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A general approach to improving simulation accuracy uses information about auxiliary control variables with known
expected values to improve the estimation of unknown quantities. We analyze weighted Monte Carlo estimators that
implement this idea by applying weights to independent replications. The weights are chosen to constrain the weighted
averages of the control variables. We distinguish two cases (unbiased and biased), depending on whether the weighted
averages of the controls are constrained to equal their expected values or some other values. In both cases, the number of
constraints is usually smaller than the number of replications, so there may be many feasible weights. We select maximally
uniform weights by minimizing a separable convex function of the weights subject to the control variable constraints.
Estimators of this form arise (sometimes implicitly) in several settings, including at least two in finance: calibrating a
model to market data (as in the work of Avellaneda et al. 2001) and calculating conditional expectations to price American
options. We analyze properties of these estimators as the number of replications increases. We show that in the unbiased
case, weighted Monte Carlo reduces asymptotic variance, and that all convex objective functions within a large class
produce estimators that are very close to each other in a strong sense. In contrast, in the biased case the choice of objective
function does matter. We show explicitly how the choice of objective determines the limit to which the estimator converges.
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1. Introduction

One of the most fundamental ideas in stochastic simula-
tion is that the accuracy of simulation estimates can often
be improved by taking advantage of known properties of
a simulated model. This principle underlies the method
of control variables, which is among the most widely
used variance reduction techniques. Weighted Monte Carlo
(WMC) provides another mechanism for using information
about a model to improve accuracy. This paper analyzes
the convergence of WMC estimators and investigates their
relation to more traditional control variable estimators.

In its simplest form, the method of linear control vari-
ables (LCV) relies on knowing the expectation of an aux-
iliary simulated random variable, called a control. The
known expectation is compared with the estimated expec-
tation obtained by simulation. The observed discrepancy
between the two is then used to adjust estimates of other
(unknown) quantities that are the primary focus of the sim-
ulation. The adjustment made is usually linear in the dif-
ference between the estimated and exact value of the
expectation of the control variable.

The method of WMC also requires knowing the correct
expectation of one or more control variables, but WMC
forces the simulated and true values to agree, even over a
finite number of replications. It accomplishes this by apply-
ing weights to the replications so that the weighted aver-
ages of simulated control variables match their true values
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(or possibly other given values, as we will see). The same
weights are then used in estimating unknown quantities. In
practice, the number of controls is much smaller than the
number of replications, so the constraints on the weighted
averages of the controls do not determine a unique set of
weights. If the replications are independent and identically
distributed (i.i.d.), it is natural to try to select weights that
are as uniform as possible. This can be made precise by
choosing weights that minimize a separable convex func-
tion, subject to the control variable constraints. This is the
approach we analyze.

We distinguish two cases based on the constraints
imposed on the control variables. In the unbiased case, the
weighted average of each control is constrained to equal its
expected value, whereas in the biased case it may be con-
strained to equal some other value. The purpose of WMC
in the unbiased case is variance reduction: Constraining
weighted averages of the controls to their expected values
should reduce the variability of other weighted averages
calculated from the same replications.

In the biased case, the objective of WMC is not so much
to improve precision given a simulated model, but rather
to correct the model itself. In this respect, it differs funda-
mentally from techniques usually studied in the simulation
literature. Estimators of this form have been advocated by
Avellaneda and colleagues (Avellaneda 1998, Avellaneda
et al. 2001), and also arise as a key step in the method of
Broadie et al. (2000). (These applications are the primary
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motivation for this work; we discuss them in §2.) Whereas
in the unbiased case the constraints become nonbinding as
the number of replications grows (by the strong law of
large numbers), they remain binding even in the limit for
the biased case. Indeed, the key issue in the biased case is
understanding to what value a WMC estimator converges,
rather than whether or not it reduces variance.

Our main results for the two settings are as follows.
In the unbiased case, we show that WMC does indeed
reduce variance asymptotically and that the variance reduc-
tion achieved is exactly the same as that achieved using an
ordinary LCV estimator. Indeed, we show that for a large
class of objective functions (used in selecting weights), the
WMC estimator and LCV estimator are very close in a
strong sense. As a step in establishing this we show that
the LCV estimator is the WMC estimator for a quadratic
penalty on the weights. These results for the unbiased case
may be viewed as negative in the sense that they show
that any advantage WMC estimators may have over LCV
estimators must be limited to small samples.

For the biased case, we identify the limit to which WMC
estimators converge. In contrast to the unbiased case, here
the choice of objective function used to select weights does
matter. Different choices of objective function correspond
to different ways of adjusting or correcting a model based
on side information. Our results do not provide grounds
for preferring one objective function to another—no such
comparison seems possible in general. Instead, our results
show how the choice of objective determines the adjust-
ment imposed on a model.

The rest of this paper is organized as follows. Section 2
gives a general formulation of WMC estimators and dis-
cusses the applications that motivate our investigation. Sec-
tion 3 considers the unbiased case and formulates our main
result for this setting, stating that a large class of objective
functions results in nearly identical estimators. Section 4
considers the biased case; our main result in this setting
shows how the choice of objective function determines the
estimator’s limit. The results of §§3 and 4 are illustrated
with option-pricing examples. Section 5 summarizes our
conclusions. Most proofs are collected in Appendix A. Our
results use an assumption on the Lagrange multipliers that
determine optimal weights; Appendix B provides condi-
tions supporting this assumption.

2. Weighted Monte Carlo Estimators

2.1. Formulation

Throughout this article, (X,Y), (X;,Y,),(X,,Y,),... de-
note i.i.d., square-integrable simulation outputs with Y
scalar and X taking values in . The objective of the sim-
ulation is (at least initially) to estimate E[Y]. The expecta-
tion E[X] is assumed known and, without loss of general-
ity, equal to zero. Denote by

Sy 2y
Syx 0')2’

the covariance matrix of (X,Y), which we assume is
nonsingular.

The sample mean Y = (Y, 4+ --- + Y,)/n converges to
E[Y] almost surely and is asymptotically normal,

V(Y —E[Y]) = N(0, 07),

“=" denoting convergence in distribution and N(a, b)
denoting a normal random variable with mean a and vari-
ance b. The LCV estimator is

~ —

ch:Y_BTX’ (1)

where X is the sample mean of X,, ..., X, and ,@ denotes
the vector of coefficients in an ordinary least squares
regression of Y, ..., Y, against X,,..., X,. (We take vec-
tors to be column vectors by default and use “T” for trans-
pose.) More explicitly,

~ 1 n ——
ﬁ:-M'[ZXi}’i—nXY], (2
n i=1
with X; = (X,;,...,X,;)" and M the d x d matrix with
(k, Dth entry

My, = % i:(Xik - Xk)(Xil - Xl)’ (3)

X = (X,,....X,)". Because M converges to X, it is
invertible for all sufficiently large n.

The LCV estimator converges to E[Y] almost surely and
it satisfies (see, e.g., Nelson 1990)

\/ﬁ(?cv -

with

E[Y]) = N(0, 07(1 - k%)), 4)

R*=3,3,'3y,/07.

Asymptotically (as n — o0), linear controls never increase
variance because 0 < R? < 1, and they produce strict vari-
ance reduction unless R? = 0.

