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Successful efficient rare-event simulation typically involves using importance sampling tailored to a specific rare event.
However, in applications one may be interested in simultaneous estimation of many probabilities or even an entire distribution.
In this paper, we address this issue in a simple but fundamental setting. Specifically, we consider the problem of efficient
estimation of the probabilities P�Sn ≥ na� for large n, for all a lying in an interval �, where Sn denotes the sum of n
independent, identically distributed light-tailed random variables. Importance sampling based on exponential twisting is known
to produce asymptotically efficient estimates when � reduces to a single point. We show, however, that this procedure fails
to be asymptotically efficient throughout � when � contains more than one point. We analyze the best performance that can
be achieved using a discrete mixture of exponentially twisted distributions, and then present a method using a continuous
mixture. We show that a continuous mixture of exponentially twisted probabilities and a discrete mixture with a sufficiently
large number of components produce asymptotically efficient estimates for all a ∈� simultaneously.
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1. Introduction. The use of importance sampling for efficient rare-event simulation has been studied exten-
sively (see, e.g., Bucklew [4], Heidelberger [9], Juneja and Shahabuddin [11] for surveys). Application areas for
rare-event simulation include communications networks where information loss and large delays are important
rare events of interest (as in Chang et al. [6]), insurance risk where the probability of ruin is a critical perfor-
mance measure (e.g., Asmussen [2]), credit risk models in finance where large losses are a primary concern
(e.g., Glasserman and Li [8]), and reliability systems where system failure is a rare event of utmost importance
(e.g., Shahabuddin [15]).
Successful applications of importance sampling for rare-event simulation typically focus on the probability

of a single rare event. As a way of demonstrating the effectiveness of an importance sampling technique, the
probability of interest is often embedded in a sequence of probabilities decreasing to zero. The importance
sampling technique is said to be asymptotically efficient or asymptotically optimal if the second moment of the
associated estimator decreases at the fastest possible rate as the sequence of probabilities approaches zero.
Importance sampling based on exponential twisting produces asymptotically efficient estimates of rare-event

probabilities in a wide range of problems. As in the setting we consider here, asymptotic efficiency typically
requires that the twisting parameter be tailored to a specific event. However, in applications, one is often inter-
ested in estimating many probabilities or an entire distribution. For instance, portfolio credit risk management
requires the estimation of the tail of the loss distribution for a range of loss thresholds. This is needed in mea-
suring the amount of capital required to protect against typical and atypical losses, in setting thresholds at which
reinsurance treaties are needed to protect against catastrophic losses, and in calculating the premium to be paid
for such contracts. Moreover, estimating a tail distribution is often a step toward estimating functions of the tail
distribution, such as quantiles or tail conditional expectations. These problems motivate our investigation.
We consider the simple but fundamental setting of tail probabilities associated with a random walk. Exponen-

tial twisting produces asymptotically efficient estimates for a single point in the tail; we show, however, that the
standard approach fails to produce asymptotically efficient estimates for multiple points simultaneously, a point
that has been made in other settings by Bucklew et al. [5], Sadowsky [14], and Siegmund [16]. We develop
and analyze modifications that rectify this deficiency. The relatively simple context we consider here provides a
convenient setting in which to identify problems and solutions that may apply more generally.
Specifically, we consider the random walk Sn =

∑n
i=1Xi where �Xi	 i ≤ n� are independent, identically dis-

tributed (iid) random variables with mean 
. We focus on the problem of simultaneous efficient estimation by
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simulation of the probabilities P�Sn/n ≥ a� for large n, for all a > 
 lying in an interval �. Certain regular-
ity conditions are imposed on this interval. We refer to this problem as that of efficient estimation of the tail
distribution curve.
Although the random walk problem we consider is quite simple, the essential features of this problem are

often embedded in more complex applications of importance sampling. This holds, for example, in the queueing
problem in Sadowsky [14] and the credit risk application in Glasserman and Li [8]. The problem in Glasserman
and Li [8] is of the form P�Sn/n≥ a�, but in that context the summands producing Sn need not be independent
or identically distributed. Nevertheless, the iid case underpins the more general case.
A standard technique for estimating P�Sn/n≥ a�, a>
, uses importance sampling by applying an exponential

twist to the (i.i.d.) Xi. It is well known that if the twisting parameter is correctly tailored to a, this method
produces asymptotically efficient estimates. (See, e.g., Sadowsky and Bucklew [13].) However, we show in §2.3
that the exponentially twisted distribution that achieves asymptotic efficiency in estimating P�Sn/n≥ a1� fails
to be asymptotically efficient in estimating P�Sn/n ≥ a2� for a2 �= a1. In particular, it incurs an exponentially
increasing computational penalty as n → �. This motivates the need for the alternative procedures that we
develop in this paper.
Within the class of exponentially twisted distributions, we first identify the one that estimates the tail distri-

bution curve with asymptotically minimal computational overhead. We then extend this analysis to find the best
mixture of k <� exponentially twisted distributions. However, even with this distribution, asymptotic efficiency
is not achieved.
We note that this shortcoming may be remedied if k is selected to be an increasing function of n. We further

propose an importance sampling distribution that is a continuous mixture of exponentially twisted distributions.
We show that such a mixture also estimates the tail probability distribution curve asymptotically efficiently for
all a ∈� simultaneously. Furthermore, we identify the mixing probability density function that ensures that all
points along the curve are estimated with roughly equal precision.
Other settings leading to the simultaneous estimation of multiple performance measures from the same impor-

tance sampling distribution include Arsham et al. [1] and Heidelberger et al. [10]. However, the techniques and
analysis in these and related work are fundamentally different from those studied in this paper.
The rest of this paper is organized as follows: In §2, we review the basics of importance sampling and

introduce some notions of efficiency relevant to our analysis. In §3, we discuss the performance of importance
sampling in simultaneously estimating the tail probability distribution curve using discrete mixtures of appropri-
ate exponentially twisted distributions. The analysis is then extended to continuous mixtures in §4. Concluding
remarks are given in §5.

