þ
	 


� E ehQx
	 


¼ ewxðhÞ ¼ /xðhÞ:

From (3.6) we see that

/xðhÞ ¼
a1

ða2 þ a3xÞm=2
� c1x�m=2;ð5:5Þ

for some a1, a2, a3, and c1 > 0 (the ai depending on h). This proves (5.3).

For the second claim, let dj ¼ bj=ð2kjÞ, j ¼ 1; . . . ;m, so

PðQ > xÞ ¼ P
Xm
j¼1

ðkjX 2
j þ bjX jÞ > x

 !
ð5:6Þ

¼ P
Xm
j¼1

kjðX j þ djÞ2 � d2
j=kj > x

 !

� P k1ðX 1 þ d1Þ2 > xþ
Xm
j¼1

ðd2
j=kjÞ

 !

� P X 1 > �d1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ

Xm
j¼1

ðd2
j=kjÞ

" #
=k1

vuut
0
@

1
A

� PðX 1 > c3
ffiffiffi
x

p
Þ

256 P. GLASSERMAN, P. HEIDELBERGER, AND P. SHAHABUDDIN



for some constant c3 and all sufficiently large x. But because X 1 	 tm, we have

PðX 1 > uÞ � c4u�m for some c4 and all sufficiently large u. Applying this to (5.6) proves

(5.4). h

We now use this result and the ideas surrounding (5.1) and (5.2) to examine our

importance sampling estimator applied to PðQ > xÞ, namely

e�hQxþwxðhÞIðQ > xÞð5:7Þ

sampled under P h. This coincides with our estimate of PðL > xþ a0Þ under the

hypothesis that the quadratic approximation is exact. Let

m2ðh; xÞ ¼ Eh e�2hQxþ2wxðhÞIðQ > xÞ
h i

¼ E e�hQxþwxðhÞIðQ > xÞ
h i

ð5:8Þ

denote the second moment at parameter h.

Theorem 5.1. If k1 > 0, for any fixed h > 0 at which wxðhÞ < 0 there is a constant cðhÞ
for which

m2ðh; xÞ � cðhÞPðQ > xÞx�m=2ð5:9Þ

for all sufficiently large x; if kj > 0, j ¼ 1; . . . ;m, the estimator (5.7) of PðQ > xÞ has

bounded relative error. If hx denotes the solution to (4.8) and k1 > 0, then there is a

constant d for which

m2ðhx; xÞ � PðQ > xÞx�m=2dð5:10Þ

for all sufficiently large x; if kj > 0, j ¼ 1; . . . ;m, the estimator based on hx also has

bounded relative error.

Proof. From (5.8) and the fact that h is positive we get

m2ðh; xÞ � E ewxðhÞIðQ > xÞ
h i

¼ /xðhÞPðQ > xÞ:

From (5.5) we get (5.9). If all kj are positive then (5.4) holds and

m2ðh; xÞ
ðPðQ > xÞÞ2

� /xðhÞ
PðQ > xÞ �

c1x�m=2

c2x�m=2
¼ c1

c2
;

for some positive constants c1, c2 and all sufficiently large x. This establishes the

bounded relative error property.

For (5.10), we claim that

0 < lim
x!1

hx < 1=ð2k1Þð5:11Þ

with k1 the largest of the kj. Once we establish that (5.11) holds, it follows from (3.6)

that /xðhxÞxm=2 is bounded by a constant d as x ! 1. This implies (5.10) by the same

argument used for (5.9). Similarly, bounded relative error using hx again follows once

(5.4) holds.