Now let i: = RU{+o0} be a strictly convex function
and consider the optimization problem

N mirz) > h(w;,) )
P

subject to

1 n

- Z wi n= 1’ (6)

nio

1 n

- Z w; ,X;=cx (7

nio

for some fixed ¢, € M. The objective is strictly convex and
the constraints are linear, so if there is a feasible solution
with a finite objective function value, then there is a unique
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optimal solution w, ,, ...
WMC estimator

, w, . This optimum defines the

~ 12
Yyme = n Zwi,nYi'
i=1

We investigate the convergence and asymptotic normality
of this type of estimator.

It is convenient to allow % to take the value +oo. This
allows us to include, for example, h(w) = —log(w) for
all w € N through the convention that —log(w) = 400 if
w < 0. This also allows us to require positive or nonnega-
tive weights without adding constraints by making % infi-
nite on (—o0, 0] or (—o0,0). While allowing A(w) to be
infinite for negative w is useful, there is little practical loss
of generality in requiring that 4 be finite on (0, 00), so we
assume this holds. The set on which a convex function £ is
finite (its effective domain) is denoted by dom(%), so this
condition states that (0, o) € dom(h).

If h does take infinite values, then we need to consider
whether there is a finite feasible solution to (5)—(7). Under
the assumption that (0, o) € dom(%), a finite feasible solu-
tion exists so long as cy is in the relative interior of the
convex hull of X,,...,X,, because cy is then a positive
convex combination of these points (cf., Rockafellar 1970,
p- 50). This almost surely holds for all sufficiently large n
if ¢y is in the interior of the support of X. If dom(%) also
includes 0, then a finite feasible solution exists if ¢y is any-
where in the convex hull of X, ..., X,, because it is then
a (not necessarily positive) convex combination of these
points.

The weights derived from (5)—(7) can be made more
explicit by introducing the Lagrangian

Ln :Zh(wi,n)+)‘n <n_zwi,n> +M:1r <ncX - Zwi,nXi> >
i=1

i=1 i=1

with A, € R and u, € N If & is differentiable, the first-
order conditions characterizing the optimum are

0= h/(wi,n) - )‘n - MIX[

Because & is strictly convex, k' is strictly increasing on
dom(%) and has an inverse H. The optimal weights are
then given by

wi, n— H(/\n + l‘l‘;ert)7 (8)

with A,, w, chosen to ensure that constraints (6) and (7)
are satisfied. This is a general description of the solution
of a separable convex minimization problem with linear
equality constraints. The computational effort required to
compute a solution depends on h. Three cases are of par-
ticular interest:

Quadratic objective. Not surprisingly, the case h(w) =
w?/2 is particularly tractable. The optimal weights are

w; ,=a; ,, with

ai,11=1+)?TM71()?_Xi)’ (9)

where M is the d x d matrix defined in (3); see Proposi-
tion 1 below. The solution (9) requires that M be invertible,
which holds for all sufficiently large .

Empirical likelihood objective. This case takes h(w) =
—logw and produces weights of the form

1

wi,n_ A‘n_'_"L;Xi’ (10)
with the Lagrange multipliers chosen to satisfy the con-
straints. The resulting WMC estimator arises as a nonpara-
metric estimator of E[Y] through the empirical likelihood
method in Owen (1990, 2001). This case is analyzed in the
simulation setting by Szechtman and Glynn (2001), who
also show that it is asymptotically equivalent to an LCV
estimator. The application of empirical likelihood estima-
tion to simulation is also considered in an unpublished
work by Jing Qin (private communication). The log objec-
tive is a special case of the Cressie-Read family studied in
Baggerly (1998).

Entropy objective. Setting h(w) = wlogw gives the w, ,
an interpretation as maximum entropy weights. This objec-
tive is also a member of the Cressie-Read family. We
follow the usual convention that 0log0 = 0. The optimal
weights are

.
0, = nexp(—u, X;) ’ (11)

' Z?:l exp(—u,) X;)
which has the form of an exponential change of distribu-
tion. This case is put forward in Avellaneda and colleagues
(Avellaneda 1998, Avellaneda et al. 2001), where it is also
given Bayesian and information-theoretic interpretations.
Jourdain and Nguyen (2001) prove a convergence result for
the measures defined by the weights using this objective.

An alternative formulation of the WMC optimization
problem omits the factor 1/n from (6) and (7). This ver-
sion can be handled through an analysis that parallels the
one we develop here, and the two problems are equivalent
(their optimal weights differing only by a factor of n) if
satisfies

h' (aw) = p(a)h' (w) + g(a) (12)

for some functions p, ¢, and all aw and w in dom(#k).
To avoid redundancy we consider only the formulation
in (6)—(7). The quadratic objective, the empirical likelihood
objective, and the entropy objective all satisfy (12).
Weights chosen by minimizing a separable convex objec-
tive, as in (5), are, in a sense, maximally uniform. This idea
can be made precise through the majorization ordering,
a partial order on vectors. (See, e.g., Marshall and Olkin
1979 for a definition.) To say that one vector is majorized
by another is to say that its elements are more uniform.
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As discussed in Marshall and Olkin (1979), for any con-
vex h, the mapping from (w, ,, ..., ®, ,) to h(w, ,)+---+
h(w, ,) is Schur convex and thus increasing in the
majorization order. A solution to (5)—(7) is therefore a min-
imal element of the feasible set in the sense that it does
not majorize any other feasible element. This makes precise
the idea that the optimization problem (5)—(7) selects the
most uniform weights consistent with the control variable
constraints (7). This is intuitively appealing because in the
absence of side information there is no reason to give some
replications more weight than others. Different choices of &
correspond to different ways of penalizing deviations from
uniformity.

2.2. Applications

As noted in the introduction, we distinguish two types
of WMC estimators based on the control variable con-
straints (7). In the unbiased case, ¢y = 0. Recall that we
assume the controls have been centered so that E[X]=0;
taking cy = 0 therefore corresponds to constraining the
sample weighted averages of the controls to equal their
population means, and the purpose of the weights is vari-
ance reduction. In the biased case, cy # 0 and the weights
are best viewed as attempting to correct a simulated model
rather than reduce variance. We illustrate this idea with
three examples arising in financial applications.

ExAMPLE 1 (MoODEL CALIBRATION). Avellaneda and col-
leagues (Avellaneda 1998, Avellaneda et al. 2001) suggest
the use of weighted estimators in the pricing of derivative
securities. In the setting they consider, the market prices
of some actively traded securities are readily observable—
these are the controls—and simulation is to be used to
price less-liquid securities. The simulation is based on a
model of the dynamics of underlying assets, but because
no model is perfect, the simulation-based price of a control
security may differ from its market price, even in the limit
of infinitely many replications. This in turn casts doubt on
prices computed by simulation for securities for which no
market price is available.

The problem, then, is to modify or adjust the simu-
lated model to make it consistent with observed prices
before trying to price a new security; this is the calibra-
tion step. Assuming the simulated model has been chosen
carefully, it is natural to look for a minimal adjustment
to the model in trying to match market prices. Avellaneda
et al. (2001) propose calibrating the model by assigning
weights to replications. In the framework of the optimiza-
tion problem (5)—(7), the controls correspond to the securi-
ties for which market prices are observed. By taking cy to
be the difference between the market price and the model
price, the WMC estimator attempts to calibrate the model
to the market. The premise of this approach is that the
price estimate Yy is more consistent with the market
prices of the control securities than is the ordinary sam-
ple mean Y. Avellaneda et al. (2001) advocate using the

entropy objective in selecting weights (as do Stutzer 1996
and Buchen and Kelly 1996 in closely related applica-
tions), based in part on Bayesian and information-theoretic
interpretations. In §4.1, we illustrate this approach with a
numerical example.