2. Naive estimation and importance sampling.

2.1. Naive estimation of the tail distribution curve. Under naive simulation, m iid samples ��Xi1�Xi2� � � � �
Xin�: i ≤ m� of �X1�X2� � � � �Xn� are generated using the original probability measure P . Let Si

n =
∑n

j=1Xij .
Then, for each a ∈�,

1
m

m∑
i=1

I�Si
n ≥ na�

provides an unbiased estimator of P�Sn/n ≥ a�, where I�·� denotes the indicator function of the event in
parentheses.

2.2. Importance sampling. We restrict attention to probability measures P ∗ for which P is absolutely
continuous with respect to P ∗ when both measures are restricted to the �-algebra generated by �X1�X2� � � � �Xn�.
Let L denote the likelihood ratio of the restriction of P to the restriction of P ∗. Then,

P�Sn/n≥ a�=EP∗ �LI�Sn/n≥ a�� (1)

for each a ∈ �, where the subscript affixed to E denotes the probability measure used in determining the
expectation.
If, under P and P ∗, �X1�X2� � � � �Xn� have joint densities f and f ∗, respectively, then

L= f �X1�X2� � � � �Xn�

f ∗�X1�X2� � � � �Xn�
a.s.

Clearly, L depends on n, although we do not make this dependence explicit in our notation.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Glasserman and Juneja: Uniformly Efficient Importance Sampling for the Tail Distribution of Sums of Random Variables
38 Mathematics of Operations Research 33(1), pp. 36–50, © 2008 INFORMS

Under importance sampling with probability P ∗, m iid samples ��Xi1�Xi2� � � � �Xin�	 i ≤ m� of
�X1�X2� � � � �Xn� are generated using P ∗. Let �Li	 i ≤m� denote the associated samples of L. For each a ∈�,
we compute the estimate

1
m

m∑
i=1

LiI�S
i
n ≥ na�� (2)

In light of (1), (2) provides an unbiased estimator of P�Sn/n≥ a�.
The probabilities P�Sn/n ≥ a� decrease exponentially in n if the Xi are light tailed. More precisely, if the

moment-generating function of the Xi is finite in a neighborhood of the origin, then (as in, e.g., Dembo and
Zeitouni [7, p. 34])

lim
n→�

1
n
logP�Sn/n≥ a�=−�∗�a�� (3)

where �∗ denotes the large deviations rate function associated with the sequence �Sn/n	 n≥ 0�, to be defined
in §3.2, and a belongs to the interior of �x	 �∗�x� <��.
Also note that for any P ∗,

EP∗ �L2I�Sn/n≥ a��≥ �EP∗ �LI�Sn/n≥ a���2 = P�Sn/n≥ a�2�

and hence
lim inf
n→�

1
n
logEP∗ �L2I�Sn/n≥ a��≥−2�∗�a�� (4)

An importance sampling measure P ∗ is said to be asymptotically efficiently for P�Sn/n≥ a� if equality holds
in (4) with the liminf replaced by an ordinary limit.
Furthermore, we say that the relative variance of the estimate (under a probability measure P ∗) grows poly-

nomially at rate p > 0 if

0< lim inf
n→�

1
np

EP∗ �L2I�Sn/n≥ a��

P�Sn/n≥ a�2
≤ lim sup

n→�

1
np

EP∗ �L2I�Sn/n≥ a��

P�Sn/n≥ a�2
<��

It is easily seen that if this holds for some p > 0, then P ∗ is asymptotically efficient for P�Sn/n ≥ a�. The
relative variance of the estimate grows exponentially if the ratio

EP∗ �L2I�Sn/n≥ a��

P�Sn/n≥ a�2

grows at least at an exponential rate with n.
We say that the relative variance of the estimate of the tail distribution curve over � grows polynomially at

rate p > 0 if

0< sup
a∈�

lim inf
n→�

1
np

EP∗ �L2I�Sn/n≥ a��

P�Sn/n≥ a�2
≤ sup

a∈�
lim sup
n→�

1
np

EP∗ �L2I�Sn/n≥ a��

P�Sn/n≥ a�2
<��

It is said to grow at most at the polynomial rate p > 0 if the last inequality holds.

2.3. Asymptotically efficient exponentially twisted distribution. We first review the asymptotically effi-
cient exponentially twisted importance sampling distribution for estimating a single probability P�Sn/n ≥ a�,
a>
. We also show that under this measure the relative variance of the estimate grows polynomially at rate 1/2.
Some notation and assumptions are needed for this. Let Xi have distribution function F and log-moment

generating function � under the original probability measure P ,

��!�= log
∫
exp�!x�dF �x��

Denote �’s domain by #= �!	 ��!� <��, and for each ! ∈#, let F! denote the distribution function obtained
by exponentially twisting F by ! ∈#, i.e.,

dF!�x�= exp�!x−��!��dF �x��

Let �′ denote the derivative of �. It is a standard consequence of exponential twisting (and easy to see directly)
that �′�!� is the mean of a random variable with distribution function F!. Set � = ��′�!�	 ! ∈ #�, i.e., the
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collection of possible mean values under distributions obtained by exponentially twisting F . For instance, if F
denotes the distribution function of a random variable uniformly distributed between a and b, then � = �a� b�.
As another instance, suppose F denotes the distribution function of an exponentially distributed random variable
with rate %. Then, it is easy to check that F! corresponds to an exponential distribution with rate %− !, so
� = �0���.
We assume that # has a nonempty interior #o, which then includes zero. Furthermore, we require

�⊆� o�

Let P! denote the probability measure under which �Xi	 i ≥ 1� are iid with distribution F!. The restrictions
of P and P! to the �-algebra generated by X1� � � � �Xn are mutually absolutely continuous. Let L! denote the
Radon-Nikodym derivative of the restriction of P to the restriction of P!. Then,

L! = exp�−!Sn + n��!�� a.s. (5)

We recall some definitions associated with the large deviations rate of Sn; see Dembo and Zeitouni [7] for
background. The rate function for �Sn/n	 n≥ 1� is defined by

�∗�a�= sup
!

�!a−��!���

For each a ∈� o, there is, by definition of � , a !�a� ∈# for which �′�!�a��= a. It is easy to see that

!�a�a−��!�a��= sup
!