It remains to verify (5.11). We can write the derivative of wx as

w0
xðhÞ �

d
dh

wxðhÞ ¼
Xm
j¼1

kj
1 � 2hkj

� m
2

daðhÞ=dh
1 þ aðhÞ
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with

d
dh

aðhÞ ¼ 2x
m
� 2

m

Xm
j¼1

hb2
j ð1þ kjhÞ
1 � 2hkj

:

From this we see that the limit gðhÞ ¼ limx!1 w0
xðhÞ exists for all 0 < h < 1=ð2k1Þ and is

given by

gðhÞ ¼ � m
2h

þ
Xm
j¼1

kj
1 � 2hkj

:

The function g is increasing in h with gðhÞ ! �1 as h # 0 and gðhÞ ! 1 as h " 1=ð2k1Þ.
It follows that there is a unique point b, in ð0; 1=ð2k1ÞÞ at which gðbÞ ¼ 0. The claim (5.11)

holds if we can show that hx ! b. For this, choose � > 0 sufficiently small that b � � > 0

and b þ � < 1=ð2k1Þ. Then gðb � �Þ < 0 and gðb þ �Þ > 0. For all sufficiently large x we

therefore also have w0
xðb � �Þ < 0 and w0

xðb þ �Þ > 0, which implies b � � < hx < b þ �
for all sufficiently large x. Since � is arbitrary, we conclude that hx ! b. h

This result indicates that we can expect the importance sampling procedure to be

effective at large loss thresholds x if Q provides a good approximation to L (more

precisely, to L� a0). It also indicates that we should have quite a bit of freedom in

choosing the parameter h. In our numerical experiments, we choose h ¼ hx. In fact, the

constant d in the upper bound (5.10) on the second moment when using hx can be made

as small as the best constant cðhÞ in the upper bound (5.9) when using a fixed value of h.
This follows since, in the notation of (5.5), xm=2/xðhÞ ! a1ðhÞ=a3ðhÞm=2 and hx ! b;
simple algebra shows that b also minimizes the function a1ðhÞ=a3ðhÞm=2.

Since we may be interested in estimating multiple points on the loss distribution from

a single set of simulations, it is worth considering whether importance sampling using

hx remains effective in estimating PðQ > yÞ with y 6¼ x. Let m2ðh; x; yÞ be the second

moment in (5.8) but with the indicator IðQ > xÞ replaced by IðQ > yÞ. Arguing as in the

proof of Theorem 5.1, we find that if y > x and y=x ! c, then

lim sup
x!1

ym=2m2ðhx; x; yÞ
PðQ > yÞ � cm=2d

with d the same constant as in (5.10). In particular, if c ¼ 1 (i.e., y ¼ xþ oðxÞ) then we

get the same upper bound using hx as we would using the ‘‘optimal’’ value hy . This

suggests that we can optimize the parameter for some loss level x and still obtain good

estimates for a moderate range of values y, y > x.

5.2. Estimating the Conditional Excess

A common criticism of VAR as a measure of risk is that it is insensitive to the

magnitude of losses beyond a certain percentile. An alternative type of measure

sometimes proposed (Artzner et al. 1999; Bassi, Embrechts, and Kafetzaki 1998;

Uryasev and Rockafellar 2000) is the conditional excess

g ¼ gðyÞ ¼ E½LjL > y:ð5:12Þ

Unlike VAR, the conditional excess weights large losses by their magnitudes. The

threshold y in the definition (5.12) may be a fixed loss level or else the VAR itself.
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We examine the effectiveness of our importance sampling procedure in estimating g.
Using ordinary Monte Carlo, one generates independent replications L1; . . . ; Ln, all

having the distribution of L, and estimates gðyÞ using

ĝgn ¼
Pn

k¼1 LkIðLk > yÞPn
k¼1 IðLk > yÞ :ð5:13Þ

Applying the law of large numbers to both numerator and denominator shows that this

estimator is consistent—though, being a ratio estimator, it is biased for finite n. Under

importance sampling, the estimator is

ĝgh;n ¼
Pn

k¼1 ‘kLkIðLk > yÞPn
k¼1 ‘kðLk > yÞ ;ð5:14Þ

where ‘k denotes the likelihood ratio on the kth replication.

The following result compares these estimators based on their asymptotic (as n ! 1)

variances. Let p ¼ PðL > yÞ and Rk ¼ LkIðLk > yÞ � gIðLk > yÞ. Define r2 ¼ E½R2
k 

and r2
h ¼ Eh½ð‘kRkÞ2Þ. In the following, ) denotes convergence in distribution.