EXAMPLE 2 (REDUCING DISCRETIZATION Bi1as). Many of
the models commonly used to describe the dynamics of
asset prices are based on diffusion processes. In practice,
these are usually simulated through a discrete-time approx-
imation, and this introduces discretization bias in prices
computed by simulation. The same issue arises in virtually
all applications that require simulating diffusion processes.

In some cases, the expectation of a related function of
the diffusion is available in closed form and offers a poten-
tial control variable. Sometimes, the control is more easily
computed in the diffusion than in the simulated approx-
imation. For example, the expected maximum of a stan-
dard Brownian motion over [0, T] is /2T /7, whereas the
expected maximum of an approximating normal random
walk is not nearly so tractable. In cases where the control
is tractable for both the discrete-time and continuous-time
processes, one must choose between the two values. Using
the diffusion value as the “true” value for a control changes
both the mean and variance of other quantities estimated
from a discrete-time simulation, whereas using the discrete-
time value changes the variance but has a negligible effect
on the mean (at least in large samples) because it is an
unbiased control.

In the WMC formulation of (5)—(7), using the diffusion
value as the “true” value for a control corresponds to tak-
ing ¢y equal to the difference between the diffusion and
discrete-time values. In this case, the constraints (7) may be
viewed as correcting (or attempting to correct) for known
discretization error. An idea of this type is tested in Fu
et al. (1999) and found to be advantageous. They consider
only the case of a LCV, but the idea can also be applied in
the WMC formulation of (5)—(7).

Related estimators using biased control variables are ana-
lyzed by Schmeiser et al. (2001), though not specifically
focused on discretization error. In their setting, the simu-
lated model is assumed to be correct, and bias results from
using a numerical approximation to E[X], whereas in this
example and the previous one E[X] is assumed known, but
the simulated model has some error, and the value of cy is
intended to reduce the error.

EXAMPLE 3 (APPROXIMATING CONDITIONAL EXPECTA-
TIONS). A European option can be exercised only at a
fixed date, but an American option can be exercised at any
time up to its expiration date. Valuing an American option
entails finding the optimal exercise policy, and this is usu-
ally formulated as a dynamic programming problem. This
makes pricing American options by simulation a challenge.

In a discrete-time formulation of the problem, the holder
of the option must choose at each step whether to exer-
cise or to continue. The payoff upon exercise is usually
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specified explicitly, but the continuation value is given only
as a conditional expectation—the expected value of con-
tinuing given the current state—and must be calculated.
Computing conditional expectations at each exercise oppor-
tunity is the main obstacle in valuing American options by
simulation.

Various methods have been proposed to address this
problem; the approach in Broadie et al. (2000) (and, less
directly, that in Tsitsiklis and Van Roy 2001) uses weights
to estimate conditional expectations from paths generated
unconditionally. We describe a simplified version of the
problem.

Let (U,V), (U, V)),...,(U,,V,) be i.i.d. pairs; think
of U and V as consecutive states of a Markov chain.
Suppose we want to estimate a conditional expectation
E[f(V) | U = u] for some fixed u and function f. (Think
of this as the expected value of continuing rather than exer-
cising in state u.) With ¥; = f(V,), the sample mean Y con-
verges instead to the unconditional expectation E[f(V)].
The goal then is to weight the Y; to bring their weighted
average closer to the conditional expectation.

Suppose we know E[g(V) | U = u] for some other
function g (vector-valued) and set X; = g(V;) — E[g(V)],
X =g(V)—E[g(V)]. (We subtract E[g(V)] to be consis-
tent with our convention that the controls have mean 0.)
By taking ¢y = E[g(V) | U = u] — E[g(V)] we force the
weighted average of the X, to equal the conditional expec-
tation of X given U = u. (Note that the value of ¢y depends
on u.) More explicitly, (7) becomes equivalent to

+ 30,8V =Ele(V) | U=l

The premise of this method is that the weighted average of
the Y; should then be closer to the conditional expectation
of Y given U = u. This is exact if f is a linear combi-
nation of the components of g, and it should be a good
approximation if f is nearly such a linear combination.

3. Variance Reduction in the
Unbiased Case

3.1. Quadratic Case

In this section, we investigate WMC estimators defined
with ¢y =0 (i.e., cy = E[X]) in the constraint (7). We show
that this type of estimator does indeed reduce asymptotic
variance, but that the estimator is nearly the same as the
LCV estimator. As a first step, we show that barring degen-
eracies in the controls, the LCV estimator is the WMC
estimator produced by a quadratic objective. “Sufficiently
large n” in the following result means large enough for M
in (3) to be invertible.

PROPOSITION 1. If h(w) = w?/2, then Yyye = Y., for all
sufficiently large n.

Proor. With the qualification that n be sufficiently large,
we may assume that the matrix M in (3) is invertible. The
function H (the inverse of /") reduces to the identity so the
first-order conditions yield w; , = A, + u,, X;. Substituting
these weights into constraints (6)—(7) yields

I=A,+u, X,

_ ] n
0=AX+ (— ZXiXiT)p,n.
ni

These equations are solved by u, = —M~'X and A, =
14+ XTM~'X. With these substitutions we find that o, ,
indeed equals «; , defined in (9). It is also known (see, for
example, Hesterberg and Nelson 1998 or Equation (7.10)
of Rao and Toutenburg 1995 in the regression setting) that
with some algebraic rearrangement using (2), the LCV esti-

mator (1) can be expressed as a weighted average,
~ 12
ch = Zai,nyi’

niz

using the same «; ,. Thus, the two estimators coincide in
this case. [

It is worth noting that although they coincide, the
two estimators in the proposition result from two distinct
quadratic optimization problems. For the LCV estimator,
one selects B to minimize the sum of squared regression
residuals; for the WMC estimator, one minimizes the sum
of squared weights subject to constraints. The first problem
involves the Y;, whereas the second does not.

3.2. General Convex Objective

Our analysis of general WMC estimators relies on prop-
erties of the Lagrange multipliers (A,, u,). For this we
digress briefly and consider constants (A, i) defined by
the equations

E[H(A+po X)]=1, (13)
E[H(Ay + g X)X]=0. (14)

At this point, H could be arbitrary so long as these equa-
tions have a unique solution. Consider the problem of esti-
mating (A, iy) from observations X,..., X,. A natural
approach would be to define estimators (A,, u,) as roots
to the sample counterparts of (13)—(14), given by

1.
i=1

1 n
_ZH()‘n +:U*IX1')XI'=0- (16)
iz
Estimators defined as roots of equations in this way are

often called M-estimators (see, e.g., Huber 1981); they
include maximum likelihood estimators as a special case.
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There is a large literature showing that under various con-
ditions such estimators are consistent and asymptotically
normal in the sense that

Vn[(Ay ) = (Mg o)1= N (0, 3)) (17)

for some (d + 1) x (d + 1) covariance matrix 2, ; see, e.g.,
Hansen (1982), Heyde (1997), Huber (1981), or Serfling
(1980).

In light of (8), Equations (15)-(16) are precisely
the equations defining the Lagrange multipliers (A,, u,)
through constraints (6)—(7) in the unbiased case ¢y =
0. When H is the inverse of %' and E[X] =0, (13)
and (14) are solved explicitly by (Aq, o) = (£'(1),0). In
Appendix B, we detail specific conditions ensuring (17).
As these are somewhat technical and as (17) is the typical
case, we proceed under the assumption that it holds. (See
Owen 1990 for a specific analysis of the multipliers under
the empirical likelihood objective.) Actually, we require a
somewhat weaker property. To state it we need some nota-
tion: A sequence of random variables &, is O, (a,) if for all
€ > 0 there is a constant K such that P(|§,| > Ka,,) < € for
all sufficiently large n. The sequence is o,(a,) if P(|§,| >
a,€) — 0 for all € > (0. We apply these symbols to random
vectors if the properties hold componentwise.