�!a−��!��=�∗�a�� (6)

Moreover, through differentiation, it can be seen that �∗′�a�= !�a�. By differentiating the equation �′�!�a��= a,
it follows that

!′�a�= 1
�′′�!�a��

=�∗′′�a�'

as in §2.2.24 of Dembo and Zeitouni [7], we have �′′�!� > 0 when �′�!� ∈� o. (Furthermore, they note that �
and �∗ are infinitely differentiable on #o and � o, respectively.)
It is well known that (as in Sadowsky and Bucklew [13]) P!�a� asymptotically efficiently estimates

P�Sn/n≥ a�, i.e.,

lim
n→�

logEP!�a�
�L2!�a�I�Sn/n≥ a��

logP�Sn/n≥ a�
= 2� (7)

Theorem 2.1 sharpens this result and also shows what happens when we use a twisting parameter ! different from
!�a� in estimating P�Sn/n > a�. The theorem applies the Bahadur-Rao (Bahadur and Rao [3]) approximations.
When Xi has a nonlattice distribution, the Bahadur-Rao approximation states that

P�Sn/n≥ a�∼ 1√
2(�′′�!�a��n!�a�

exp�−n�∗�a��� (8)

(We say that an ∼ bn for nonnegative sequences �an	 n≥ 1� and �bn	 n≥ 1�, if limn→� an/bn exists and equals 1.)
When Xi has a lattice distribution (i.e., for some x0 and some d, the random variable d−1�Xi − x0� is a.s.
an integer, and d is the largest number with this property) and 0 < P�Xi = a� < 1, then the Bahadur-Rao
approximation states that

P�Sn/n≥ a�∼ 1√
2(�′′�!�a��n!�a�

exp�−n�∗�a��
!�a�d

1− exp�−!�a�d�
� (9)

Let
)�a� t�=√

2(�′′�!�a���!�a�+ !�t���

Theorem 2.1. For a>
 and t in � o:
(i) When Xi has a nonlattice distribution:

EP!�t�
�L2!�t�I�Sn/n≥ a��∼ 1

)�a� t�
√
n
exp�n�!�t��t− a�−�∗�t�−�∗�a���� (10)
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(ii) When Xi has a lattice distribution with d as defined above and P�Xi = a� > 0:

EP!�t�
�L2!�t�I�Sn/n≥ a��∼ 1

)�a� t�
√
n
exp�n�!�t��t− a�−�∗�t�−�∗�a���

�!�a�+ !�t��d

1− exp�−�!�a�+ !�t��d�
� (11)

Thus, with t = a the relative variance grows polynomially at rate 1/2, but with t �= a the relative variance grows
exponentially and P!�t� fails to be asymptotically efficient for P�Sn/n≥ a�.

Proof. Once we establish (10) and (11), the polynomial rate of growth of the relative variance when t = a
follows from dividing (10) by the square of (8) and dividing (11) by the square of (9). When t �= a, the strict
convexity of �∗ (see Dembo and Zeitouni [7, §2.2.24]) implies that

�∗�a� >�∗�t�+ �a− t��∗′�t��

Because !�t�=�∗′�t�, dividing (10) by the square of (8) and dividing (11) by the square of (9) shows that the
relative variance grows exponentially in both the cases.
To establish (10) and (11), we use (5) and (6) to write

L!�t� = exp
[−!�t��Sn − na�+ n!�t��t− a�− n�∗�t�

]
� (12)

Also note that

EP!�t�
�L2!�t�I�Sn/n≥ a��=EP

[
L!�t�I�Sn/n≥ a�

]=EP!�a�

[
L!�t�L!�a�I�Sn/n≥ a�

]
�

Using (5) to replace L!�a� and (12) to replace L!�t�, we get

EP!�t�
�L2!�t�I�Sn/n≥a��=exp[n�!�t��t−a�−�∗�t�−�∗�a��

]
EP!�a�

[
exp�−�!�t�+!�a���Sn−na��I�Sn/n≥a�

]
�

Using exactly the same arguments as in Bahadur and Rao [3] or Dembo and Zeitouni [7, §3.7.4], it follows that

EP!�a�

[
exp�−�!�t�+ !�a���Sn − na��I�Sn/n≥ a�

]∼ 1

)�a� t�
√
n
�

when Xi has a nonlattice distribution, and

EP!�a�

[
exp�−�!�t�+ !�a���Sn − na��I�Sn/n≥ a�

]∼ 1

)�a� t�
√
n

�!�a�+ !�t��d

1− exp�−�!�a�+ !�t��d�
�

when Xi has a lattice distribution. �

Other results showing the uniqueness of an asymptotically efficient exponential twist are established in
Bucklew et al. [5], Sadowsky [14], and Siegmund [16].

3. Finite mixtures of exponentially twisted distributions. We have seen in the previous section that a
single exponential change of measure cannot estimate multiple points along the tail distribution curve with
asymptotic efficiency. In this section, we identify the twisting parameter that is minimax optimal in the sense
that it minimizes the worst-case relative variance over an interval �= �a1� a2�⊆� o, a1 >
. We then consider
an optimal mixture of k <� exponentially twisted distributions. We show that if k→� as n→�, then the tail
distribution curve is asymptotically efficiently estimated over �. Furthermore, if k is #�

√
n/ logn�1 the relative

variance of the tail probability distribution curve grows polynomially over �.
Some definitions are useful for our analysis. From Theorem 2.1, it follows that for a ∈� o and a>
,

lim
n→�

1
n
logEP!�t�

�L2!�t�I�Sn/n≥ a��=−H�t�a��

where (recalling that !�t�=�∗′�t�),

H�t�a�=�∗�a�+�∗�t�+�∗′�t��a− t��

1 A nonnegative function f �x� is said to be #�g�x��, where g is another nonnegative function, if there exists a positive constant K such that
f �x�≥Kg�x� for all x sufficiently large.
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The asymptotic rate of the relative variance of the estimator under P!�t� may be defined as

lim
n→�

1
n
log

(
EP!�t�

�L2!�t�I�Sn/n≥ a��

P�Sn/n≥ a�2

)
�

From Theorem 2.1, this equals

J �t� a�=�∗�a�− �a− t��∗′�t�−�∗�t�= 2�∗�a�−H�t�a��

This may be interpreted as the nonnegative exponential penalty incurred for twisting with parameter !�t� in
estimating P�Sn/n≥ a�. It equals zero at t = a and is positive otherwise. The penalty J �t� a� has the following
geometric interpretation: It equals the vertical distance between the rate function �∗ and the tangent drawn to
this function at t, both evaluated at a.