Proposition 5.1. If 0 < r2 <1, then as n ! 1,ffiffiffi
n

p
ðĝgn � gÞ
r=p

) Nð0; 1Þ;

and if 0 < r2ðhÞ <1 ffiffiffi
n

p
ðĝgh;n � gÞ
rh=p

) Nð0; 1Þ:

If there is a constant � such that ‘k � � whenever Lk > y, then r2
h � �r2.

The first two statements in this proposition are instances of the usual central limit

theorem for ratio estimators (see, e.g., Serfling 1980) and the last statement follows

from the definition of r2
h. An upper bound on the likelihood ratio, as required for this

result, holds if Q > x whenever L > y (e.g., if the quadratic approximation (3.1) is exact

and x ¼ y � a0). In this case, as in Lemma 5.1, the likelihood ratio is bounded by /xðhÞ
and, also as in Lemma 5.1, this bound becomes smaller than a constant times x�m=2 for

sufficiently large x. Thus, in this case, the � in Proposition 5.1 can be made quite small if

x is large. This suggests that our importance sampling method should be similarly

effective for estimating the expected excess as for estimating a loss probability.

6. STRATIFYING THE LIKELIHOOD RATIO

In this section we further exploit the delta-gamma (or other quadratic) approximation

and the structure of the multivariate t distribution to further reduce variance in Monte

Carlo estimates of portfolio loss probabilities. Inspection of the importance sampling

estimator (4.6) suggests that to achieve greater precision we should reduce the sampling

variability associated with the likelihood ratio expð�hQx þ wxðhÞÞ. This general

approach to improving importance sampling estimators proved effective in the

multivariate normal settings treated in Glasserman et al. (1999a, 1999b, 2000).

For the estimator in (4.6), reducing sampling variability in the likelihood ratio is

equivalent to reducing it in Qx as defined in (3.3). We accomplish this through stratified
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sampling of Qx: we partition the real line into intervals (these are the strata) and

generate samples of Qx so that the desired number of samples falls in each stratum.

Two issues need to be addressed in developing this method. First, we need to have a

way of defining strata with known probabilities, and this requires being able to

compute the distribution of Qx under P h. Second, we need a way of generating samples

within strata which ensures that the ðY ; Z1; . . . ; ZmÞ generated have the correct

conditional distribution given the stratum in which Qx falls.

To find the distribution of Qx under P h we extend the transform analysis of Section 3.

In particular, we find the characteristic function of Qx under P h through the following

simple observation.

Lemma 6.1. The characteristic function of Qx under P h is given by /h;xð
ffiffiffiffiffiffiffi
�1

p
xÞ, where

/h;xðsÞ ¼ /xðh þ sÞ=/xðhÞ and /x is as in (3.4).

Proof. The moment generating function of Qx under P h is

/x;hðsÞ ¼ Eh esQx
	 


¼ E ehQx�wxðhÞesQx

h i
¼ E eðhþsÞQx

h i
=ewxðhÞ ¼ /xðh þ sÞ=/xðhÞ:

As in the proof of Theorem 3.1, the characteristic function is the moment generating

function evaluated at a purely imaginary argument. h

Using this result and the inversion integral (3.9) applied to /h;x, we can compute

P hðQx � aÞ for arbitrary a. Given a set of probabilities p1; . . . ; pN summing to 1, we can

use the transform inversion iteratively to find points �1 ¼ a0 < a1 < � � � <
aN < aNþ1 ¼ 1 such that P hðQx 2 ðai�1; aiÞÞ ¼ pi, i ¼ 1; . . . ;N . The intervals

ðai�1; aiÞ form the strata for stratified sampling. We often use equiprobable strata

ðpi � 1=NÞ but this is by no means necessary. Alternatively, if the ai’s are given, then

the pi’s can be found via transform inversion.