CoNDITION (A). (A, 1) = (Ag, g) + O,(1/4/n), with
(Ag» Mp) the unique solution to (13)—(14) and, for all suffi-
ciently large n, (A,, u,) the unique solution to (15)—(16).

The next result verifies that the uniqueness imposed by
Condition (A) is meaningful. We define a class of admissi-
ble objective functions 4 through the following properties:

(1) h: N> N U {+o0} is convex, dom(k) includes
(0, 00), and h is strictly convex on dom(#);

(ii) h is continuously differentiable on dom(k) and
(1) < oo.

LEmMMA 1. If 3y is nonsingular and h satisfies proper-
ties (i)-(ii), then (Ay, o) = (A (1),0) solves (13)—(14)
uniquely; and for all sufficiently large n, (15)—(16) are
solved uniquely by some (A, ,,).

Proof. That (A'(1),0) is a solution follows from
H(K (1)) =1 and E[X] = 0. Now suppose (A, ;) and
(A,, ,) both solve (13)—(14). Because 4 is convex and con-
tinuously differentiable, H is strictly increasing, and thus

[H (A + i X) = H(A, + 1y X)]
T +p{ X) = (A + 1y X)] > 0.

The expected value of this product is zero, in view of
(13)—(14), so the product must in fact be zero almost surely.
However, then H(A, + p/X) = H(A, + u, X) almost
surely, which further implies A; + s/ X = A, 4+ u, X almost
surely, because H is strictly increasing. Rewriting this as

(My — ,U~1)TX =X —A)

and taking the variance of both sides, we get (w, — ;)" -
Sy(, — ) = 0. This implies that (u, — u,) =0
because 2 is positive definite, and this in turn implies
(A, —Ay) =0.

For all sufficiently large n, the relative interior of the
convex hull of X,,..., X, contains the origin (=E[X]);
this follows from the central limit theorem. Thus, for all
sufficiently large n, (15)-(16) has at least one solution
(A,, 1,). Also, for all sufficiently large n, the matrix M
in (3) is nonsingular. Uniqueness now follows through the
argument used for (13)—(14), replacing expected values
with averages over i=1,...,n. O

For our main result in the unbiased setting, we strengt-
hen (ii) above to the following condition:

(ii') h is three times continuously differentiable on
dom(k) and 0 < A”(1) < oo.

We prove the following result in Appendix A. We use ||-||
to indicate the Euclidean norm.

THEOREM 1. Suppose that h satisfies conditions (i) and (ii")
and cy =0 in (7). Suppose that E[||X|]*] < oo, E[|Y]}] <
0o, Xy is nonsingular, and Condition (A) holds. Then,
YWMC = ch + Op(l/l’l)

This result makes precise the idea that the WMC and
LCV estimators are very close. It also indicates that for
a broad class of objective functions &, all WMC estima-
tors are nearly the same when ¢, = 0. In particular, as a
consequence of Theorem 1 we get a central limit theorem
showing that WMC estimators achieve exactly the same
asymptotic variance reduction as the LCV estimator:

COROLLARY 1. Under the conditions of Theorem 1,
Vn(Yyne —E[Y]) = N(0, o7(1-R%).

ProOF. It follows from Theorem 1 that /n(Yyye — Y)
= 0. The result now follows from (4) and Theorem 4.1 of
Billingsley (1968, p. 25). O

In a different setting, Glynn and Whitt (1989) show that
a large class of nonlinear control variable estimators are
asymptotically equivalent to LCV estimators. The estima-
tors they consider are nonlinear functions of sample means
and thus distinct from those considered here.

3.3. Numerical Example

To illustrate Theorem 1, we test WMC estimators in a stan-
dard option-pricing problem. We apply the estimators to the
pricing of a call option on the average level of an underly-
ing asset—an Asian option. The price of the option is E[Y],
with

Y =e¢ T max{0, S — K},

where the constants 7, r, and K are the m_aturity, interest
rate, and strike price. The random variable S is the average
level

w 250)

5—':
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of the underlying asset S over a fixed set of dates 0 <
t) <---<t,=T. See, e.g., Hull (2000) for background.

We model the dynamics of the underlying asset using
geometric Brownian motion. More explicitly, as in, e.g.,
Hull (2000), p. 238, we have

S(t) =58(0)exp([r — 2o°]t + aW(1)), (18)

where S(0) is a fixed initial price, o is the asset’s volatility,
and W is a standard Brownian motion. To simulate §, it
suffices to simulate S(¢,), ..., S(z,,) and thus to simulate W
at times ¢, ..., t,. This is accomplished by the recursion

W(t)=W(t,_)+t,—t,,Z,

with Z,, ..., Z, independent standard normal random vari-
ables and W(0) =0.

A consequence of (18) is that E[S(¢#,)] = S(0)e™;
this follows from the more basic identity E[exp(aZ)] =
exp(a®/2) for the moment-generating function of a stan-
dard normal random variable Z. We may therefore take the
control variable X to be a vector of d = m components,
with ith component equal to

S(t) — S(0)e™.

These are not necessarily the most effective controls for this
problem, but our objective is to provide a simple illustration
of the WMC estimators rather than to find the best way to
price the option.

For the numerical tests we use S(0) = 50, r = 5%,
o =0.20, K =54, and T =5, with time measured in years.

Figure 1.
entropy and quadratic objectives (right).
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We consider m =1, 2, and 4, the case m =1 correspond-
ing to an ordinary European rather than Asian option. We
compare WMC estimators based on the quadratic, empiri-
cal likelihood (log), and entropy objectives.

As a first illustration, we compare the weights calculated
using the three objectives. We generate n = 1,000 inde-
pendent replications of (X, Y;) with m =4 and solve the
optimization problem (5)—(7), with ¢y, =0, for each of the
three objective functions. In each case we get a sequence
of n weights, w, ,,..., @, ,.

Figure 1 shows scatter plots comparing the weights
found under the three objectives using the same simu-
lated values X/, ..., X,,. The left panel plots the empirical
likelihood weights against the quadratic weights, and the
right panel plots the entropy weights against the quadratic
weights. Under each objective, we get 1,000 weights—one
for each replication. The coordinates of each point in the
scatter plots are the weights assigned to the same replica-
tion using two different objectives. In both panels of the
figure, the weights under the two objectives are strikingly
close to each other, especially near the limiting value of 1.
This is an even stronger relation than the one in Theo-
rem 1, which refers only to the averages )A’WMC, and not
to the individual weights themselves. From (9) we see that
the quadratic weights are 1+ O, (1 /+/n); the analysis in
Appendix A suggests (heuristically) that the differences
between the weights are O,(1/n), so that they are closer to
each other (under different objectives) than they are to 1.
The figures are consistent with this suggestion because the
points fall near the 45° line.

Next, we compare point estimates and variances of the
three WMC estimators. We know from Theorem 1 and

Comparison of optimal weights calculated using empirical likelihood (log) and quadratic objectives (left) and
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Corollary 1 that these should coincide at large n, so the
main purpose of numerical tests is to see what happens
in small samples. To estimate Var[¥yyc] at a sample size
of n, we generate 100 batches, each of n independent
replications. We solve the optimization problem for each
batch to get a value of IA’WMC for each batch. We then use
the sample variance over the 100 batches as our estimate
of Var[Yyyc]. Through batching, we avoid having to deal
with the dependence between observations in a single sam-
ple of size n introduced by the weights. (Recall that ?WMC is
not just the average of independent replications.) The same
procedure can be used to compute confidence intervals.