3.1. The minimax optimal twist. A formulation of the problem of minimizing the worst-case asymptotic
relative variance is to find t ∈� o minimizing

sup
a∈�

lim
n→�

1
n
log

(
EP!�t�

�L2!�t�I�Sn/n≥ a��

P�Sn/n≥ a�2

)
= sup

a∈�
J �t� a�� (13)

Proposition 3.1. For �= �a1� a2�⊆� o, a1 >
, the asymptotic worst-case relative variance (13) is mini-
mized over t by t∗ that satisfies:

�∗′�t∗�= �∗�a2�−�∗�a1�
a2− a1

� (14)

Proof. The optimization problem reduces to

inf
t∈�o

sup
a∈�a1�a2�

��∗�a�−�∗′�t��a− t�−�∗�t���

Due to the convexity of �∗, for any t, supa∈�a1� a2���
∗�a�−�∗′�t��a− t�−�∗�t�� is achieved at a1 or a2. Thus,

the problem reduces to

inf
t∈�o

max��∗�a1�−�∗′�t��a1− t�−�∗�t���∗�a2�−�∗′�t��a2− t�−�∗�t���

If t < a1, then both functions inside the max are decreasing in t, so increasing t reduces the maximum. If
t > a2, then both functions inside the max are increasing in t, so decreasing t reduces the maximum. It therefore
suffices to consider t ∈ �a1� a2�. At all such t, the first function is increasing and the second is decreasing, so
the maximum is minimized where they are equal, which is the point t∗ in (14). �

3.2. Finite mixtures: Minimax objective. We now consider a probability measure �P that is a nonnegative
mixture of k exponentially twisted distributions so that

�P�A�=
k∑

i=1
piP!�ti�

�A��

where pi > 0,
∑k

i=1 pi = 1, and t1 < t2 < · · ·< tk, and each ti ∈� o. Our objective is to find the optimal twisting
parameters for a fixed k. Although our analysis remains valid for all pi > 0,

∑k
i=1 pi = 1, we later note that

from a practical viewpoint, pi = 1/k for each i is a reasonable choice when �P uses optimal twisting parameters.
We then examine the asymptotic relative variance as k increases. Mixtures of exponentially twisted distributions
have been used in many applications, including Sadowsky and Bucklew [13].
For a fixed k, we formulate the problem of selecting a mixture of k exponentially twisted distributions to

minimize the worst-case asymptotic relative variance over �= �a1� a2�⊆� o as follows:

inf
t1� � � � �tk∈�o

sup
a∈�

lim
n→�

1
n
log

(
E �P �L̃2I�Sn/n≥ a��

P�Sn/n≥ a�2

)
� (15)

where L̃ is the likelihood ratio of P with respect to �P , given by
L̃= 1∑k

i=1 pi exp�!�ti�Sn − n��!�ti���
�

The existence of the limit in (15) is guaranteed by the following lemma. Recall that H�t�a�=�∗�a�+�∗�t�+
�∗′�t��a− t�.
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Lemma 3.1. For a� t1� � � � � tk ∈� o, a>
, there exists a constant c such that

E �P �L̃
2I�Sn/n≥ a��≤ c exp

(
−n max

i=1� � � � �k
H�ti� a�

)
(16)

for all sufficiently large n. Furthermore,

lim
n→�

1
n
logE �P �L̃

2I�Sn/n≥ a��=− max
i=1� � � � �k

H�ti� a�� (17)

Recall that J �t� a�= 2�∗�a�−H�t�a�. In view of (17), our optimization problem reduces to

inf
t1� � � � �tk∈�o

sup
a∈�

min
i=1� � � � �k

J �ti� a�� (18)

Proof of Lemma 3.1. We first show (16). We have

E �P �L̃
2I�Sn/n≥ a��=EP �L̃I�Sn/n≥ a�� (19)

and
L̃≤ min

i=1� � � � �k
�1/pi� exp�−!�ti�Sn + n��!�ti����

so
E �P �L̃

2I�Sn/n≥ a��≤ min
i=1� � � � �k

�1/pi� exp�−!�ti�na+ n��!�ti���P�Sn/n≥ a��

From (8) we get
P�Sn/n≥ a�≤ constant · exp�−n�∗�a��

for all sufficiently large n. Recalling that !�ti�=�∗′�ti�, and �∗�t�= !�t�t−��!�t��, we therefore get

E �P �L̃
2I�Sn/n≥ a��≤ constant · min

i=1� � � � �k
�1/pi� exp�−nH�ti� a�� (20)

for all sufficiently large n. This proves the upper bound in the lemma because the minimum is achieved by the
largest exponent H�ti� a�, i= 1� � � � � k, for all sufficiently large n.
To see (17), from (20) it follows that

lim sup
n→�

1
n
logE �P �L̃

2I�Sn/n≥ a��≤ min
i=1� � � � �k

−H�ti� a�=− max
i=1� � � � �k

H�ti� a��

To get a lower bound, choose 1 > 0 and write

E �P �L̃
2I�Sn/n≥ a��=EP!�a+1�

�L̃L!�a+1�I�Sn/n≥ a��≥EP!�a+1�
�L̃L!�a+1�I�a+ 21≥ Sn/n≥ a���

This last expression is, in turn, bounded below by

�Mn�1 = exp�−!�a+ 1��a+ 21�n+ n��!�a+ 1���

×
( k∑

i=1
pi exp�!i�a+ 21�n− n��!i��

)−1
P!�a+1��a≤ Sn/n≤ a+ 21��

where we have written !i for !�ti�. Because the Xi have mean a+ 1 under P!�a+1�,

P!�a+1��a≤ Sn/n≤ a+ 21�→ 1�

Thus,

lim inf
n→�

1
n
log �Mn�1 ≥−!�a+ 1��a+ 21�+��!�a+ 1��− max

i=1� � � � �k
{
!i�a+ 21�−��!i�

}
from which follows

lim inf
n→�

1
n
logE �P �L̃

2I�Sn/n≥ a��≥−!�a+ 1��a+ 21�+��!�a+ 1��− max
i=1� � � � �k

{
!i�a+ 21�−��!i�

}
�

Because 1 > 0 is arbitrary, we also have

lim inf
n→�

1
n
logE �P �L̃

2I�Sn/n≥ a��≥−!�a�a+��!�a��− max
i=1� � � � �k

�!ia−��!i��=− max
i=1� � � � �k

H�ti� a�� �
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3.3. Finite mixtures: Optimal parameters. We now turn to the solution of (18), the problem of finding
the optimal twisting parameters. We first develop some simple results related to convex functions that are useful
for this.
Consider a differentiable function f that is strictly convex on an interval that includes �y� z� in its interior.