Given N strata and a budget of n samples, we allocate ni samples to stratum i, with

n1 þ � � � þ nN ¼ n. For example, we may choose a proportional allocation with

ni � npi; this choice guarantees a reduction in variance. Let QðijÞ
x denote the jth sample

from stratum i, j ¼ 1; . . . ; ni and let LðijÞ denote the corresponding portfolio loss for

that scenario. The combined importance sampling and stratified sampling estimator of

the loss probability PðL > yÞ is

XN
i¼1

pi
ni

Xni
j¼1

e�hQðijÞ
x þwxðhÞIðLðijÞ > yÞ:ð6:1Þ

This estimator is unbiased for any set of positive stratum probabilities and

positive allocations. This is true for any h at which wxðhÞ <1 (e.g., h ¼ hxÞ. With

the loss threshold y specified we would typically use x ¼ y � a0 as suggested by

(3.1).

It remains to specify the mechanism for sampling the QðijÞ
x so that ni samples fall in

stratum i. Recall from Algorithm 4.1 that we do not sample Qx directly. Rather, we

generate Y from its exponentially twisted distribution and then generate ðZ1; . . . ; ZmÞ
according to (4.4). Given ðY ; ZÞ � ðY ; Z1; . . . ; ZmÞ, we can then calculate X ¼ Z=

ffiffiffiffiffiffiffiffi
Y =m

p
,

DS, L, and Qx.
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To implement stratified sampling, we apply a ‘‘bin-tossing’’ method developed in

Glasserman et al. (2000). Keeping count of how many samples have produced values of

Qx in each stratum, we repeatedly generate ðY ; ZÞ as in Algorithm 4.1. For each ðY ; ZÞ
we compute Qx and check which stratum it falls in. If Qx falls in stratum i and we have

previously generated j < ni samples with Qx in stratum i, then the newly generated

ðY ; ZÞ becomes the ðjþ 1Þth sample for the stratum. If we already have ni
samples for stratum i, we discard ðY ; ZÞ and generate a new sample. We repeat this

procedure until the number of samples for each stratum reaches the allocation for the

stratum. This method is somewhat crude, but it is fast and easy to implement; see

Glasserman et al. (2000) for an analysis of its computational requirements.

The combined simulation algorithm using both importance sampling and stratified

sampling follows. We formulate the algorithm to estimate a specific loss probability

PðL > yÞ, though multiple y’s could be considered simultaneously.

Algorithm 6.1. Importance Sampling and Stratified Sampling Estimate of Loss

Probability

1. Set x ¼ y� a0 and find �x solving  0
xð�xÞ ¼ 0 as in (4.8). Set � ¼ �x.

2. Numerically invert the characteristic function of Qx under P� to find stratum

boundaries a1; . . . ; aN for which P�ðai�1 < Qx < aiÞ ¼ pi, for given p1; . . . ; pN .

3. Use the bin-tossing method to generate ðY ðijÞ; ZðijÞÞ, j ¼ 1; . . . ; ni, i ¼ 1; . . . ; N,

so that each QðijÞ
x calculated from ðY ðijÞ; ZðijÞÞ falls in stratum i.

4. Set XðijÞ ¼ ZðijÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y ðijÞ=	

q
and �SðijÞ ¼ CXðijÞ with C as in Algorithm 4.1.

Compute the portfolio loss LðijÞ ¼ V ð0; SÞ � V ð�t; S þ�SðijÞÞ.
5. Return the estimator in (6.1).

This is also applicable with the copula specification in (2.5). As in Algorithm 4.1,

only the sampling of the values of DS changes. The required modification of step 4 of

Algorithm 6.1 is exactly as described immediately following Algorithm 4.1.