Results for m = 1, 2, and 4 controls are displayed in
Table 1 for the quadratic, log, and entropy objectives,
along with results for ordinary (equally weighted) Monte
Carlo (MC). The variances of the WMC estimators are
indeed very close, in most cases for sample sizes as small
as 100. The point estimates are also close. The WMC vari-
ances are appreciably smaller than those for ordinary Monte
Carlo.

To solve the optimization problem under the log and
entropy objectives, we used nonlinear least squares to
find Lagrange multipliers satisfying the first-order condi-
tions (8) and (6)—(7) in the specific forms (10) and (11).
At small values of n, this sometimes required restarting at
multiple initial values for the Lagrange multipliers to con-
verge to the optimum. We found that the entropy objective
took about twice as long as the quadratic objective, and
the log objective took a bit more than twice as long as the
entropy objective. However, we did not attempt to optimize

our implementation of these calculations. Owen (2001) dis-
cusses algorithmic issues for these types of problems.

4. Convergence in the Biased Case

We turn now to the biased case in which the weighted
averages of the controls are constrained in (7) to equal
some value cy # 0 different from E[X]. (We continue to
assume that X has been centered so that E[X] = 0.) Recall
from §2.2 that in this setting the weighting scheme is best
viewed as a mechanism for adjusting or correcting a simu-
lation model rather than reducing variance in an estimator
based on a model. The most relevant issue in this case is
therefore identifying the value to which fWMC converges.
We will see that, in contrast to the unbiased case, here the
choice of convex function % does affect the limit.
We replace (13)—(14) with

E[HA+p"X)]=1, E[HA+u X)X]=cy, (19)

and similarly define (A,,, u,) using (15)—(16), with O repl-
aced by cy in (16). We replace Condition (A) with

ConpITION (B). (A, ) = (A, ") + O,(1/y/n), with
(A, w) uniquely solving (19) and, for all sufficiently large n,
(A,» 1) uniquely solving (6), (7), and ().

In the unbiased case (cy = 0) the existence of solutions
is essentially automatic, but here it depends on the choice
of ¢y and h. If dom(h) is the entire real line (as in the
quadratic case), then any cy is feasible; if dom(#) includes
[0, 00), then any cy in the interior of the support of X is
feasible. Given existence of a solution, uniqueness follows
through exactly the argument used in Lemma 1.

Table 1. Point estimates and variances for ordinary Monte Carlo (MC) and weighted Monte Carlo
estimators using three objective functions for an Asian option with m = 1, 2, and 4 controls.
Mean Variance
n MC Quadratic Log Entropy MC Quadratic Log Entropy
m=1
50 12.810 12.484 12.620 12.553 7.987 0.489 0.436 0.453
100 13.156 12.574 12.663 12.619 4.719 0.186 0.179 0.178
200 13.109 12.754 12.794 12.774 2.096 0.167 0.164 0.165
400 12.679 12.717 12.737 12.727 1.003 0.070 0.068 0.069
800 12.695 12.703 12.713 12.708 0.478 0.034 0.034 0.034
1,600 12.646 12.704 12.710 12.707 0.294 0.016 0.017 0.017
m=2
50 9.654 8.991 9.106 9.050 5.102 0.344 0.339 0.335
100 9.390 9.085 9.155 9.120 2.343 0.175 0.175 0.172
200 9.108 9.120 9.151 9.136 0.917 0.074 0.072 0.073
400 9.128 9.110 9.125 9.117 0.451 0.052 0.051 0.052
800 9.050 9.109 9.119 9.114 0.285 0.025 0.025 0.025
1,600 9.120 9.136 9.140 9.138 0.114 0.010 0.010 0.010
m=4
50 7.809 7.244 7.337 7.296 3.229 0.433 0.384 0.401
100 7.469 7.406 7.461 7.434 1.367 0.150 0.148 0.148
200 7.437 7.376 7.408 7.392 0.601 0.075 0.077 0.075
400 7.271 7.368 7.387 7.377 0.396 0.045 0.046 0.046
800 7.373 7.395 7.404 7.400 0.170 0.019 0.019 0.019
1,600 7.413 7.392 7.397 7.394 0.091 0.010 0.010 0.010
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Our next result shows that, under appropriate conditions,
the WMC estimator Yy, converges in probability to

cy =E[HA+un"X)Y], (20)

and is asymptotically normal. For this we need some further
notation. Define

d,=E[H'(A+u"X)Y], d,=E[H'(A+u"X)XY].

We will require that these be finite. Also, set

Cy=E[HA+un"X)XXT]

_EH O+ OXJEIHA+p 0X]T o))
E[H' (A +p"X)] ’

we will require that this d x d matrix be finite and nonsin-
gular. The following result is proved in Appendix A.

THEOREM 2. Suppose that h is strictly convex and three
times continuously differentiable on dom(h), E[||X|*] <
oo and E[|Y|*] < oo, and 2y is nonsingular. Suppose that
dy and d, are finite, Cy is finite and nonsingular, and
H(A+u'"X) and H(A + u" X)X are square integrable.
Suppose Condition (B) holds. Then, )A’WMC converges to cy
in probability and

V[ Yype — ¢y] = N(O, o5

with o}, < oo.

An expression for the limiting variance parameter o7,
is derived in the proof of Theorem 2. Though it involves
quantities that would typically be unknown, it can be esti-
mated from the simulated data. It differs from

oy, =Var[H(A+u'X)Y],

the variance parameter that would apply to estimation of ¢,
using i.i.d. replications if A and u were known. In fact, we
will show that

V(Tse = ¢y)
= ﬁ(l Xn:H()\ +u'X)Y, — cy>

nizi
+ (A, = Ndy+Vn(p, —p)'d, +0,(1). (22)

The first term on the right is asymptotically normal with
variance o7y, and this representation shows that ?WMC is
asymptotically equivalent to applying the Lagrange multi-
pliers as LCV to the first term.

Theorem 2 reveals a resemblance between WMC and
importance sampling. The value ¢, in (20) to which )A’WMC
converges looks like the expectation of an importance-
sampling estimator if we interpret H(A+ ' X) as a like-
lihood ratio. This interpretation is supported by the first
equation in (19)—the expected value of a likelihood ratio
equals 1—but must be qualified by the fact that H may
take negative values.

Expressions for the sensitivity of ¢, to cy are derived in
Avellaneda and Gamba (2000) for general convex objec-
tives h. These involve covariance terms weighted by H’
similar to (21). Like Theorem 2, these expressions show
the effect of different choices of objective.

We now revisit the specific choices of 4 introduced
in §2.1.

Quadratic objective. In this case, (19) can be solved
explicitly to get A =1 and u =33 cy, with Sy the covari-
ance matrix of X, the WMC estimator converges to

ey =E[(14+cx35'X)Y]
=E[Y]+B ¢,

with B =33'Sy,. Thus, ¢, is the value fitted at ¢y by
the least squares regression line. If E[Y | X = x] is linear
in x (for example, if (X,Y) is multivariate normal) then
cy =E[Y | X =cy].