Consider the problem of finding the maximum vertical distance between the graph of f and the line joining the
points �y� f �y�� and �z� f �z��; i.e.,

g�y� z�= max
t∈�y� z�

(
f �z�− �z− t�

f �z�− f �y�

z− y
− f �t�

)
�

At the optimal point t∗, we have

f ′�t∗�= f �z�− f �y�

z− y
� (21)

and
g�y� z�= f �z�− �z− t∗�f ′�t∗�− f �t∗�� (22)

By substituting for f ′�t∗�, it is also easily seen that

g�y� z�= f �y�+ �t∗ − y�f ′�t∗�− f �t∗�� (23)

Also note that g�y� z� is a continuous function of �y� z�; it increases in z and decreases in y.
The following lemma is useful in arriving at optimal parameters of finite mixtures. Its content is intuitively

obvious: Given a strictly convex function on an interval, the interval can be partitioned into k subintervals such
that the maximum distance between the function and the piecewise-linear interpolation between the endpoints
of the subintervals is the same over all subintervals.

Lemma 3.2. Suppose that f is strictly convex on �y� z�. Then there exist points y = b1 < b2 < · · ·< bk+1 = z
satisfying

g�bi� bi+1�= g�bi+1� bi+2� i= 1�2� � � � � k− 1� (24)

Note that whenever the existence of �b1� b2� � � � � bk+1� as in Lemma 3.2 is established, the common value of
g�bi� bi+1� for i= 1�2� � � � � k, is determined by bk+1 if b1 is held fixed. In the proof, Jk�bk+1� denotes this value.

Proof of Lemma 3.2. The proof is by induction. First consider k = 2. Here, g�b1� b�− g�b� b3� is a con-
tinuous increasing function of b. It is negative at b = b1 and positive at b = b3. Thus, there exists b2 ∈ �b1� b3�
such that g�b1� b2�= g�b2� b3�= J2�b3�. Furthermore, as b3 increases, g�b1� b�− g�b� b3� decreases, so b2 and
hence J2�b3� increase continuously with b3.
To proceed by induction, assume that for each bk > y, there exist points y = b1 < b2 < · · · < bk such that

g�bi� bi+1�= g�bi+1� bi+2�= Jk−1�bk� for i= 1�2� � � � � k− 2. Furthermore, each bi and Jk−1�bk� is an increasing
function of bk. Now consider the function Jk−1�b�− g�b� bk+1� as a function of b. This function is negative at
b= b1, positive at b= bk+1, and it increases continuously with b. So, again there exists a bk so that Jk−1�bk�=
g�bk� bk+1�. Set this value equal to Jk�bk+1�. Again, it may similarly be seen that bk, and hence all bi, i =
2�3� � � � � k− 1, and Jk�bk+1� increase with bk+1. �

Given points �b1� b2� � � � � bk+1�, as in Lemma 3.2, we may define ti by

f ′�ti�=
f �bi+1�− f �bi�

bi+1− bi
� i= 1�2� � � � � k� (25)

Then, from (22) and (23), it is easy to see that (24) amounts to

f �ti+1�− f �ti�= f ′�ti��bi+1− ti�+ f ′�ti+1��ti+1− bi+1�� i= 1�2� � � � � k− 1�
In Proposition 3.2, we use these observations and Lemma 3.2 to identify the solution of (18), i.e., the optimal

twisting parameters.

Proposition 3.2. Suppose that � = �a1� a2� ⊆ � o, a1 > 
. Let the points a1 = b1 < b2 < · · · < bm+1 = a2
and t1� � � � � tk satisfy

�∗′�ti�=
�∗�bi+1�−�∗�bi�

bi+1− bi
� i= 1� � � � � k (26)

and
�∗�ti+1�−�∗�ti�=�∗′�ti��bi+1− ti�+�∗′�ti+1��ti+1− bi+1�� i= 1� � � � � k− 1� (27)

as in Lemma 3.2 and (24). These t1� � � � � tk solve (18).
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b4

b3

b2
b1

t1

t2

t3

Figure 1. Illustration of the points ti and bi.

Proof. From the strict convexity of �∗ in � o, it follows that the tangent lines at t1� � � � � tk partition the
interval �a1� a2� into k subintervals such that throughout the ith interval, �∗ is closer to the tangent line at ti
than it is to the tangent line at any other tj . The endpoints of the ith subinterval, i = 2� � � � � k − 1, are the
points at which the tangent line at ti crosses the tangent lines at ti−1 and ti+1. These are the points b2� � � � � bm
in (27); see Figure 1. The left endpoint of the first subinterval is simply a1 = b1 and the right endpoint of the
mth subinterval is simply a2 = bk+1. Thus, for all a ∈ �bi� bi+1�,

min
j=1� � � � �k

J �tj � a�= J �ti� a��

Furthermore, each J �ti� ·� is a convex function, so
sup

bi≤a≤bi+1
J �ti� a�=max�J �ti� bi�� J �ti� bi+1��� i= 1� � � � � k�

Viewing b2� � � � � bk as functions of t1� � � � � tk (through (27)), the problem in (18) thus becomes one of minimizing

max
{
J �t1� b1�� J �t1� b2�� J �t2� b2�� J �t2� b3�� � � � � J �tk� bk�� J �tk� bk+1�

}
over t1� � � � � tk. In fact, (27) says that J �ti� bi+1�= J �ti+1� bi+1�, i = 1� � � � � k− 1, so we may simplify this to
minimizing

max
{
J �t1� b1�� J �t2� b2�� � � � � J �tk� bk�� J �tk� bk+1�

}
� (28)

Each bi, i= 2� � � � � k, is an increasing function of ti−1 and ti. Each J �ti� bi�≡ J �ti� bi�ti−1� ti�� is easily seen
to be an increasing function of ti and a decreasing function of ti−1, i = 2� � � � � k. Similarly, J �t1� b1� is an
increasing function of t1 and J �tk� bk+1� is a decreasing function of tk. It follows that if all values inside the
max in (28) are equal, then t1� � � � � tk are optimal: No change in t1� � � � � tk can simultaneously reduce all values
inside the max.
All values in (28) are equal if J �ti� bi�= J �ti+1� bi+1�, i = 1� � � � � k− 1, and J �tk� bk�= J �tk� bk+1�. Simple

algebra now shows that this is equivalent to (26). �

The proof of Proposition 3.2 leads to a simple algorithm for finding the optimal points t1� � � � � tk to use in a
mixture of m exponentially twisted distributions. The key observation is that it suffices to find the optimal value
of (28), which (as noted in the proof) is attained when all values inside the maximum in (28) are equal. Start
with a guess 1 > 0 for this value and set b1 = a1. Now proceed recursively, for i= 1� � � � �m: Given bi, find ti
by solving the equation

�∗�bi�−�∗�ti�−�∗′�ti��bi − ti�= 1

and then find bi+1 by solving
�∗�bi+1�−�∗�ti�−�∗′�ti��bi+1− ti�= 1�

This is straightforward, because the left side of the first equation is increasing in the unknown ti and the left
side of the second equation is increasing in the unknown bi+1. If at some step there is no solution in �a1� a2�,
the procedure stops, reduces 1, and starts over at b1. If a solution is found at every step but bk+1 < a2, then
1 is increased and the procedure starts over at b1. Thus, one may apply a bisection search over 1 to find the
optimal 1 and, simultaneously, the optimal ti and bi. The exact optimum has bk+1 = a2; in practice, one must
specify some error tolerance for �bk+1− a2�.
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Remark 3.1 (Selecting pis). Let J denote the minimal value in (18), the minimax penalty incurred in
estimating P�Sn/n ≥ a� for all a ∈ � using a mixture of k exponentially twisted distributions. Suppose that a
mixture distribution �P with optimal twisting parameters and mixing weights �p1� � � � � pk� is used. We now argue
that pi = 1/k for all i is a reasonable choice of weights.
Note that because � is compact, there exists a constant c̃ > 0 so that for all a ∈�,

P�Sn/n≥ a�≥ c̃√
n
exp�−n�∗�a�� (29)

for all sufficiently large n.
From (20) and (29) it follows that

E �P �L̃2I�Sn/n≥ a��

P�Sn/n≥ a�2
≤ n

c̃2
· min
j=1� � � � �k

�1/pj� exp�nJ �tj � a�� (30)

for all sufficiently large n. For a ∈ �bi� bi+1�, we have J �ti� a� = minj=1� � � � �k J �tj � a� ≤ J . Therefore, for n
sufficiently large,

E �P �L̃2I�Sn/n≥ a��

P�Sn/n≥ a�2
≤ n

c̃2
· �1/pi� exp�nJ �ti� a��≤

n

c̃2
· �1/pi� exp�nJ ��

so that

sup
a∈�

E �P �L̃2I�Sn/n≥ a��

P�Sn/n≥ a�2
≤ n

c̃2
exp�nJ � max

i=1� � � � �k
�1/pi��

Hence, a reasonable choice for the pis minimizes this upper bound, i.e., solves the minimax problem
minmaxi=1� � � � �k�1/pi� subject to

∑
i≤k pi = 1. This corresponds to pi = 1/k for each i. A more refined choice

of pis may be made by using the exact asymptotic (8) instead of the lower bound (29) in the above discussion.

3.4. Increasing the number of components. Again consider � = �a1� a2� ⊆ � o and let Jk denote the
minimal value in (18), where we now explicitly show its dependence on k. We examine how Jk decreases with k.
Recall that for a ∈ � o, 0 < �′′�!�a�� < �. Because �∗′′�a� = 1/�′′�!�a��, it follows that 0 < �∗′′�a� < �.
Because �⊆� o is a compact set, we have infa∈��∗′′�a� > 0 and supa∈��

∗′′�a� <�.
Proposition 3.3. For �= �a1� a2�⊆� o, a1 >
, there exist constants d1�d2 such that for all k= 1�2� � � � ,

d1
k2

≤ Jk ≤
d2
k2

�

Proof. Let c− = infa∈��∗′′�a� and c+ = supa∈��
∗′′�a�. For any interval �bi� bi+1�⊆� and point ti satisfy-

ing (26), twice integrating the bounds on the second derivative of �∗′′ yields
c−
2
�ti − bi�

2 ≤�∗�bi�−�∗�ti�−�∗′�ti��bi − ti�≤
c+
2
�ti − bi�

2

and c−
2
�ti − bi+1�

2 ≤�∗�bi+1�−�∗�ti�−�∗′�ti��bi+1− ti�≤
c+
2
�ti − bi+1�

2�

To construct an upper bound on Jk, we may take b1� � � � � bk+1 to be equally spaced, so that bi+1 − bi =
�a2− a1�/k, and choose ti to satisfy (26). Then

Jk ≤ max
i=1� � � � �k

sup
bi≤a≤bi+1

��∗�a�−�∗�ti�−�∗′�ti��a− ti���

As in the proof of Proposition 3.1, the supremum over the ith subinterval is attained at the endpoints, so

Jk ≤ max
i=1� � � � �k

c+
2
�ti − bi�

2 ≤ c+�a2− a1�
2

2k2
�

To get a lower bound on Jk, observe that for any b1 < · · ·< bk+1 with a1 = b1 and bk+1 = a2 (including the
optimal values), at least one subinterval �bi� bi+1� must have length greater than or equal to �a2 − a1�/k. Fix
such a subinterval and let ti satisfy (26). Then,

Jk ≥max��∗�bi�−�∗�ti�−�∗′�ti��bi − ti���
∗�bi+1�−�∗�ti�−�∗′�ti��bi+1− ti���

so

Jk ≥max
{
c−
2
�ti − bi+1�

2�
c−
2
�ti − bi�

2

}
≥ c−
8
�bi+1− bi�

2 ≥ c−
8k2

�a2− a1�
2� �
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The following result shows that by increasing the number of components k in the mixture together with n, we
can recover asymptotic efficiency. Here �P is defined from k components, as before, using the optimal twisting
parameters !�ti�, i= 1� � � � � k.