7. NUMERICAL EXAMPLES

We perform experiments with the transform inversion routine of Section 3, the

importance sampling procedure of Section 4, and the combination with stratified

sampling in Section 6. We use a subset of the portfolios that were considered in

Glasserman et al. (2000), but with the light-tailed Gaussian assumptions of that paper

replaced by the heavy-tailed assumptions of this paper. The portfolios in Glasserman et

al. (2000) were chosen so as to incorporate a wide variety of characteristics, such as

portfolios that have all eigenvalues ki positive, portfolios that have some negative ki’s,
portfolios that have all ki’s negative, portfolios with discontinuous payoffs (e.g., cash-

or-nothing puts and barrier options), and portfolios with block diagonal correlation

matrices. In the subset of those portfolios that we consider in this paper, we have tried

to give sufficient representation to most of these characteristics. We have, in particular,

included both the best and worst performing cases of Glasserman et al. (2000), where

we experimented with diagonal and nondiagonal correlation matrices and found that

this had little effect on performance. To limit the number of cases, here we mainly

consider uncorrelated risk factors. Also, we focus on estimating loss probabilities and

the conditional excess; issues specific to estimating a quantile rather than a loss

probability were addressed in Glasserman et al. (2000).
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In our numerical experiments we value the options in a portfolio using the Black–

Scholes formula and its extensions. For the implied volatility of Si we use ~rri=Si
ffiffiffiffiffi
Dt

p

with ~rri as in (2.5); in other words, we make the implied volatility consistent with the

standard deviation of DSi over the VAR horizon Dt. There is still an evident

inconsistency in applying Black–Scholes formulas when price changes follow a t
distribution, but option pricing formulas are commonly used this way in practice.

Moreover, it seems reasonable to expect that this simple approach to portfolio

revaluation gives a good indication of the variance reduction that would be obtained

from our Monte Carlo method even if more complex revaluation procedures were used.

The greatest computational gains from reducing the number of Monte Carlo samples

required would in fact be obtained in cases where revaluation is most time consuming,

such as when revaulation requires finite-difference methods, lattices and trees, and

possibly even simulation.

As in Glasserman et al. (2000), we assume 250 trading days in a year and a

continuously compounded risk-free rate of interest of 5%. For each case we investigate

losses over 10 days (Dt ¼ 0:04 years). Most of the test porfolios we consider are based

on 10 uncorrelated underlying assets having an initial value of 100 and an annual

volatility of 0.3 (i.e., ~rri ¼ 0:3Si
ffiffiffiffiffi
Dt

p
). In three cases we also consider correlated assets

and in one of these the portfolio involves 100 assets with different volatilities. Detailed

descriptions are given in Table 7.1. For comparison purposes, in each case we adjust

the loss threshold x so that the probability to be estimated is close to 0.01.

In the first set of experiments, we assume all the marginals to be t distributions

with degree of freedom (d.o.f) 5. Results are given in Table 7.2, which lists the

quadratic approximation and the estimated variance ratios using importance

sampling (IS) and IS combined with stratified sampling (ISS-Q)—that is, the

estimated variance using standard Monte Carlo divided by the estimated variance

using IS (or ISS-Q). This variance ratio indicates how many times as many samples

would be required using ordinary Monte Carlo to achieve the same precision

achieved with the corresponding variance reduction technique; it is thus an estimate

of the computational speedup that can be obtained using a method. In all

experiments, unless otherwise mentioned, the variance ratios are estimated from a

total of 40,000 replications; the stratified estimator uses 40 (approximately)

equiprobable strata with 1,000 samples per stratum. In practice, fewer replications

are usually used; the high number we use is to get accurate estimates of the variances

and thus the computational speedups.

We achieve at least double-digit variance reduction in all cases. It is also encouraging

that the variance ratios obtained for the 100 asset example (a.9) are comparable to the

best variance ratios obtained for the other much smaller 10 asset examples. The

effectiveness of the method is further illustrated in Figure 7.1, which compares standard

simulation to importance sampling with stratification for the 0.1 yr ATM portfolio.

The figure plots point estimates and 99% confidence for PðL > xÞ over a range of

x values; a total of 4,000 replications were used for each method to simultaneously

estimate PðL > xÞ for the set of x values indicated in the figure. The importance

sampling uses a single value of the parameter h, chosen to be hx for an x in the middle of

the range. Notice how much narrower the confidence intervals are for the ISS-Q

method over the entire range of x’s.
In the next set of experiments, for (a.1) to (a.11), we assume that the first five

marginals have d.o.f 3 and the next five have d.o.f. 7. The ‘‘reference d.o.f.’’ was taken

to be 5 (i.e., we use the copula method described earlier with m ¼ 5 in (2.5)).