Entropy objective. Define the cumulant generating func-
tion of X by #,(0) =logE[exp(87X)], 6 € R?, and let
Vi, denote its gradient. Then, (19) reduces to solving
Vig (—p) = ¢y and then setting A = ¢ (—u) — 1. Define a
new probability measure P_,, and expectation operator E_,
through the likelihood ratio exp(—u " X + iy (—u)). In par-
ticular, this means that under the new measure, Y has
distribution

pfﬂ(y <y) = E[I{Y < y}e_MTX-Hllx(—ﬂ)]’

with 1{-} the indicator of the event in braces. The WMC
estimator converges to

cy =E[Ye# XtxCW] =E_ [¥].

Here the connection with importance sampling is explicit:
¢y is the expected value of ¥ under an exponential change of
measure defined by X, a standard transformation in impor-
tance sampling. (See, e.g., Asmussen 1987.) This value
of ¢y has an interpretation as the limit of E[Y | X = ¢,] as
the number of replications n increases; see Example 8 of
Zabell (1980).
Empirical likelihood objective. In this case we get

)]

with

E[l/A+p'X)]=1,  E[X/(A+p X)]=cy,

assuming these expectations are well defined and finite. The
weight 1/(A+ u"X) could take negative values. This case
emerges as an approximation to the previous one through
the approximation exp(—x) =~ 1/(1+ x).

4.1. Numerical Example

We illustrate the use of biased WMC in an applica-
tion to model calibration as suggested by Avellaneda and
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colleagues (Avellaneda 1998, Avellaneda et al. 2001). (For
numerical examples applying the method to estimate con-
ditional expectations in pricing American options, see
Broadie et al. 2000.) We consider the problem of adjusting
an imperfect option-pricing model to match a set of market
prices and applying the adjusted model to value a different
option for which no market price is available. The cali-
bration aspect of this problem lies in ensuring consistency
with the observed market prices.

We consider a simple option-pricing example that con-
tains the essential features of more complex and more real-
istic problems that motivate the approach of Avellaneda
and colleagues (Avellaneda 1998, Avellaneda et al. 2001).
Our starting point is the Black-Scholes model (as in, e.g.,
Hull 2000), but we suppose that the observed market prices
of options are incompatible with this model. The goal
is to price another option (for which no market price is
available) in a way that is consistent with observed mar-
ket prices. This requires imposing some adjustment or
correction to a simulation of the Black-Scholes model.
The observed market prices of options provide the WMC
constraints.

In more detail, we consider options on an underlying
asset initially at S(0) = 50. We assume an interest rate of
r = 5% and a maturity of T =5 years. We suppose that we
observe the market prices of four call options at this matu-
rity, differing in their strike prices; the strikes we use are

(K., K, K5, K,) = (0.85,0.95, 1.05, 1.15)e " S(0)
= (54.57,60.99, 67.41, 73.83).

Suppose that the observed market prices of these four
options are

(41, @ G5 q4) = (13.97,9.93,7.07,5.15).

Suppose that simulation is to be used to price a
“deep out-of-the-money” option with a strike price of
K =1.4¢"7S(0) = 89.88, relative to the other options for
which market prices are assumed known. The simulated
model for the underlying asset price S is geometric
Brownian motion, as in (18), with the same parameters as
in §3.3. We set Y =e¢"" max{0, S(T) — K}.

The simulated model is incompatible with the observed
market prices because the simulated model is consistent
with the Black-Scholes formula but the market prices are
not. Option prices computed by simulation will converge
to Black-Scholes prices for S(0) =50, r =5%, T =5,
o =0.20, and K,, ..., K, as above. These Black-Scholes
prices are

(p1s Pas P3» Pg) = (12.46,9.93,7.87,6.21),

and do not match the market prices listed above. The incon-
sistency results from the fact that the simulated model (geo-
metric Brownian motion) is not an exact representation

of the market. Indeed, there is no value of o (the only
adjustable parameter) that will make all four Black-Scholes
prices match the four market prices.

In the approach of Avellaneda et al. (2001) (and related
methods of Stutzer 1996 and Buchen and Kelly 1996), we
use weights to adjust the simulated model to match the
market prices and then use the weighted value rather than
E[Y] as the price for the new option. Thus, we take the
vector of controls X to have four components correspond-
ing to the four given option prices; the ith component of X
is the difference

e " max{0, S(T) — K.} — p;.

with p, the Black-Scholes price given above. (Subtract-
ing p; gives the control variable an expected value of 0.)
For cy in constraint (7), we take a vector of four compo-
nents in which the ith component is the difference ¢, — p;
between the market and model prices of the ith option.
Constraining the weighted average of replications of X to
equal ¢y may thus be interpreted as calibrating the simula-
tion to the market prices.

In this discussion, we have subtracted the model prices p;
in X and cy to be consistent with the formulation in (5)—(7),
where we assume E[X] = 0. The expectations cancel, so
in practice we omit the expectations from both X and cy.
Indeed, it is not even necessary that the model prices p; be
known.

Table 2 shows results under the quadratic, log, and
entropy objectives at various sample sizes n. For each n,
we generate 500 batches and calculate the mean and stan-
dard error (SE) over these batches, as in §3.3. The standard
errors in the table are very similar for the three objectives,
indicating that their variances are very close, though this is
not guaranteed by Theorem 2. More importantly, the lim-
iting means are appreciably different for the three objec-
tives; a difference of more than 3% (as in the quadratic
and log cases) could be financially as well as statistically
significant.

The analysis in this paper does not provide grounds for
preferring any one of the three price estimates in Table 2
over the others. It does, however, clarify the implications of
the choice of objective function. The entropy objective has
received particular attention, but a compelling reason for

Table 2. Comparison of WMC estimates of an option
price based on calibration to four other prices.
Quadratic Log Entropy

n Mean SE Mean SE Mean SE

100 2.25 0.012 2.36 0.010 2.30 0.010
200 2.28 0.008 2.38 0.007 2.33 0.007
400 2.28 0.006 2.38 0.005 2.33 0.005
800 2.28 0.004 2.37 0.004 2.32 0.004
1,600 2.28 0.003 2.37 0.003 2.33 0.002
10,000 2.27 0.001 2.37 0.001 2.32 0.001
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focusing on this case in practice remains to be established.
The fact that it produces positive weights is appealing, as
are some of its information-theoretic interpretations, but
these features must be balanced against the computational
advantage of the quadratic objective.

5. Concluding Remarks

This article establishes two main results on the large sam-
ple properties of WMC estimators. The two results address
the biased and unbiased formulations of WMC estimators.
We have shown that in the unbiased case, a large class
of WMC estimators are nearly identical to LCV estima-
tors and thus achieve exactly the same asymptotic variance
reduction. In the biased case, we have identified the limit
to which WMC estimators converge and we have shown
that—in contrast to the unbiased case—here the choice of
objective function affects the large sample properties. We
have illustrated these ideas with applications and numerical
examples.

Our main result for the unbiased case indicates that, at
least in large samples, there is no advantage to considering
WMC estimators other than the usual LCV estimator: The
asymptotic variance reduction achieved is the same, and the
LCV estimator is computationally less demanding and its
statistical properties are better understood. There may still
be advantages to the WMC formulation of LCV estimators
(as in the proof of Proposition 1). If, for example, the same
controls are to be applied to estimating multiple quantities,
the weights need to be computed just once. See also the
application to quantile estimation in Hesterberg and Nelson
(1998).