Proposition 3.4. For �= �a1� a2�⊆� o, a1 >
, if k→� as n→�, then �P is asymptotically efficient for
P�Sn/n≥ a�, for every a ∈�. If k=#�

√
n/ logn�, then the relative variance of the estimated tail distribution

curve over � is polynomially bounded,

sup
a∈�

lim sup
n→�

1
np

E �P �L̃2I�Sn/n≥ a��

P�Sn/n≥ a�2
<�� (31)

for p > 1. If k=#�
√
n�, then (31) holds with p= 1.

Proof. From Lemma 3.1 and (8), we know that

E �P �L̃
2I�Sn/n≥ a��≤ constant · exp

(
−n max

i=1� � � � �k
H�ti� a�

)
and

P�Sn/n≥ a�≥ constant√
n

· exp�−n�∗�a��

for all sufficiently large n. Thus,

E �P �L̃2I�Sn/n≥ a��

P�Sn/n≥ a�2
≤ n · constant · exp

(
n
[
2�∗�a�− max

i=1� � � � �k
H�ti� a�

])
≤ n · constant · exp�nJk�≤ n · constant · exp�nd2/k2� (32)

for all sufficiently large n. If k→�, then

lim
n→�

1
n
log

(
E �P �L̃2I�Sn/n≥ a��

P�Sn/n≥ a�2

)
= 0�

From this, asymptotic efficiency as an estimator of P�Sn/n≥ a� follows.
If k=#�

√
n/ logn�, (32) implies (31) for any p > 1. If k=#�

√
n�, (32) implies (31) with p= 1. �

Bounds of the same order of magnitude as those in Proposition 3.3 (but with different constants) hold if
we use equally spaced points ti rather than the optimal points. Thus, the number of components k needed to
achieve asymptotic efficiency in that case is of the same order of magnitude as with optimally chosen points.
This suggests that choosing the ti optimally is most relevant when k is relatively small.

Remark 3.2 (� Is Finite). Our primary focus in the paper has been simultaneously efficiently estimating
the probabilities P�Sn/n≥ a� for each a lying in an interval �. It is worth noting that the problem is quite simple
when � is a finite set. To see this, suppose that �= �a1� a2� � � � � ak�, where each ai > 
. To simultaneously
efficiently estimate probabilities �P�Sn/n≥ ai�	 i≤ k�, it is natural to consider the probability measure

�P�A�=
k∑

i=1
piP!�ai�

�A��

To see that this asymptotically optimally estimates P�Sn/n≥ ai�, note that the associated likelihood ratio

L̂= 1∑k
i=1 pi exp�!�ai�Sn − n��!�ai���

on the set �Sn/n≥ ai� is upper bounded by

1
pi

exp�−n�∗�ai���

Hence,

E �P �L̂
2I�Sn/n≥ ai��≤

1
p2i
exp�−2n�∗�ai��

and asymptotic optimality of �P follows.
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4. Continuous mixture of exponentially twisted distributions. We now show that a continuous mixture
of P!�t� for t ∈ �, simultaneously asymptotically efficiently estimates each P�Sn/n ≥ a� for each a ∈ �. In
Theorem 4.1, we allow � to be any interval in � o of values greater than 
. Thus, it is allowed to have the form
�a1��� as long as it is a subset of � o and a1 >
.

4.1. Polynomially bounded relative variance. Let g be a probability density function with support �.
Consider the probability measure Pg , where for any set A,

Pg�A�=
∫ a2

a1

P!�t��A�g�t�dt�

(Here a2 may equal �.) This measure may be used to estimate P�Sn/n ≥ a� as follows: First, a sample T is
generated using the density g. Then, the exponentially twisted distribution P!�T � is used to generate the sample
�X1�X2� � � � �Xn�, and hence the output is Lg�Sn�I�Sn/n≥ a� where

Lg�Sn�=
(∫ a2

a1

exp�!�t�Sn − n��!�t���g�t�dt

)−1
� (33)

Theorem 4.1. For each a ∈�o, when g is a positive continuous function on �,

lim sup
n→�

1
n

EPg
�Lg�Sn�

2I�Sn/n≥ a��

P�Sn/n≥ a�2
≤ !�a��′′�!�a��

g�a�
= �∗′�a�

�∗′′�a�g�a�
�

so that the relative variance of the associated importance sampling estimator grows at most polynomially with
rate p= 1.

Proof. On the event �Sn ≥ na�,

Lg�Sn�≤
(∫ a2

a1

exp�!�t�n�a−��!�t����g�t�dt

)−1
�

Because �∗�t�= !�t�t−��!�t��, and !�t�=�∗′�t�, this upper bound equals

exp�−n�∗�a��
(∫ a2

a1

exp�−n��∗�a�−�∗′�t��a− t�−�∗�t��g�t�dt
)−1

�

Note that �∗�a�− �∗′�t��a− t�− �∗�t� is minimized at t = a. Using Laplace’s approximation (see, e.g.,
Olver [12, pp. 80–81]),

∫ a2

a1

exp�−n��∗�a�−�∗′�t��a− t�−�∗�t��g�t�dt ∼
√

2(
n�′′�!a�

g�a� (34)

if a ∈ �a1� a2�. Thus, for 1 > 0 and n large enough, on �Sn ≥ na�,

Lg�Sn�≤ exp�−n�∗�a��

√
n�′′�!�a��

2(
1

g�a�
�1+ 1�� (35)