262 P. GLASSERMAN, P. HEIDELBERGER, AND P. SHAHABUDDIN



TABLE 7.1

Test Portfolios for Numerical Results

Portfolio Description

(a.1) 0.5 yr ATM Short 10 at-the-money calls and 5 at-the-money puts on

each asset, all options having a half-year maturity. All

eigenvalues are positive.

(a.2) 0.5 yr ATM, �k Long 10 at-the-money calls and 5 at-the-money puts on

each asset, all options having half a year maturity. All

eigenvalues are negative.

(a.3) 0.1 yr ATM Same as (a.1) but with a maturity of 0.10 years.

(a.4) 0.1 yr ATM, �k Same as (a.2) but with a maturity of 0.10 years.

(a.5) Delta hedged Same as (a.3) but with number of puts increased so that

d ¼ 0.

(a.6) Delta hedged, �k Short 10 at-the-money calls on first five assets. Long 5

at-the-money calls on the remaining assets. Long or short

puts on each asset so that d ¼ 0.

This has both negative and positive eigenvalues.

(a.7) DAO-C Short 10 down-and-out calls on each asset with barrier at

95.

(a.8) DAO-C & CON-P Short 10 down-and-out calls with barrier at 95, and short

5 cash-or-nothing puts on each asset. The cash payoff is

equal to the strike price.

(a.9) DAO-C & CON-P,

Hedged

Same as (a.8) but the number of puts is adjusted so that

d ¼ 0.

(a.10) Index Short 50 at-the-money calls and 50 at-the-money puts

on 10 underlying assets, all options expiring in 0.5 years.

The covariance matrix was downloaded from the

RiskMetricsTM web site for international equity indices.

The initial asset prices are (100, 50, 30, 100, 80, 20, 50,

200, 150, 10).

(a.11) Index, km < �k1 Same as (a.10) but short 50 at-the-money calls and 50

at-the-money puts on the first three assets, long 50 at-the-

money calls and 50 at-the-money puts on the next seven

assets. This has both negative and positive eigenvalues

with the absolute value of the minimum eigenvalue

greater than that of the maximum.

(a.12) 100,

Block-diagonal

Short 10 at-the-money calls and 10 at-the-money puts on

100 underlying assets, all expiring in 0.10 years. Assets are

divided into 10 groups of 10. The correlation is 0.2

between assets in the same group and 0 across groups.

Assets in the first three groups have volatility 0.5, those in

the next four have volatility 0.3, and those in the last three

groups have volatility 0.1.
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For (a.12), we assume that the marginals in the first three groups have d.o.f. 3, the

marginals in the second four groups have d.o.f. 5, and the marginals in the last three

groups have d.o.f. 7; the reference d.o.f. was again taken to be 5. Results for all these

cases are given in Table 7.3. Note that the performance of IS remains roughly the same

(except for (a.9)), but the performance of ISS-Q decreases substantially. This is to be

expected as the transformation from the t distribution with the reference d.o.f. to

the t distribution of the marginal introduces further nonlinearity in the relation bet-

ween the underlying variables and the portfolio value. Case (a.9) was also the

worst performing case in Glasserman et al. (2000; case (b.6) in that paper); in this

particular case, the delta-gamma approximation gives a poor approximation to the

true loss.

Finally, we estimate the conditional excess for all the portfolios described above.

Table 7.4 gives results using IS and ISS-Q. We again compare each case with standard

simulation, where by standard simulation we mean the estimator given by (5.13). In

particular, for IS we estimate the ratio r2=r2
h where r2 and r2

h have been defined in

Proposition 5.1; expressions that may be used to estimate these quantities are given

in Serfling (1980). One can similarly estimate the variance ratios for the ISS-Q.