For the biased case, we have shown how the choice of
objective function affects the model adjustment imposed
through WMC: The inverse of the derivative of the objec-
tive appears in the limit of the WMC estimator as a type of
weighting function. Our results do not provide a basis for
preferring one objective to another without further criteria.
Different choices of objective correspond to different ways
of extrapolating from constraints on control variables (e.g.,
observed market prices) to quantities estimated by simula-
tion (e.g., prices of securities for which no market value is
available).

Our main result for the biased case reveals a link between
WMC and importance sampling, and this suggests a direc-
tion for further investigation. In some applications where
one might want to use importance sampling, finding an
appropriate change of distribution or the associated likeli-
hood ratio may be difficult. A potential alternative, then, is
to use weights determined through a constrained optimiza-
tion problem in place of a genuine likelihood ratio. This,
in fact, is the motivation for using weights in Broadie et al.
(2000), but the technique may have broader applicability.

Appendix A. Convergence Proofs

ProOF OF THEOREM 1. Recalling the first-order condi-
tions (8) and the convergence of A, to A, and u, to O,

we use a Taylor approximation to H to write the optimal
weights as

W; = H(Ap) + H/(ai,n)(()\n =) + /'L;eri)’
where
6i,n =A+ Ki,n((/\n =)+ MIXI')

for some 0 < k; , < 1. We use this and H(A,) =1 to write
the scaled difference between the two estimators as follows:

~ A~

n(Ywme — Yoy)

= Z(wi,n - ai,n)Yi
i=1

=Y HA)Y + 3 H'(8; ) (A, = Xo) + 1, X))Y,
i=1 i=1

-2 Y=Y X"TMT(X-X)Y,
i=1

i=1

= (A, —Ap) Z H,(ai,n)yi + :U«I Z H/(ai,n)XiYi

i=1 i=1

2 XM (X - X)Y,. (23)
i=1
We analyze each of these terms through a series of lemmas,

starting with the following useful result proved in Owen
(1990, p. 98):

LeEmmaA 2. If V|, V,, ... are i.i.d. with finite second moment,
then max, ., |V;| = o(y/n), with probability 1.

We will remove the §; , from (23) using the following
lemma.

LEMMA 3. For Z; =Y, XY, X, X/, or 1,

it
n

> (G- s )2

i=1

_ 1/2
- Op(n )’

with ||-|| denoting the usual Euclidean norm in the vector
and matrix cases and absolute value in the scalar case.

Proor. First note that H'(Ay) = 1/h”(1). The condition
that 4 is C3 implies that H is C? in a neighborhood of A,,.
Applying a Taylor approximation to H' we get, for some
Vi,n = A0 + Ti,n(Si,n - )\0)’ 0 < Ti,n < 17

n

/ 1
2 (00~ )|
S H(v,) (8 - Ao) z H

< max [H"(v;,,)| (1A, = Aol + e, X )1 Z:
SIsH i=1

1<ign

< max |H”(vi,,l>|(|A,, A Z ) S ||xi||||z,«||)
i=1 i=1

= max [H'(3,,)](0,(n""»)0(n) + 0,(n” )0 (n)).
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The inequality follows from However, H(\,) =1, so using Lemma 3 we get
)\ T n

V1w = Aol <187 — Aol [, 41,y X; = Agl, (24) 0= ZH(S, n)+“” ZH(S, DX,
and the order symbols follow from Condition (A) and A, — Ay n o
the strong law of large numbers. (Holder’s inequality = . ( (1) +0,(n / ))
and our moment conditions on X and Y ensure that .
E[l1X;|llIZ;]|]] < oo for each case of Z;.) The lemma will be Pm 1 1/2

i i X, +0 28
proved once we show that + h”(l) Z +0,(n7) ). @8

max [H"(v; )| =0,(1). (25)

1<i<n

Again, using (24) and applying the triangle inequality,
the Cauchy-Schwarz inequality, and Lemma 2, we find that

P<11a<X | Vl n )‘0 |

max|)\ + ) X — A
<IA, = Ao + max |u, X;|
<A = Aol + llke, Il max (1]
= 0,(1”') + 0,(n o)
=o0,(1). (26)
The continuity of H” in a neighborhood of A, implies

that for any sufficiently small £ > 0, we may define a
finite K by setting

K= max |H"(v)|.

v—Ag|<e
[v=2Ag

Then,

P(max|H (v;, )|>K><P<max|vin—)\0|>s)
1<i< I<i<n b

which, by (26), is less then ¢ for all sufficiently large n.
This verifies (25). O

Combining (23) and Lemma 3, we arrive at the repre-
sentation

o v (/\n_AO) . l‘LT .
Pane — Vo)) = "0 Sy n_ N XY,
n( WMC CV) h,,(l) lg]: 1+ h,,(l) lg]: it

- fiTM”o? —X)Y,+0,(1). (27)

i=1

To deal with the first term in (27), we strengthen part of
Condition (A):

LEmMMA 4. A, — Ay = 0,(1/n).

Proof. From the constraint (6), we get

=%iH(/\ + i, X))

1 n

=—ZH(/\0)+ ZH(S,n)(()\ = Ao) + p, X)).

and then by Condition (A) and the central limit theorem
for X,

A=A =—u X +0,(1/n)

— —-1/2 —-1/2 —

=0,(n""")0,(n""")+0,(1/n)=0,(1/n). O
For the other Lagrange multiplier, we have

LEMMA 5. w,=—h"()M~'X 4+ 0,(1/n).

Proof. From the constraint (7), we get

1 n
=-> HQ,+ oy X)X,

:%(ZH()\O)Xi+ZXiH,(8i’”)((An 0)+M )>

- A, —
xBTS s, )+ H G, DXXE

i=1 i=1

=X+

h,/(l)Z + h,,(l)ZX i+ 0,(1/n),
(29)

the last equality following from Lemma 3 and Condi-
tion (A). Using Lemma 4, this becomes

0=X

h,,(l) ZX T+ 0, (1/m),

and then because X = O,(n~"/?), we also have

h”(l)( ZX

The matrix multiplying u,, in this expression is M. [

0=X+ XT>M,,+0,,(1/n).

We can now conclude the proof of the theorem by show-
ing that (27) is O,(1). Using Lemma 4 and the strong law
of large numbers, we find that the first term in (27) is

—A
A=) s Y Y, =0,(1/n)0(n) = 0,(1).
h//(l) P
Using Lemma 5 and the symmetry of M, the second term
in (27) becomes

B

(1) 2 Zx Y=—X"M" Zx +0p(1/n)ixiyi

i=1 i=1

v Tas—1 “
=—X"M"'Y XY, +0,(1).

i=1
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By adding all terms in (27), we therefore get

n(Yype — ¥) =nX TM'XY 4+ 0,(1) = 0,(1),

the last step following from the central limit theorem for X
and the convergence of M~ to 3.

PROOF OF THEOREM 2. As in the proof of Theorem 1, we
use (8) and a Taylor approximation to write

in=HA+u"X)+H' (8, ) (A, +p, X)) —(A+un" X)),
with
=+ X) 46, (A, +u, X)) —(A+ X))

for some 0 < 6, , < 1. We therefore have

V(Yynie — ¢y)
—f( ZH(/\—}-/.LTX)Y )

i=1

VO, NS5, H O+ X)),

i=1

+/n(A, — A)% iH’(/\ +u'X)Y,
—M)T%i(”(‘si,n)

i=1

+\/E(Mn _H/()\+MTX1))X1YI

14
+/n(p, — M)T; Z H' (A +u"X)X,Y,

i=1

_f< ZH()H—,LLTX)Y )

i=1

+/n(A, —A) S H R,

i=1

+Vn(w, —,U«)T;ZH/()\-FMTX,-)XJ’[-FO,,(U (30)
i=1
The last equality follows from Condition (B) and the fol-

lowing counterpart to Lemma 3:
LEMMA 6. For Z,=7Y, XY, X. X[, or 1,

Z(H/(Si,n) - H/(A + lu’TXi))Zt

i=1

_ 12
=0,(n"?).