Now EPg
�Lg�Sn�

2I�Sn/n≥ a��=EP �Lg�Sn�I�Sn/n≥ a��. Hence, for n large enough,

EPg
�Lg�Sn�

2I�Sn/n≥ a��≤ exp�−n�∗�a��

√
n�′′�!a�
2(

1
g�a�

�1+ 1�P�Sn/n≥ a��

Using the sharp asymptotic for P�Sn/n≥ a� given in (8), and noting that 1 is arbitrary, it follows that

lim sup
n→�

1
n

EPg
�Lg�Sn�

2I�Sn/n≥ a��

P�Sn/n≥ a�2
≤ !a�

′′�!a�
g�a�

�

Because !a =�∗′�a� and �′′�!a�= 1/�∗′′�a�, the result follows. �
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Remark 4.1. In Theorem 4.1, if a is on the boundary of �a1� a2�, the analysis remains unchanged except
that in (34) the asymptotic has to be divided by two to get the correct value (see, e.g., Olver [12, p. 81]). Hence,
in this setting

lim sup
n→�

1
n

EPg
�Lg�Sn�

2I�Sn/n≥ a��

P�Sn/n≥ a�2
≤ 2 �∗′�a�

�∗′′�a�g�a�
�

In particular, it follows that if �= �a1� a2�⊆� o, a1 >
,

sup
a∈�

lim sup
n→�

1
n

EPg
�Lg�Sn�

2I�Sn/n≥ a��

P�Sn/n≥ a�2
<��

Remark 4.2. A difficulty with implementing a continuous mixture importance sampling distribution Pg may
be that the likelihood Lg�Sn� may not be computable in closed form and the numerical methods to compute
Lg�Sn� may be computationally expensive. Hence, in practice a discrete mixture may often be easier to implement
compared to a continuous mixture.

4.2. Choice of density function. Theorem 4.1 and Remark 4.1 suggest that the relative variance of the
estimator of P�Sn/n≥ a� for each a ∈� is closely related to the quantity �∗′�a�/��∗′′�a�g�a��. In particular, all
else being equal, if g�a� is reduced by a factor 6, then the associated variance roughly increases by a factor 6.
This is intuitive because g�a� is a rough measure of the proportion of samples generated in the neighborhood
of a under Pg (recall that under the probability measure P!�a�, the mean of Sn/n equals a), and (35) suggests
that the simulation output on the set �Sn/n≥ a� depends on g�·� primarily through g�a�. For instance, consider
the case where a ∈�= �a1� a1+ 7� and g�·� is the density of the uniform distribution on this interval. Now if
the interval width is doubled so that �= �a1� a1+27�, and if g�·� is again chosen to be a density of the uniform
distribution along the new interval, then it is reasonable to expect that the estimator of P�Sn/n≥ a� will have
about double the variance in the new settings.
From an implementation viewpoint, it may be desirable to select g to estimate all P�Sn/n≥ a�, a ∈�, with

the same asymptotic relative variance. If this holds, we may continue to generate samples until the sample
relative variance at one point becomes small, and this ensures that the relative variance at other points is not
much different. Theorem 4.1 suggests that this may be achieved by selecting g�a� proportional to �∗′�a�/�∗′′�a�
or, equivalently, !�a�/!′�a�. Suppose that �= �a1� a2�⊆� o, a1 >
. In this case∫ a2

a1

!�a�

!′�a�
da<�� (36)

so such a g is feasible.
We now evaluate such a g for some simple cases:
Example 4.1. If Xi has a Bernoulli distribution with mean p, then its log-moment generating function is

��!�= log�exp�!�p+ �1−p��

and

�′�!�= exp�!�p
exp�!�p+ �1−p�

�

It is easily seen that

!�t�= log
[

t

1− t

1−p

p

]
and !′�t�= 1/t+ 1/�1− t�= 1/�t�1− t��. Thus, g�t� equals

ct�1− t� log
[

t

1− t

1−p

p

]
�

where c is a normalization constant so that
∫ a2
a1

g�t�dt = 1. It can be seen that this function is maximized at the
solution of

t

1− t
exp�−1/�2t− 1��= p

1−p

that exceeds p. The likelihood ratio in (33) specialized to this setting equals

Lg�Sn�=
(
c
∫ a2

a1

(
t

p

)Sn
(
1− t

1−p

)n−Sn

t�1− t� log
[

t

1− t

1−p

p

]
dt

)−1
�
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Example 4.2. If Xi has a Gaussian distribution with mean zero and variance one, then its log-moment
generating function is ��!�= !2/2 and �′�!�= !. Also, !�t�= t and !′�t�= 1 and g�t� equals 2t/�a22 − a21�.
This suggests that more mass should be given to larger values of t in the interval �a1� a2�. The likelihood ratio
in this setting equals

Lg�Sn�=
(

2
a22− a21

∫ a2

a1

exp�tSn − nt2/2�t dt
)−1

�

Example 4.3. If Xi has a gamma distribution with log-moment generating function

��!�=−6 log�1− !8��

then its mean equals 68. Now

�′�!�= 68

1− !8

so that !�t�= �1/8��1−68/t� and !′�t�= 6/t2. Then, g�t� equals

ct

(
t

68
− 1

)
�

where

c=
(
a32− a31
368

− a22− a21
2

)−1
�

Recall that t > 68. The likelihood ratio in this setting equals

Lg�Sn�=
(
c
∫ a2

a1

exp
[
1
8

(
1− 68

t

)
Sn

](
68

t

)6n

t

(
t

68
− 1

)
dt

)−1
�

5. Concluding remarks. In this paper, we have considered the problem of simultaneous estimation of the
probabilities of multiple rare events. In the setting of tail probabilities associated with a random walk, we have
shown that the standard importance sampling estimator that yields asymptotically efficient estimates for one
point on the distribution fails to do so for all other points. To address this problem, we have examined mixtures
of exponentially twisted distributions. We have identified the optimal finite mixture and shown that asymptotic
efficiency is achieved uniformly with either a continuous mixture or a finite mixture with an increasing number
of components. Although our analysis is restricted to the random walk setting, we expect that similar techniques
could prove useful in other rare-event simulation problems. Similar ideas should also prove useful in going
beyond the estimation of multiple probabilities to the estimation of functions of tail distributions, such as
quantiles or tail conditional expectations.
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