8. CONCLUDING REMARKS

This paper develops efficient computational procedures for approximating or estimat-

ing portfolio loss probabilities in a model that captures heavy tails in the joint

distribution of market risk factors. The first method is based on transform inversion of

a quadratic approximation to portfolio value. The second method uses the first to

develop Monte Carlo sampling procedures that can greatly reduce variance compared

with ordinary Monte Carlo.

TABLE 7.2

Comparison of Methods for Estimating PðL > xÞ for Test Portfolios. All the Marginals

are t with 5 Degrees of Freedom

Variance ratios

Portfolio x PfL > xg PfQþ c > xg IS ISS-Q

(a.1) 0.5 yr ATM 311 1.02% 1.17% 53 333

(a.2) 0.5 yr ATM, �k 145 1.02% 1.33% 35 209

(a.3) 0.1 yr ATM 469 0.97% 1.56% 46 134

(a.4) 0.1 yr ATM, �k 149 0.97% 0.86% 21 28

(a.5) Delta hedged 617 1.07% 1.69% 42 112

(a.6) Delta hedged, �k 262 1.02% 1.70% 27 60

(a.7) DAO-C 482 0.91% 0.52% 58 105

(a.8) DAO-C & CON-P 835 0.97% 1.19% 18 20

(a.9) DAO-C & CON-P,

Hedged

345 1.09% 0.36% 17 25

(a.10) Index 2019 1.04% 1.22% 26 93

(a.11) Index, km < �k1 426 1.02% 1.16% 18 48

(a.12) 100, Block-diagonal 5287 0.95% 1.58% 61 287
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Figure 7.1. Point estimates and 99% confidence intervals for the 0.1 yr ATM portfolio

using standard simulation and importance sampling with stratification. The estimates

are from a total of 4,000 replications and 40 strata.

TABLE 7.3

Comparison of Methods for Estimating PðL > xÞ for Different Portfolios Where All

the Marginals Are t’s with Different Degrees of Freedom

Portfolio

Variance ratios

x PfL > xg PfQþ c > xg IS ISS-Q

(a.1) 0.5 yr ATM 322 1.05% 0.82% 37 48

(a.2) 0.5 yr ATM, �k 143 0.99% 1.25% 35 136

(a.3) 0.1 yr ATM 475 1.01% 1.16% 38 55

(a.4) 0.1 yr ATM, �k 149 1.08% 0.91% 17 20

(a.5) Delta hedged 671 0.98% 1.11% 39 57

(a.6) Delta hedged, �k 346 0.95% 0.18% 27 34

(a.7) DAO-C 447 1.16% 0.50% 28 32

(a.8) DAO-C & CON-P 777 1.23% 1.15% 16 18

(a.9) DAO-C & CON-P,

Hedged

333 1.26% 0.29% ��1:1 ��3:1

(a.10) Index 1979 1.12% 1.02% 23 39

(a.11) Index, km < �k1 442 0.99% 0.27% ��3:7 ��4:0
(a.12) 100, Block-diagonal 5690 0.96% 0.86% 79 199

** indicates that we used 400,000 replications (instead of 40,000) for these cases but the

variance estimates and thus the variance ratio estimates still did not stabilize.
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Our results are based on modeling the joint distribution of risk factors using a

multivariate t and some extensions of it. This may be viewed as a reduced-form

approach to modeling changes in risk factors, in the sense that we have not

specified a continuous-time process for the evolution of the risk factors. Though it

is possible to construct a process with a multivariate t distribution at a fixed time

Dt, we know of no process having this distribution at all times. So the model used

here requires fixing a time interval Dt. (The same is true of most time-series

models, including GARCH, for example.) This is in contrast to Lévy process

models considered in Barndorff-Nielsen (1998), Eberlein et al. (1998), and Madan

and Seneta (1990); but the distributions in those models have exponential tails and

are thus not as heavy as the distributions considered here. Some of the

distributions that arise in these models admit representations through the normal

distribution similar to (2.2) so the methods developed here may be applicable to

them as well.
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