The proof of this result is exactly the same as that of
Lemma 3, with A, replaced by A and w, replaced by u,, —

Applying the law of large numbers to the last two sums
in (30) yields (22). Under Condition (B), this proves that
?WMC = cy. To get the asymptotic normality of the esti-
mator, (22) shows that we need to establish a joint central
limit theorem for

l n
:_ZH()\+/'LTXi))/;_CY’ GD)
iz
A, — A, and p, — n. We therefore focus on the Lagrange

multipliers next.

LEMMA 7.

Ly waenxy -+ AV S hux)

i=1 i=1

1 n ,
+— Y HA+p' X)X/ (n, —p)=0,(1/n),

i=1

li(H(/\+MTXi)X —cy)+—2—2 (A, — ZH A+u'X)X,

i=1 i=1

1 n
+ - ZH,(/\ + /J“TXi)XiXiT(/J’n -

i=1

n) = 0,(1/n).

PrOOF. The proof is very similar to those given for Lem-
mas 4 and 5 in the unbiased case. The first equation
results from constraint (6), followed by Taylor expansion
of H(A, + | X;) around H(A + u'X;), just as in (28).
The second equation similarly results from constraint (7),
just as in (29). In both cases, the Taylor approximation
involves evaluating H'(9; ,) for some point o, , on the line
segment joining A + u'X; and A, + u!X,. These terms
get replaced by terms of the form H'(A + ' X;) through
Lemma 6. O

Define random variables L,, S,, random d-vectors U,,
V,, and random d x d matrices A to rewrite the two equa-
tions in Lemma 7 as

Ln + ()\n - A)Srl + VnT(lu’n - /‘L) =
Un + ()\n - A)Vn + An(l‘l‘n - /‘L) =

0,(1/n),
0,(1/n),

and observe that each is an average of i.i.d. random ele-
ments. Some algebra yields

1 L
(An - S_‘/nVnT> (lu’n _IJ"O) = S_n‘/n - Un + Op(l/n)

By the strong law of large numbers,

5, s =E[H'(\+ " X)),
V, > v=E[H'(A+un'X)X],

and

1 T
A, ——V, VT )= C,.
S

n

with probability 1. By the central limit theorem,

1 _
(An - S_‘/nVnT> = CH + Op(l/l 1/2)'

n

Because Cy is nonsingular, the approximating matrices are
nonsingular for all sufficiently large n. We may therefore
solve the equations above to get

Vn(p, —p)=+/nCy (nV U)+0p(1)
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and
VA, =)
_ ﬁ<_% _

n

l T -1 Ln
Lyrep (L)) o,

The components of the vector (W,,L,,U) are i.id.
averages of functions of the (X,Y)), i=1,...,n, with

1

mean zero and finite second moments, so we have
T T
vn(W,,L,, U= (W,L,U"),

with (W, L, UT) multivariate normal. This limiting ran-
dom vector has mean zero and its covariance matrix is the
covariance matrix of

(HA+p" X)Y, HA+p"X), HA+p"X)XT).

Write this (d +2) x (d + 2) covariance matrix in block
form as

oy Oy Zyy

ow 0 |

Sow 2o 2w
where, for example, a'vzv and O'L2 are scalars and X, is

d x d. Because S, > sand V, > v, A, —A and u, — u are
asymptotically linear transformations of (W, L, UT), and

(WA, —Apl —pn" )= (W,La+U"b,Lb" —U'C;"),

with
1 1

a=——— —2UTCI;1U,
s s

1
b=-Cy,'v.
N v

Finally, from (22), we see that /n(Yyyc — ¢y) is asymp-
totically a linear combination of W, A, — A, and u, — u
and converges in distribution to

W+ (ady+b"d,)L+(d\b" —d;C;"HU.

This limit is normal with mean zero and variance

oy =0y +(ad, +b7d,)"3,,
+(d\b" —d,; Cy" )2 yy(dyb— Cy'd,)
+2(ad,+b"d,)Zy, + 23y, (d\b—Cy'd,)
+2(ad, + de#)ELU(dAb — C,;ldﬂ).

Appendix B. Convergence of the
Multipliers

This appendix provides sufficient conditions for the La-
grange multipliers (A,, u,) to converge at rate O,(n~'/?);
in fact, these conditions also imply that they are asymptot-
ically normal. The conditions are based on Hansen (1982).
This appendix is self-contained in the sense that all required
conditions are stated explicitly, even those introduced ear-
lier in the paper.

(ai) (X,Y), (X, 1)), (X,,Y,),... are ii.d., with X e R,
YeR, E[X]=0, E[|| X|*] < oo, and E[Y?] < 0.

(a-ii) h is convex and twice continuously differentiable
on dom(h), with 0 < A”(1) < oo; there exists a continu-
ously differentiable function H on the range of A’ such that
H (W (x)) = x for all x in dom(h).

(a-iii) There is a bounded open set S C M*! such that
(A, 1)) €S for all sufficiently large n, with probability 1.

Define f: R x R x R — RI*! via

HA+uTx) )

f()\wu”-x): (H()\+,1LTX)X

(a-iv) E[f(A, u, X)] exists and is finite for all pairs
(A uh)es.

(a-v) (A, u]) € S uniquely solves E[f(A,, u,, X)]" =
(1, c4) (where cy may or may not be the zero vector), and

E[llf (A, . X)|IP] < 00
For (A, u) € S and 6 > 0, define

€ (A, p, 8) = sup{[lf (A", ', X) — f(A, w, X)| :
[V, 1) = (A, w)| < 8.

We require

(a-vi) For every (A,u) € S, there is some & > 0 for
which E[€,(A, w, 6)] < oo.

Define the derivative map

HA+u"x) HA+u x)x"
Df(/\"u“’x)=< / T / T T)
HA+p'x)x HA+p x)xx
and define €,(A, u, 6) by replacing f with Df in the defi-
nition of €.
(a-vil) E[Df(A,, n,, X)] exists, is finite, and has full
rank.
(a-viii) For every (A, ) € S, there is some 6 > 0 for
which E[e,(A, w, 6)] < oo.
In the unbiased case cy = 0, condition (a-vii) simplifies
to a full-rank requirement for X, the covariance matrix
of X, because in this case (A,, u,) = (#'(1),0) and

1 1 x'
Df(/\*’I'L*’X):h//_(l) X .XXT ’

SO

1 1 O
E[Df(A,, p,, X)] = —— .
2s O 0= 15 (o 5 )
More generally, the condition reduces to the requirement
that the matrix C, in (21) be finite and nonsingular. We
now have

PropoSITION 2. If Conditions (a-i)—(a-viii) hold, then
(A, 1)) = (A, ) with probability 1, and /n[(A,, 1)) —
(A, m])] converges in distribution to a multivariate
normal. In particular, (A, ;) = (A, ) +0,(n"'/?).

Proor. Conditions (a-i)—(a-viii) imply the assumptions
of Theorem 2.1 of Hansen (1982), establishing almost
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sure convergence, and they imply the assumptions of
Theorem 3.1 of Hansen (1982) ensuring asymptotic
normality. [
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